1
|
Ou J, Li Z, Yao D, Lu C, Zeng X. Multimodal Function of Mesenchymal Stem Cells in Psoriasis Treatment. Biomolecules 2025; 15:737. [PMID: 40427630 PMCID: PMC12109568 DOI: 10.3390/biom15050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Psoriasis is a chronic inflammatory disease mediated by the innate and adaptive immune systems, and its pathogenesis involves multiple aspects, including abnormal interleukin (IL)-23-Th17 axis, dysfunction of Tregs and other immune cells, and a complex relationship between keratinocytes and the vascular endothelium. Dysfunction of mesenchymal stem cells in psoriatic skin may also be the main reason for the dysregulated inflammatory response. Mesenchymal stem cells, a type of adult stem cells with multidifferentiation potential, are involved in the regulation of multiple links and targets in the pathogenesis of psoriasis. Thus, a detailed exploration of these mechanisms may lead to the development of new therapeutic strategies for the treatment of psoriasis. In this paper, the role of mesenchymal stem cells in skin homeostasis, the pathogenesis of psoriasis, and the multimodal function of using mesenchymal stem cells in the treatment of psoriasis are reviewed.
Collapse
Affiliation(s)
- Jiaxin Ou
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
- National Institute of Stem Cell Clinical Research, Guangdong Hospital of Chinese Medicine, Guangzhou 510120, China
- Lab of Stem Cell Biology and Innovative Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine/Guangdong Academy of Chinese Medicine, Guangzhou 510120, China
| | - Ziqing Li
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
| | - Danni Yao
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
| | - Chuanjian Lu
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
- National Institute of Stem Cell Clinical Research, Guangdong Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Xiang Zeng
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- National Institute of Stem Cell Clinical Research, Guangdong Hospital of Chinese Medicine, Guangzhou 510120, China
- Lab of Stem Cell Biology and Innovative Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine/Guangdong Academy of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou 510120, China
| |
Collapse
|
2
|
Dey R, Das A. Efficacy of mesenchymal stem cell transplantation therapy to mitigate psoriasis: A systematic review and meta-analysis. Curr Res Transl Med 2025; 73:103504. [PMID: 40054039 DOI: 10.1016/j.retram.2025.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 06/01/2025]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by red lesions and skin patches with silvery scales. Overall, 2 - 3 % of the worldwide population is affected by psoriasis. Recent treatment strategies for psoriasis involve Mesenchymal stromal/stem cell (MSC) transplantation instead of conventional treatment with monoclonal antibodies and small molecule drugs. However, studies systematically determining the efficacy of MSC therapy to treat psoriasis are lacking. Three electronic databases, including Cochrane, PubMed, and Web of Science Library, were searched for related studies from 2013 to 2023 using a widespread list of key terms. Among the collected records, duplicates and non-relevant articles were removed by screening the title, abstract, and full text based on the inclusion and exclusion criteria. Data were extracted from the eligible full-text articles to perform the meta-analysis, determining MSC therapy's efficacy in treating psoriasis. In the screening process, five clinical and sixteen preclinical studies, including 1 study with both preclinical and clinical data, showing the efficacy of MSC transplantation therapy to mitigate psoriasis were eligible for the systematic review. The meta-analysis was based on the data extracted from 10 eligible preclinical studies involving 343 animals. Pooled results demonstrated that the Psoriasis Area and Severity Index (PASI) score and the epidermal thickness of the psoriatic plaques in the animals post-MSC transplantation were significantly reduced. Our meta-analysis showed the efficacy of MSC transplantation therapies in mitigating psoriasis in preclinical animal models. Thus, further clinical research is warranted to translate these findings from bench to bedside.
Collapse
Affiliation(s)
- Rahul Dey
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad - 500007 TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad - 500007 TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
3
|
Hou XY, Danzeng LM, Wu YL, Ma QH, Yu Z, Li MY, Li LS. Mesenchymal stem cells and their derived exosomes for the treatment of COVID-19. World J Stem Cells 2024; 16:353-374. [PMID: 38690515 PMCID: PMC11056634 DOI: 10.4252/wjsc.v16.i4.353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiang-Yi Hou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - La-Mu Danzeng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Yi-Lin Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Qian-Hui Ma
- Department of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Zheng Yu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Mei-Ying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
4
|
Di Vincenzo M, Diotallevi F, Piccirillo S, Carnevale G, Offidani A, Campanati A, Orciani M. miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108502. [PMID: 37239847 DOI: 10.3390/ijms24108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA) and typically interact with specific target mRNAs through complementary base pairing, affecting their translation and/or stability. MiRNAs regulate nearly all cellular functions, including the cell fate of mesenchymal stromal cells (MSCs). It is now accepted that various pathologies arise at the stem level, and, in this scenario, the role played by miRNAs in the fate of MSCs becomes of primary concern. Here we have considered the existing literature in the field of miRNAs, MSCs and skin diseases, classified as inflammatory (such as psoriasis and atopic dermatitis-AD) and neoplastic (melanoma and non-melanoma-skin-cancer including squamous cell and basal cell carcinoma) diseases. In this scoping review article, the evidence recovered indicates that this topic has attracted attention, but it is still a matter of opinion. A protocol for this review was registered in PROSPERO with the registration number "CRD42023420245". According to the different skin disorders and to the specific cellular mechanisms considered (cancer stem cells, extracellular vesicles, inflammation), miRNAs may play a pro- or anti-inflammatory, as well as a tumor suppressive, or supporting, role, indicating a complex regulation of their function. It is evident that the mode of action of miRNAs is more than a switch on-off, and all the observed effects of their dysregulated expression must be checked in a detailed analysis of the targeted proteins. The involvement of miRNAs has been studied mainly for squamous cell carcinoma and melanoma, and much less in psoriasis and AD; different mechanisms have been considered, such as miRNAs included in extracellular vesicles derived both from MSCs or tumor cells, miRNAs involved in cancer stem cells formation, up to miRNAs as candidates to be new therapeutic tools.
Collapse
Affiliation(s)
- Mariangela Di Vincenzo
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Diotallevi
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health-Pharmacology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 41121 Modena, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
5
|
Antonatos C, Asmenoudi P, Panoutsopoulou M, Vasilopoulos Y. Pharmaco-Omics in Psoriasis: Paving the Way towards Personalized Medicine. Int J Mol Sci 2023; 24:ijms24087090. [PMID: 37108251 PMCID: PMC10139144 DOI: 10.3390/ijms24087090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The emergence of high-throughput approaches has had a profound impact on personalized medicine, evolving the identification of inheritable variation to trajectory analyses of transient states and paving the way for the unveiling of response biomarkers. The utilization of the multi-layered pharmaco-omics data, including genomics, transcriptomics, proteomics, and relevant biological information, has facilitated the identification of key molecular biomarkers that can predict the response to therapy, thereby optimizing treatment regiments and providing the framework for a tailored treatment plan. Despite the availability of multiple therapeutic options for chronic diseases, the highly heterogeneous clinical response hinders the alleviation of disease signals and exacerbates the annual burden and cost of hospitalization and drug regimens. This review aimed to examine the current state of the pharmaco-omic approaches performed in psoriasis, a common inflammatory disease of the skin. We sought to identify central studies that investigate the inter-individual variability and explore the underlying molecular mechanisms of drug response progression via biological profiling in psoriatic patients administered with the extended therapeutic armamentarium of psoriasis, incorporating conventional therapies, small molecules, as well as biological drugs that inhibit central pathogenic cytokines involved in the disease pathogenesis.
Collapse
Affiliation(s)
- Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Paschalia Asmenoudi
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Mariza Panoutsopoulou
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|
6
|
Mesenchymal Stem Cells and Psoriasis: Systematic Review. Int J Mol Sci 2022; 23:ijms232315080. [PMID: 36499401 PMCID: PMC9740222 DOI: 10.3390/ijms232315080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are multipotent non-hematopoietic stromal cells found in different body tissues such as bone marrow, adipose tissue, periosteum, Wharton's jelly, umbilical cord, blood, placenta, amniotic fluid, and skin. The biological behavior of MSCs depends mainly on their interaction with the microenvironment in which they are found, whose quality deeply influences the regenerative and immunomodulatory properties of these cells. Several studies confirm the interaction between MSCs and inflammatory microenvironment in the pathogenesis of psoriasis, designating MSCs as an important factor driving psoriasis development. This review aims to describe the most recent evidence on how the inflammatory microenvironment that characterizes psoriasis influences the homeostasis of MSCs and how they can be used to treat the disease.
Collapse
|
7
|
Campanati A, Orciani M, Marani A, Di Vincenzo M, Magi S, Gregoriou S, Diotallevi F, Martina E, Radi G, Offidani A. Mesenchymal Stem Cells Profile in Adult Atopic Dermatitis and Effect of IL4-IL13 Inflammatory Pathway Inhibition In Vivo: Prospective Case-Control Study. J Clin Med 2022; 11:jcm11164759. [PMID: 36013001 PMCID: PMC9409772 DOI: 10.3390/jcm11164759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Atopic dermatitis (AD) is an inflammatory disease that typically begins in childhood and may persist into adulthood, becoming a lifelong condition. The major inflammatory mediators of AD are known to be interleukin IL4 and IL13, so Dupilumab, which is able to inhibit both interleukins by blocking the shared IL4Rα subunit, has become an attractive option for treating AD. Mesenchymal stem cells (MSCs) are involved in the onset and development of AD by secreting specific interleukins. The aim of this study was to isolate MSCs from healthy controls (C-MSCs) and patients with AD before (AD-MSCs T0) and after 16 weeks of treatment with Dupilumab (AD-MSCs T16); to evaluate the expression mainly of IL4 and IL13 and of other inflammatory cytokines in C-MSCs, AD-MSCs at T0 and at T16; and to evaluate the efficacy of Dupilumab on MSCs immunobiology. C- and AD-MSCs (T0, T16) were isolated from skin specimens and characterized; the expression/secretion of IL4 and IL13 was evaluated using immuno-cytochemistry (ICC), indirect immune-fluorescence (IIF) and an ELISA test; secretion of IL2, IL4, IL5, IL6, IL10, IL12, IL13, IL17A, Interferon gamma (IFNγ), Tumor necrosis factor alpha (TNFα), Granulocyte Colony-Stimulating Factor (G-CSF), and Transforming Growth Factor beta1 (TGFβ1) were measured with ELISA. IL13 and IL6 were over-expressed, while IL4 was down-regulated in AD-MSCs at T0 compared to C-MSCs. IL6 and IL13 expression was restored after 16 weeks of Dupilumab treatment, while no significant effects on IL4 expression were noted. Finally, IL2, IL5, IL10, IL12, IL17A, INFγ, TNFα, G-CSF, and TGFβ1 were similarly secreted by C- and AD-MSCs. Although Dupilumab blocks the IL4Rα subunit shared by IL4 and IL13, it is evident that its real target is IL13, and its ability to target IL13 in MSCs reinforces the evidence, already known in differentiated cells, of the central role IL13 rather than IL4 in the development of AD. The inflammatory cascade in AD begins at the mesenchymal level, so an upstream therapeutic intervention, able to modify the immunobiology of atopic MSCs, could potentially change the natural history of the disease.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Monia Orciani
- Histology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Andrea Marani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-071-5963433
| | - Mariangela Di Vincenzo
- Histology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Simona Magi
- Pharmacology, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Stamatios Gregoriou
- Faculty of Medicine, 1st Department of Dermatology-Venereology at Andreas Sygros Hospital, National and Kapodistrian University in Athens, 16121 Athens, Greece
| | - Federico Diotallevi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Emanuela Martina
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Giulia Radi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| |
Collapse
|
8
|
Zhou L, Wang J, Liang J, Hou H, Li J, Li J, Cao Y, Li J, Zhang K. Psoriatic mesenchymal stem cells stimulate the angiogenesis of human umbilical vein endothelial cells in vitro. Microvasc Res 2021; 136:104151. [PMID: 33662409 DOI: 10.1016/j.mvr.2021.104151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the regulation of psoriatic dermal mesenchymal stem cells (p-DMSCs) in the expression of vascular growth factor (VEGF), and migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. METHODS A co-culture model of HUVECs and dermal mesenchymal stem cells (DMSCs)was used in this study. After 7-day co-culture, changes in expression levels of VEGF mRNA and protein in HUVECs were assessed using RT-PCR and Western Blotting, respectively. Migration and tubular formation of HUVECs were also assessed following co-culture of DMSCs and HUVECs. RESULTS In comparison to either HUVECs alone or co-culture of n-DMSCs and HUVECs, co-culture of HUVECs and p-DMSCs significantly increased expression levels of both VEGF mRNA (p < 0.01 vs. HUVECs alone) and protein in HUVECs (p < 0.001 vs. both HUVECs alone and HUVECs co-cultured with n-DMSCs). Moreover, p-DMSCs stimulated HUVEC migration and vascular formation (p < 0.05 vs. both HUVECs alone and co-culture of n-DMSCs and HUVECs). CONCLUSION Psoriatic DMSCs can upregulate VEGF expression, and stimulate migration and angiogenesis of HUVECs, suggesting a pathogenic role of p-DMSCs in psoriasis.
Collapse
Affiliation(s)
- Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China.
| |
Collapse
|