1
|
Chen YL, Wang R, Pang R, Sun ZP, He XL, Tang WH, Ou JY, Yi HM, Cheng X, Chen JH, Yu Y, Ren CH, Wang QJ, Zhang ZJ. Transcriptome-Based Revelation of the Effects of Sleep Deprivation on Hepatic Metabolic Rhythms in Tibetan Sheep ( Ovis aries). Animals (Basel) 2024; 14:3165. [PMID: 39595218 PMCID: PMC11591132 DOI: 10.3390/ani14223165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Sleep deprivation (SD) disrupts circadian rhythms; however, its effects on SD and the mechanisms involved require further investigation. Previous studies on SD were mainly conducted on rodents, such as mice, with few studies on its effects on the liver of large diurnal animals, such as sheep. In this study, we used a Tibetan sheep model for the first time to investigate the effects of SD on the liver by exposing Tibetan sheep (Ovis aries) to 7 days of SD (6 h/day) and performed transcriptome sequencing analysis on liver samples taken at 4 h intervals over 24 h. The results revealed that SD significantly altered the circadian expression of genes and their expression patterns in the liver of Tibetan sheep. Enrichment analysis of the circadian rhythm-altered genes revealed changes in the pathways related to lipid metabolism in the liver. Further evidence from serum markers and gene expression analyses using qualitative real-time polymerase chain reaction and Oil Red O and apoptosis staining indicated that SD leads to abnormal lipid metabolism in the liver, potentially causing liver damage. Therefore, our results suggest that SD disrupts the circadian rhythms of metabolism-related genes in the Tibetan sheep liver, thereby affecting metabolic homeostasis.
Collapse
Affiliation(s)
- Ya-Le Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Ru Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Rui Pang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Zhi-Peng Sun
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Xiao-Long He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Wen-Hui Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Jing-Yu Ou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Huan-Ming Yi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Jia-Hong Chen
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China;
| | - Yang Yu
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Chun-Huan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Qiang-Jun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Zi-Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China;
| |
Collapse
|
2
|
Zeng L, Jin X, Xiao QA, Jiang W, Han S, Chao J, Zhang D, Xia X, Wang D. Ferroptosis: action and mechanism of chemical/drug-induced liver injury. Drug Chem Toxicol 2024; 47:1300-1311. [PMID: 38148561 DOI: 10.1080/01480545.2023.2295230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Drug-induced liver injury (DILI) is characterized by hepatocyte injury, cholestasis injury, and mixed injury. The liver transplantation is required for serious clinical outcomes such as acute liver failure. Current studies have found that many mechanisms were involved in DILI, such as mitochondrial oxidative stress, apoptosis, necroptosis, autophagy, ferroptosis, etc. Ferroptosis occurs when hepatocytes die from iron-dependent lipid peroxidation and plays a key role in DILI. After entry into the liver, where some drugs or chemicals are metabolized, they convert into hepatotoxic substances, consume reduced glutathione (GSH), and decrease the reductive capacity of GSH-dependent GPX4, leading to redox imbalance in hepatocytes and increase of reactive oxygen species (ROS) and lipid peroxidation level, leading to the undermining of hepatocytes; some drugs facilitated the autophagy of ferritin, orchestrating the increased ion level and ferroptosis. The purpose of this review is to summarize the role of ferroptosis in chemical- or drug-induced liver injury (chemical/DILI) and how natural products inhibit ferroptosis to prevent chemical/DILI.
Collapse
Affiliation(s)
- Li Zeng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xueli Jin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Wei Jiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Jin Chao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
3
|
Chen J, Xiao L, Chen Y, Li W, Liu Y, Zhou Y, Tan H. YT521-B homology domain containing 1 ameliorates mitochondrial damage and ferroptosis in sleep deprivation by activating the sirtuin 1/nuclear factor erythroid-derived 2-like 2/heme oxygenase 1 pathway. Brain Res Bull 2023; 197:1-12. [PMID: 36935054 DOI: 10.1016/j.brainresbull.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
In sleep deprivation (SD) models, ferroptosis is increased. SIRT1 alleviates cognitive impairment in SD, and SIRT1/NRF2/HO1 pathway depresses ferroptosis in different diseases. Moreover, YTHDC1 can regulate SIRT1 mRNA stability. Therefore, our study explored effects of the YTHDC1/SIRT1/NRF2/HO1 axis on neuronal damage and ferroptosis in SD. The SD mouse model was established through a modified multi-platform water environment method and a cell model of ferroptosis was constructed with Erastin, followed by gain- and loss-of-function assays. In mice, the cognitive impairment and CLOCK and BMAL1 levels in hippocampal tissues were assessed. In cells, viability was measured. In mice and cells, mitochondrial ultrastructure, the content of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and iron, and the expression of GPX4 and ACSL4 were detected. The potential relationships among YTHDC1, SIRT1, and NRF2 were analyzed. SD mice had downregulated YTHDC1, SIRT1, NRF2, and HO1 protein expression in hippocampal tissues and increased ferroptosis. Mechanically, SIRT1 activated the NRF2/HO1 pathway through deacetylation, and YTHDC1 increased SIRT1 mRNA stability. YTHDC1 overexpression diminished mitochondrial damage, the content of ROS, iron, and MDA, and the expression of ACSL4 while enhancing GSH contents and GPX4 expression in hippocampal tissues of SD mice and Erastin-induced HT22 cells. Additionally, YTHDC1 overexpression elevated viability in Erastin-induced HT22 cells. SIRT1 or NRF2 overexpression ameliorated Erastin-induced mitochondrial damage and ferroptosis in HT22 cells. Silencing SIRT1 abolished the impact of YTHDC1 overexpression on SD mice and Erastin-induced HT22 cells. Collectively, YTHDC1 ameliorates mitochondrial damage and ferroptosis after SD by activating the SIRT1/NRF2/HO1 pathway.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China.
| | - Lijun Xiao
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ying Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Wei Li
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Yinan Liu
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ying Zhou
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Hong Tan
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
4
|
Walker WE. GOODNIGHT, SLEEP TIGHT, DON'T LET THE MICROBES BITE: A REVIEW OF SLEEP AND ITS EFFECTS ON SEPSIS AND INFLAMMATION. Shock 2022; 58:189-195. [PMID: 35959798 PMCID: PMC9489678 DOI: 10.1097/shk.0000000000001976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Sleep is a restorative biological process that is crucial for health and homeostasis. However, patient sleep is frequently interrupted in the hospital environment, particularly within the intensive care unit. Suboptimal sleep may alter the immune response and make patients more vulnerable to infection and sepsis. In addition, hospitalized patients with sepsis experience altered sleep relative to patients without infectious disease, suggesting a bidirectional interplay. Preclinical studies have generated complementary findings, and together, these studies have expanded our mechanistic understanding. This review article summarizes clinical and preclinical studies describing how sleep affects inflammation and the host's susceptibility to infection. We also highlight potential strategies to reverse the detrimental effects of sleep interruption in the intensive care unit.
Collapse
Affiliation(s)
- Wendy E. Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX
| |
Collapse
|
5
|
Qiu Y, Mao ZJ, Ruan YP, Zhang X. Exploration of the anti-insomnia mechanism of Ganoderma by central-peripheral multi-level interaction network analysis. BMC Microbiol 2021; 21:296. [PMID: 34715778 PMCID: PMC8555286 DOI: 10.1186/s12866-021-02361-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023] Open
Abstract
Background Ganoderma (Lingzhi in Chinese) has shown good clinical outcomes in the treatment of insomnia, restlessness, and palpitation. However, the mechanism by which Ganoderma ameliorates insomnia is unclear. We explored the mechanism of the anti-insomnia effect of Ganoderma using systems pharmacology from the perspective of central-peripheral multi-level interaction network analysis. Methods The active components and central active components of Ganoderma were obtained from the TCMIP and TCMSP databases, then screened to determine their pharmacokinetic properties. The potential target genes of these components were identified using the Swiss Target Prediction and TCMSP databases. The results were matched with the insomnia target genes obtained from the GeneCards, OMIM, DisGeNET, and TCMIP databases. Overlapping targets were subjected to multi-level interaction network analysis and enrichment analysis using the STRING, Metascape, and BioGPS databases. The networks analysed were protein-protein interaction (PPI), drug-component-target gene, component-target gene-organ, and target gene-extended disease; we also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results In total, 34 sedative-hypnotic components (including 5 central active components) were identified, corresponding to 51 target genes. Multi-level interaction network analysis and enrichment analysis demonstrated that Ganoderma exerted an anti-insomnia effect via multiple central-peripheral mechanisms simultaneously, mainly by regulating cell apoptosis/survival and cytokine expression through core target genes such as TNF, CASP3, JUN, and HSP90αA1; it also affected immune regulation and apoptosis. Therefore, Ganoderma has potential as an adjuvant therapy for insomnia-related complications. Conclusion Ganoderma exerts an anti-insomnia effect via complex central-peripheral multi-level interaction networks.
Collapse
Affiliation(s)
- Yu Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Zhu-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ye-Ping Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, Zhejiang Province, China.
| | - Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, Zhejiang Province, China.
| |
Collapse
|