1
|
Hayles A, Nguyen HN, Alemie M, Vongsvivut J, Ninan N, Bright R, Dabare PR, Gibson C, Truong VK, Vasilev K. Electrostatic charge at the biomaterial-pathogen interface influences antibiotic efficacy. ADVANCED BIOTECHNOLOGY 2025; 3:10. [PMID: 40175809 PMCID: PMC11965051 DOI: 10.1007/s44307-025-00061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025]
Abstract
Implant-associated infections (IAI) are a considerable burden for healthcare systems globally. While novel anti-infective biomaterials are being pursued, prophylactic antibiotic treatment remains the most important intervention for mitigating IAI. The antibiotic tolerance of bacteria has been widely studied, but until recently, the contributions of biomaterial-pathogen interactions have been overlooked. In the present study, we investigate how material electrostatic charge influences the physiological state of the most clinically challenging pathogen-Staphylococcus aureus, and the implications on its antibiotic tolerance. We utilized a combination of techniques, including quantitative gene expression and synchrotron-sourced attenuated total reflectance Fourier-transform microspectroscopy, to characterize this phenomenon - elucidating how surface attachment to differently charged substrates drives the pathogen to modify its phenotype. Subsequently, we found a direct relationship between the activity of oppositely charged antibiotics (vancomycin and cefazolin) and the biomaterial-pathogen interface, which we determined to be governed by material electrostatic properties. The findings of the present study have the potential to inform the development of enhanced procedures of antibiotic prophylaxis by instructing personalized biomaterial-antibiotic pairing strategies. These new insights hold promise to contribute to reducing the rate of IAI by enabling clinicians and surgeons to maximize the efficacy of prophylactic antibiotic treatments during implant placement procedures.
Collapse
Affiliation(s)
- Andrew Hayles
- Biomedical Nanoengineering Laboratory, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Huu Ngoc Nguyen
- Biomedical Nanoengineering Laboratory, Flinders University, Bedford Park, SA, 5042, Australia
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW, 2050, Australia
| | - Markos Alemie
- Biomedical Nanoengineering Laboratory, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO ‒ Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Neethu Ninan
- Biomedical Nanoengineering Laboratory, Flinders University, Bedford Park, SA, 5042, Australia
| | - Richard Bright
- Biomedical Nanoengineering Laboratory, Flinders University, Bedford Park, SA, 5042, Australia
| | | | - Christopher Gibson
- Flinders Microscopy and Microanalysis, Flinders University, Bedford Park, SA, 5042, Australia
- Adelaide Microscopy, the University of Adelaide, Adelaide, SA, 5000, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, Flinders University, Bedford Park, SA, 5042, Australia
- Deaprtment of Biomedical Engineering, Healthcare Engineering Innovation Centre, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
2
|
Toth AL, Wyatt CDR, Masonbrink RE, Geist KS, Fortune R, Scott SB, Favreau E, Rehan SM, Sumner S, Gardiner MM, Sivakoff FS. New genomic resources inform transcriptomic responses to heavy metal toxins in the common Eastern bumble bee Bombus impatiens. BMC Genomics 2024; 25:1106. [PMID: 39563229 PMCID: PMC11575022 DOI: 10.1186/s12864-024-11040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The common Eastern bumble bee Bombus impatiens is native to North America and is the main commercially reared pollinator in the Americas. There has been extensive research on this species related to its social biology, applied pollination, and genetics. The genome of this species was previously sequenced using short-read technology, but recent technological advances provide an opportunity for substantial improvements. This species is common in agricultural and urban environments, and heavy metal contaminants produced by industrial processes can negatively impact it. To begin to identify possible mechanisms underlying responses to these toxins, we used RNA-sequencing to examine how exposure to a cocktail of four heavy metals at field-realistic levels from industrial areas affected B. impatiens worker gene expression. RESULTS PacBio long-read sequencing resulted in 544x coverage of the genome, and HiC technology was used to map chromatin contacts. Using Juicer and manual curation, the genome was scaffolded into 18 main pseudomolecules, representing a high quality, chromosome-level assembly. The sequenced genome size is 266.6 Mb and BRAKER3 annotation produced 13,938 annotated genes. The genome and annotation show high completeness, with ≥ 96% of conserved Eukaryota and Hymenoptera genes present in both the assembly and annotated genes. RNA sequencing of heavy metal exposed workers revealed 603 brain and 34 fat body differentially expressed genes. In the brain, differentially expressed genes had biological functions related to chaperone activity and protein folding. CONCLUSIONS Our data represent a large improvement in genomic resources for this important model species-with 10% more genome coverage than previously available, and a high-quality assembly into 18 chromosomes, the expected karyotype for this species. The new gene annotation added 777 new genes. Altered gene expression in response to heavy metal exposure suggests a possible mechanism for how these urban toxins are negatively impacting bee health, specifically by altering protein folding in the brain. Overall, these data are useful as a general high quality genomic resource for this species, and provide insight into mechanisms underlying tissue-specific toxicological responses of bumble bees to heavy metals.
Collapse
Affiliation(s)
- Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, USA.
| | | | | | - Katherine S Geist
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Ryan Fortune
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Sarah B Scott
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Emeline Favreau
- Centre for Biodiversity and Environment Research, University College, London, UK
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON, Canada
| | - Seirian Sumner
- Centre for Biodiversity and Environment Research, University College, London, UK
| | - Mary M Gardiner
- Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Frances S Sivakoff
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Marion, OH, USA
| |
Collapse
|
3
|
Medegan Fagla B, Buhimschi IA. Protein Misfolding in Pregnancy: Current Insights, Potential Mechanisms, and Implications for the Pathogenesis of Preeclampsia. Molecules 2024; 29:610. [PMID: 38338354 PMCID: PMC10856193 DOI: 10.3390/molecules29030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Protein misfolding disorders are a group of diseases characterized by supra-physiologic accumulation and aggregation of pathogenic proteoforms resulting from improper protein folding and/or insufficiency in clearance mechanisms. Although these processes have been historically linked to neurodegenerative disorders, such as Alzheimer's disease, evidence linking protein misfolding to other pathologies continues to emerge. Indeed, the deposition of toxic protein aggregates in the form of oligomers or large amyloid fibrils has been linked to type 2 diabetes, various types of cancer, and, in more recent years, to preeclampsia, a life-threatening pregnancy-specific disorder. While extensive physiological mechanisms are in place to maintain proteostasis, processes, such as aging, genetic factors, or environmental stress in the form of hypoxia, nutrient deprivation or xenobiotic exposures can induce failure in these systems. As such, pregnancy, a natural physical state that already places the maternal body under significant physiological stress, creates an environment with a lower threshold for aberrant aggregation. In this review, we set out to discuss current evidence of protein misfolding in pregnancy and potential mechanisms supporting a key role for this process in preeclampsia pathogenesis. Improving our understanding of this emerging pathophysiological process in preeclampsia can lead to vital discoveries that can be harnessed to create better diagnoses and treatment modalities for the disorder.
Collapse
Affiliation(s)
| | - Irina Alexandra Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
4
|
Walls D, Cooney G, Loughran ST. A Synopsis of Proteins and Their Purification. Methods Mol Biol 2023; 2699:1-14. [PMID: 37646990 DOI: 10.1007/978-1-0716-3362-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The goal of protein purification is to separate a specific protein from all other biomolecules. Classical chromatographic procedures have been designed to exploit particular distinguishing features of individual target proteins, such as size, shape, physicochemical properties, and binding affinity. Advances in molecular biology and bioinformatics have positively contributed at every level to the challenge of purifying individual proteins and more recently have led to the development of high-throughput proteomic platforms. In this chapter, a synopsis of advancements in the field of protein chromatography is presented, with reference to the principal tools and resources that are available to assist with protein purification strategies.
Collapse
Affiliation(s)
- Dermot Walls
- School of Biotechnology , Dublin City University, Dublin, Ireland
| | - Gary Cooney
- School of Biotechnology , Dublin City University, Dublin, Ireland
| | - Sinéad T Loughran
- Department of Life and Health Sciences, School of Health and Science, Dundalk Institute of Technology, Dundalk, Ireland.
| |
Collapse
|
5
|
Soto AM, Sonnenschein C. Information, programme, signal: dead metaphors that negate the agency of organisms. INTERDISCIPLINARY SCIENCE REVIEWS : ISR 2020; 45:331-343. [PMID: 33100483 PMCID: PMC7577589 DOI: 10.1080/03080188.2020.1794389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The metaphorical adoption of the concepts of information, program and signal introduced into biology the logic and implicit causal structure of the mathematical theories of information; this is inimical to biology. In turn, those metaphors have hindered the development of a theory of organisms by transferring the agency of organisms to natural selection and to DNA. Moreover, those metaphors introduced into biology the dualism software-hardware and a Laplacian causal structure. Instead, we propose to uphold the agency of the living by adopting three foundational principles for a theory of organisms: namely, 1) the principle of biological inertia (i.e., the default state of cells is proliferation and motility), 2) the principle of variation, and 3) the principle of organization.
Collapse
Affiliation(s)
- Ana M. Soto
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
- Centre Cavaillès, École Normale Supérieure, 29, Rue d’Ulm, Paris 75005, France
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
- Centre Cavaillès, École Normale Supérieure, 29, Rue d’Ulm, Paris 75005, France
| |
Collapse
|
6
|
Tang X, Gao G, Zhang T, Li J, Yu M, He M, Sun T. Charge effects at nano-bio interfaces: a model of charged gold nanoclusters on amylin fibrillation. NANOSCALE 2020; 12:18834-18843. [PMID: 32895690 DOI: 10.1039/d0nr03877f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The misfolding and abnormal amyloid fibrillation of proteins/peptides are associated with more than 20 human diseases. Although dozens of nanoparticles have been investigated for the inhibition effect on the misfolding and fibrillation of pathogenesis-related proteins/peptides, there are few reports on charge effects of nano inhibitors on amyloid fibrillation. Herein, same-sized gold nanoclusters modified with 2-aminoethanethiol hydrochloride (CSH-AuNCs, positively charged in pH 7.4) or 3-mercaptopropionic acid (MPA-AuNCs, negatively charged in pH 7.4) were synthesized and adopted as models to explore the charge effect of nano inhibitors on amylin fibrillation at the nano-bio interface. ThT fluorescence kinetics analysis, AFM images and circular dichroism (CD) spectra showed that electropositive CSH-AuNCs inhibited the misfolding and fibrillation of amylin in a dosage-dependent manner, but electronegative MPA-AuNCs accelerated the misfolding and fibrillation of amylin in a dosage-dependent manner. Moreover, the theoretical and experimental results revealed the interaction mechanism between amylin and ligands of AuNCs at the nano-bio interfaces. Electropositive CSH-AuNCs could be bound to the main nucleating region of amylin via hydrogen bonding and endowed the nanocomplex with more positive net charges (amylin monomer with a positive +26.23 ± 0.80 mV zeta potential), which would inhibit the misfolding and aggregation of amylin via electrostatic repulsion and steric hindrance. In contrast, electronegative MPA-AuNCs could absorb electropositive amylin via strong electrostatic attractions, which accelerated the fibrillation process of amylin via enhancing local concentrations. Moreover, cell experiments showed that both the charged AuNCs had good biocompatibility and electronegetive MPA-AuNCs showed a better protective effect in the amylin-induced cell model than electropositive CSH-AuNCs. These results provide an insight into structure-based nanodrug design for protein conformational diseases.
Collapse
Affiliation(s)
- Xintong Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Kini RM. Toxinology provides multidirectional and multidimensional opportunities: A personal perspective. Toxicon X 2020; 6:100039. [PMID: 32550594 PMCID: PMC7285919 DOI: 10.1016/j.toxcx.2020.100039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023] Open
Abstract
In nature, toxins have evolved as weapons to capture and subdue the prey or to counter predators or competitors. When they are inadvertently injected into humans, they cause symptoms ranging from mild discomfort to debilitation and death. Toxinology is the science of studying venoms and toxins that are produced by a wide variety of organisms. In the past, the structure, function and mechanisms of most abundant and/or most toxic components were characterized to understand and to develop strategies to neutralize their toxicity. With recent technical advances, we are able to evaluate and determine the toxin profiles using transcriptomes of venom glands and proteomes of tiny amounts of venom. Enormous amounts of data from these studies have opened tremendous opportunities in many directions of basic and applied research. The lower costs for profiling venoms will further fuel the expansion of toxin database, which in turn will provide greater exciting and bright opportunities in toxin research.
Collapse
Affiliation(s)
- R. Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Paul George AA, Heimer P, Maaß A, Hamaekers J, Hofmann-Apitius M, Biswas A, Imhof D. Insights into the Folding of Disulfide-Rich μ-Conotoxins. ACS OMEGA 2018; 3:12330-12340. [PMID: 30411002 PMCID: PMC6217517 DOI: 10.1021/acsomega.8b01465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The study of protein conformations using molecular dynamics (MD) simulations has been in place for decades. A major contribution to the structural stability and native conformation of a protein is made by the primary sequence and disulfide bonds formed during the folding process. Here, we investigated μ-conotoxins GIIIA, KIIIA, PIIIA, SIIIA, and SmIIIA as model peptides possessing three disulfide bonds. Their NMR structures were used for MD simulations in a novel approach studying the conformations between the folded and the unfolded states by systematically breaking the distinct disulfide bonds and monitoring the conformational stability of the peptides. As an outcome, the use of a combination of the existing knowledge and results from the simulations to classify the studied peptides within the extreme models of disulfide folding pathways, namely the bovine pancreatic trypsin inhibitor pathway and the hirudin pathway, is demonstrated. Recommendations for the design and synthesis of cysteine-rich peptides with a reduced number of disulfide bonds conclude the study.
Collapse
Affiliation(s)
- Ajay Abisheck Paul George
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Pascal Heimer
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Astrid Maaß
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
| | - Jan Hamaekers
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
- Bonn-Aachen
International Center for Information Technology, University of Bonn, Endenicher Allee 19 C, D-53115 Bonn, Germany
| | - Arijit Biswas
- Institute
for Experimental Hematology, University
Hospital Bonn, Sigmund-Freud-Straße
25, D-53127 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
9
|
Boronic acid-based chemical sensors for saccharides. Carbohydr Res 2017; 452:129-148. [DOI: 10.1016/j.carres.2017.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
|
10
|
A Synopsis of Proteins and Their Purification. Methods Mol Biol 2016. [PMID: 27730545 DOI: 10.1007/978-1-4939-6412-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The isolation of a given protein, free of all other biomolecules, is the primary objective of any protein purification scheme. Classical chromatographic procedures have been designed to exploit particular distinguishing features of individual target proteins, such as size, physicochemical properties, and binding affinity. Advances in molecular biology and bioinformatics have positively contributed at every level to the challenge of purifying individual proteins and more recently have led to the development of high-throughput proteomic platforms. Here, a synopsis of developments in the field of protein chromatography is given, with reference to the principal tools and resources that are available to assist with protein purification processes.
Collapse
|
11
|
Khan FI, Wei DQ, Gu KR, Hassan MI, Tabrez S. Current updates on computer aided protein modeling and designing. Int J Biol Macromol 2016; 85:48-62. [DOI: 10.1016/j.ijbiomac.2015.12.072] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022]
|
12
|
Herrmann JM, Riemer J. Three approaches to one problem: protein folding in the periplasm, the endoplasmic reticulum, and the intermembrane space. Antioxid Redox Signal 2014; 21:438-56. [PMID: 24483706 DOI: 10.1089/ars.2014.5841] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The bacterial periplasm, the endoplasmic reticulum (ER), and the intermembrane space (IMS) of mitochondria contain dedicated machineries for the incorporation of disulfide bonds into polypeptides, which cooperate with chaperones, proteases, and assembly factors during protein biogenesis. RECENT ADVANCES The mitochondrial disulfide relay was identified only very recently. The current knowledge of the protein folding machinery of the IMS will be described in detail in this review and compared with the "more established" systems of the periplasm and the ER. CRITICAL ISSUES While the disulfide relays of all three compartments adhere to the same principle, the specific designs and functions of these systems differ considerably. In particular, the cooperation with other folding systems makes the situation in each compartment unique. FUTURE DIRECTIONS The biochemical properties of the oxidation machineries are relatively well understood. However, it still remains largely unclear as to how the quality control systems of "oxidizing" compartments orchestrate the activities of oxidoreductases, chaperones, proteases, and signaling molecules to ensure protein homeostasis.
Collapse
Affiliation(s)
- Johannes M Herrmann
- 1 Department of Cell Biology, University of Kaiserslautern , Kaiserslautern, Germany
| | | |
Collapse
|
13
|
Tavares LS, Rettore JV, Freitas RM, Porto WF, Duque APDN, Singulani JDL, Silva ON, Detoni MDL, Vasconcelos EG, Dias SC, Franco OL, Santos MDO. Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides 2012; 37:294-300. [PMID: 22841855 DOI: 10.1016/j.peptides.2012.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 11/20/2022]
Abstract
Antimicrobial peptides (AMPs) are compounds that act in a wide range of physiological defensive mechanisms developed to counteract bacteria, fungi, parasites and viruses. These molecules have become increasingly important as a consequence of remarkable microorganism resistance to common antibiotics. This report shows Escherichia coli expressing the recombinant antimicrobial peptide Pg-AMP1 previously isolated from Psidium guajava seeds. The deduced Pg-AMP1 open reading frame consists in a 168 bp long plus methionine also containing a His6 tag, encoding a predicted 62 amino acid residue peptide with related molecular mass calculated to be 6.98 kDa as a monomer and 13.96 kDa at the dimer form. The recombinant Pg-AMP1 peptide showed inhibitory activity against multiple Gram-negative (E. coli, Klebsiella pneumonia and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Staphylococcus epidermides) bacteria. Moreover, theoretical structure analyses were performed in order to understand the functional differences between natural and recombinant Pg-AMP1 forms. Data here reported suggest that Pg-AMP1 is a promising peptide to be used as a biotechnological tool for control of human infectious diseases.
Collapse
Affiliation(s)
- Letícia Stephan Tavares
- Departamento de Biologia, Programa de Pós-Graduação em Genética e Biotecnologia, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-900, Martelos, Juiz de Fora-MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Longo G, Miquel PA, Sonnenschein C, Soto AM. Is information a proper observable for biological organization? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 109:108-14. [PMID: 22796169 DOI: 10.1016/j.pbiomolbio.2012.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/03/2012] [Accepted: 06/19/2012] [Indexed: 01/08/2023]
Abstract
In the last century, jointly with the advent of computers, mathematical theories of information were developed. Shortly thereafter, during the ascent of molecular biology, the concept of information was rapidly transferred into biology at large. Several philosophers and biologists have argued against adopting this concept based on epistemological and ontological arguments, and also, because it encouraged genetic determinism. While the theories of elaboration and transmission of information are valid mathematical theories, their own logic and implicit causal structure make them inimical to biology, and because of it, their applications have and are hindering the development of a sound theory of organisms. Our analysis concentrates on the development of information theories in mathematics and on the differences between these theories regarding the relationship among complexity, information and entropy.
Collapse
Affiliation(s)
- G Longo
- CREA, Ecole Polytechnique, 32 Boulevard Victor, 75015 Paris, France.
| | | | | | | |
Collapse
|
15
|
Abstract
The isolation of a given protein, free of all other biomolecules, is the primary objective of any protein purification scheme. Classical chromatographic procedures have been designed to exploit particular distinguishing features of individual target proteins, such as size, physico-chemical properties and binding affinity. Advances in molecular biology and bioinformatics have positively contributed at every level to the challenge of purifying individual proteins and more recently have led to the development of high-throughput proteomic platforms. Here, a summation of developments in the field of protein chromatography is given, coupled with a compilation of general resources and tools that are available to assist with protein purification processes.
Collapse
Affiliation(s)
- Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| | | | | |
Collapse
|
16
|
Silva CH, Taft CA. Stoichiometry of Amino acids Drives Protein Folding? J Biomol Struct Dyn 2011; 28:635-6; discussion 669-674. [DOI: 10.1080/073911011010524970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Chen W, Elfeky SA, Nonne Y, Male L, Ahmed K, Amiable C, Axe P, Yamada S, James TD, Bull SD, Fossey JS. A pyridinium cation–π interaction sensor for the fluorescent detection of alkyl halides. Chem Commun (Camb) 2011; 47:253-5. [DOI: 10.1039/c0cc01420f] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Cheng S, Edwards SA, Jiang Y, Gräter F. Glycosylation enhances peptide hydrophobic collapse by impairing solvation. Chemphyschem 2010; 11:2367-74. [PMID: 20583025 DOI: 10.1002/cphc.201000205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Post-translational N-glycosylation of proteins is ubiquitous in eukaryotic cells, and has been shown to influence the thermodynamics of protein collapse and folding. However, the mechanism for this influence is not well understood. All-atom molecular dynamics simulations are carried out to study the collapse of a peptide linked to a single N-glycan. The glycan is shown to perturb the local water hydrogen-bonding network, rendering it less able to solvate the peptide and thus enhancing the hydrophobic contribution to the free energy of collapse. The enhancement of the hydrophobic collapse compensates for the weakened entropic coiling due to the bulky glycan chain and leads to a stronger burial of hydrophobic surface, presumably enhancing folding. This conclusion is reinforced by comparison with coarse-grained simulations, which contain no explicit solvent and correspondingly exhibit no significant thermodynamic changes on glycosylation.
Collapse
Affiliation(s)
- Shanmei Cheng
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | | | | | | |
Collapse
|
19
|
Baculovirus GP64 disulfide bonds: the intermolecular disulfide bond of Autographa californica multicapsid nucleopolyhedrovirus GP64 is not essential for membrane fusion and virion budding. J Virol 2010; 84:8584-95. [PMID: 20573818 DOI: 10.1128/jvi.00264-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The GP64 envelope glycoprotein of the Autographa californica nucleopolyhedrovirus (AcMNPV) is a class III viral membrane fusion protein that is triggered by low pH during entry. Unlike most other viral fusion protein trimers, the monomers of GP64 are covalently linked to each other within the trimer by a single intermolecular disulfide bond (Cys24 Cys372). Single or paired alanine substitutions for Cys24 and Cys372 resulted in lower-efficiency transport of GP64 to the cell surface. Surprisingly, these mutated GP64s induced syncytium formation, and normalized fusion activities were approximately 30% of that from wild-type (WT) GP64. Heat treatment (37 degrees C) did not further reduce fusion activity of GP64 constructs with a disrupted intermolecular disulfide bond, suggesting that the GP64 trimers were relatively thermostable in the absence of the intermolecular disulfide bond. In addition, analysis of binding by a conformation-specific monoclonal antibody (MAb) suggested that the low-pH-induced refolding of those GP64 constructs was generally similar to that of WT GP64. In addition to its critical role in membrane fusion, GP64 is also necessary for efficient budding. When GP64 constructs containing a disrupted intermolecular disulfide bond (Cys24 Cys372) were displayed at the cell surface at levels comparable to those of WT GP64, virion budding efficiency ranged from approximately 39 to 88%, indicating that the intermolecular disulfide bond is not required for virion budding. However, GP64 proteins with a disrupted intermolecular disulfide could not rescue a GP64-null bacmid. We also examined the 6 conserved intramolecular disulfide bonds using single and paired alanine substitution mutations. None of the GP64 constructs with disrupted intramolecular disulfide bonds were capable of mediating pH-triggered membrane fusion, indicating that the intramolecular disulfide bonds are all necessary for membrane fusion. Thus, while the intramolecular disulfide bonds of GP64 appear to serve critical roles in membrane fusion, the unusual intermolecular disulfide bond was not critical for membrane fusion or virion budding yet appears to play an unknown role in viral infectivity.
Collapse
|
20
|
Huang YJ, Jiang YB, Bull SD, Fossey JS, James TD. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker. Chem Commun (Camb) 2010; 46:8180-2. [DOI: 10.1039/c0cc03099f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|