1
|
López ME, Ozerov M, Pukk L, Noreikiene K, Gross R, Vasemägi A. Dynamic Outlier Slicing Allows Broader Exploration of Adaptive Divergence: A Comparison of Individual Genome and Pool-Seq Data Linked to Humic Adaptation in Perch. Mol Ecol 2025; 34:e17659. [PMID: 39846218 DOI: 10.1111/mec.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis). By using whole-genome sequencing (WGS) on a large population dataset (n = 42 populations) and analysing 873,788 SNPs, our primary aim was to uncover novel and confirm known footprints of selection. We compared individual and pooled WGS, and developed a novel approach, termed dynamic outlier slicing, to assess how the choice of outlier-calling stringency influences functional and Gene Ontology (GO) enrichment. By integrating genome-environment association (GEA) analysis with allele frequency-based approaches, we estimated composite selection signals (CSS) and identified 2679 outlier SNPs distributed across 324 genomic regions, involving 468 genes. Dynamic outlier slicing identified robust enrichment signals in five annotation categories (upstream, downstream, synonymous, 5'UTR and 3'UTR) highlighting the crucial role of regulatory elements in adaptive evolution. Furthermore, GO analyses revealed strong enrichment of molecular functions associated with gated channel activity, transmembrane transporter activity and ion channel activity, emphasising the importance of osmoregulation and ion balance maintenance. Our findings demonstrate that despite substantial random drift and divergence, WGS of high number of population pools enabled the identification of strong selection signals associated with adaptation to both humic and clear water environments, providing robust evidence of widespread adaptation. We anticipate that the dynamic outlier slicing method we developed will enable a more thorough exploration of adaptive divergence across a diverse range of species.
Collapse
Affiliation(s)
- María-Eugenia López
- Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | | | - Lilian Pukk
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Kristina Noreikiene
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Riho Gross
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Anti Vasemägi
- Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
2
|
Guo Y, Liu J, Zhang S, Sun D, Dong Z, Cao J. A Transcriptome Approach Evaluating the Effects of Atractylenolide I on the Secretion of Estradiol and Progesterone in Feline Ovarian Granulosa Cells. Vet Sci 2024; 11:663. [PMID: 39729003 DOI: 10.3390/vetsci11120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024] Open
Abstract
Atractylodes macrocephala Koidz (AMK) as an oriental medicine has been used in the treatment of threatened abortion. Atractylenolide I (AT-I) is one of the major bioactive components of AMK. This study aimed to investigate the effect of AT-I on the secretion of estradiol (E2) and progesterone (P4) in feline ovarian granulosa cells (FOGCs), which is necessary for pregnancy. At first, the proliferation of FOGCs after AT-I treatment was measured by CCK-8. Then, the synthesis of E2 and P4 were measured by ELISA. Lastly, transcriptome sequencing was used to detect the DEGs in the FOGCs, and RNA-seq results were verified by RT-qPCR and biochemical verification. It was found that AT-I could promote proliferation and the secretion of E2 and P4 in FOGCs; after AT-I treatment, 137 significant DEGs were observed, out of which 49 were up-regulated and 88 down-regulated. The DEGs revealed significant enrichment of 52 GO terms throughout the differentiation process (p < 0.05), as deciphered by Gene Ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes analysis manifested that the DEGs were successfully annotated as members of 155 pathways, with 23 significantly enriched (p < 0.05). A relatively high number of genes were enriched for the cholesterol metabolism, ovarian steroidogenesis, and biosynthesis of unsaturated fatty acids. Furthermore, the contents of the total cholesterol and low-density lipoprotein cholesterol were decreased by AT-I treatment in the cell culture supernatant. The results indicated that AT-I could increase the ability of FOGCs to secrete E2 and P4, which might be achieved by activation of cholesterol metabolism.
Collapse
Affiliation(s)
- Yuli Guo
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junping Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuangyi Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Di Sun
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhiying Dong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinshan Cao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Li Z, Li J, Li Z, Song Y, Wang Y, Wang C, Yuan L, Xiao W, Wang J. Zebrafish mylipb attenuates antiviral innate immunity through two synergistic mechanisms targeting transcription factor irf3. PLoS Pathog 2024; 20:e1012227. [PMID: 38739631 PMCID: PMC11115282 DOI: 10.1371/journal.ppat.1012227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
IFN regulatory factor 3 (IRF3) is the transcription factor crucial for the production of type I IFN in viral defence and inflammatory responses. The activity of IRF3 is strictly modulated by post-translational modifications (PTMs) to effectively protect the host from infection while avoiding excessive immunopathology. Here, we report that zebrafish myosin-regulated light chain interacting protein b (mylipb) inhibits virus-induced type I IFN production via two synergistic mechanisms: induction of autophagic degradation of irf3 and reduction of irf3 phosphorylation. In vivo, mylipb-null zebrafish exhibit reduced lethality and viral mRNA levels compared to controls. At the cellular level, overexpression of mylipb significantly reduces cellular antiviral capacity, and promotes viral proliferation. Mechanistically, mylipb associates with irf3 and targets Lys 352 to increase K6-linked polyubiquitination, dependent on its E3 ubiquitin ligase activity, leading to autophagic degradation of irf3. Meanwhile, mylipb acts as a decoy substrate for the phosphokinase tbk1 to attenuate irf3 phosphorylation and cellular antiviral responses independent of its enzymatic activity. These findings support a critical role for zebrafish mylipb in the limitation of antiviral innate immunity through two synergistic mechanisms targeting irf3.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunling Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Le Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
4
|
Liang J, Li W, Liu H, Li X, Yuan C, Zou W, Qu L. Di’ao Xinxuekang Capsule Improves the Anti-Atherosclerotic Effect of Atorvastatin by Downregulating the SREBP2/PCSK9 Signalling Pathway. Front Pharmacol 2022; 13:857092. [PMID: 35571088 PMCID: PMC9096164 DOI: 10.3389/fphar.2022.857092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Statins are the first choice for lowering low-density lipoprotein cholesterol (LDL-C) and preventing atherosclerotic cardiovascular disease (ASCVD). However, statins can also upregulate proprotein convertase subtilisin/kexin type 9 (PCSK9), which in turn might limits the cholesterol-lowering effect of statins through the degradation of LDL receptors (LDLR). Di’ao Xinxuekang (DXXK) capsule, as a well-known traditional Chinese herbal medicine for the prevention and treatment of coronary heart disease, can alleviate lipid disorders and ameliorate atherosclerosis in atherosclerosis model mice and downregulate the expression of PCSK9. In this study, we further explored whether DXXK has a synergistic effect with atorvastatin (ATO) and its underlying molecular mechanism. The results showed that both ATO monotherapy (1.3 mg/kg) and ATO combined with DXXK therapy significantly lowered serum lipid levels and reduced the formation of atherosclerotic plaques and the liver lipid accumulation. Moreover, compared with ATO monotherapy, the addition of DXXK (160 mg/kg) to the combination therapy further lowered LDL-C by 15.55% and further reduced the atherosclerotic plaque area by 25.98%. In addition, the expression of SREBP2, PCSK9 and IDOL showed a significant increase in the model group, and the expression of LDLR was significantly reduced; however, there were no significant differences between the ATO (1.3 mg/kg) and the model groups. When ATO was combined with DXXK, the expression of LDLR was significantly increased and was higher than that of the model group and the expression of SREBP2 and PCSK9 in the liver was also significantly inhibited. Moreover, it can be seen that the expression of SREBP2 and PCSK9 in the combination treatment group was significantly lower than that in the ATO monotherapy group (1.3 mg/kg). Besides, the expression of IDOL mRNA in each treatment group was not significantly different from that of the model group. Our study suggests that DXXK might have a synergistic effect on the LDL-C lowering and antiatherosclerosis effects of ATO through the SREBP2/PCSK9 pathway. This indicates that a combination of DXXK and ATO may be a new treatment for atherosclerosis.
Collapse
Affiliation(s)
- Jiyi Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofen Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuqiao Yuan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wenjun Zou, ; Liping Qu,
| | - Liping Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wenjun Zou, ; Liping Qu,
| |
Collapse
|
5
|
Vrachnis N, Papoulidis I, Vrachnis D, Siomou E, Antonakopoulos N, Oikonomou S, Zygouris D, Loukas N, Iliodromiti Z, Pavlidou E, Thomaidis L, Manolakos E. Partial deletion of chromosome 6p causing developmental delay and mild dysmorphisms in a child: molecular and developmental investigation and literature search. Mol Cytogenet 2021; 14:39. [PMID: 34303382 PMCID: PMC8310580 DOI: 10.1186/s13039-021-00557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/06/2021] [Indexed: 11/28/2022] Open
Abstract
Background The interstitial 6p22.3 deletions concern rare chromosomal events affecting numerous aspects of both physical and mental development. The syndrome is characterized by partial deletion of chromosome 6, which may arise in a number of ways. Case presentation We report a 2.8-year old boy presenting with developmental delay and mild dysmorphisms. High-resolution oligonucleotide microarray analysis revealed with high precision a 2.5 Mb interstitial 6p deletion in the 6p22.3 region which encompasses 13 genes. Conclusions Identification and in-depth analysis of cases presenting with mild features of the syndrome will sharpen our understanding of the genetic spectrum of the 6p22.3 deletion.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, Athens, GR, Greece. .,Research Centre in Obstetrics and Gynecology, HSOGE, Athens, Greece. .,Vascular Biology, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| | - Ioannis Papoulidis
- Access To Genome P.C., Clinical Laboratory Genetics, Athens-Thessaloniki, Greece
| | - Dionysios Vrachnis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Medical School, Alexandra Hospital, Athens, Greece
| | - Elisavet Siomou
- Access To Genome P.C., Clinical Laboratory Genetics, Athens-Thessaloniki, Greece
| | - Nikolaos Antonakopoulos
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, Athens, GR, Greece.,Research Centre in Obstetrics and Gynecology, HSOGE, Athens, Greece
| | - Stavroula Oikonomou
- Second Department of Pediatrics, Aglaia Kyriakou Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos Loukas
- Department of Gynecology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Zoi Iliodromiti
- Neonatal Department, National and Kapodistrian University of Athens Medical School, Aretaieio Hospital, Athens, Greece
| | - Efterpi Pavlidou
- Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, University General Hospital AHEPA, Thessaloniki, Greece
| | - Loretta Thomaidis
- Second Department of Pediatrics, Aglaia Kyriakou Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Manolakos
- Access To Genome P.C., Clinical Laboratory Genetics, Athens-Thessaloniki, Greece
| |
Collapse
|
6
|
Yang HX, Zhang M, Long SY, Tuo QH, Tian Y, Chen JX, Zhang CP, Liao DF. Cholesterol in LDL receptor recycling and degradation. Clin Chim Acta 2019; 500:81-86. [PMID: 31770510 DOI: 10.1016/j.cca.2019.09.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/26/2022]
Abstract
The SREBP2/LDLR pathway is sensitive to cholesterol content in the endoplasmic reticulum (ER), while membrane low-density lipoprotein receptor (LDLR) is influenced by sterol response element binding protein 2 (SREBP2), pro-protein convertase subtilisin/kexin type 9 (PCSK9) and inducible degrader of LDLR (IDOL). LDL-C, one of the risk factors in cardiovascular disease, is cleared through endocytosis recycling of LDLR. Therefore, we propose that a balance between LDLR endocytosis recycling and PCSK9-mediated and IDOL-mediated lysosomal LDLR degradation is responsible for cholesterol homeostasis in the ER. For statins that decrease serum LDL-C levels via cholesterol synthesis inhibition, the mechanism by which the statins increase the membrane LDLR may be regulated by cholesterol homeostasis in the ER.
Collapse
Affiliation(s)
- Hui-Xian Yang
- Institute of Cardiovascular Disease, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China; Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Min Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Shi-Yin Long
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Qin-Hui Tuo
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China
| | - Ying Tian
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Jian-Xiong Chen
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China; Department Pharmacology & Toxicology, University of Mississippi Medical Center, USA
| | - Cai-Ping Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China.
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China.
| |
Collapse
|
7
|
Sayols-Baixeras S, Subirana I, Lluis-Ganella C, Civeira F, Roquer J, Do AN, Absher D, Cenarro A, Muñoz D, Soriano-Tárraga C, Jiménez-Conde J, Ordovas JM, Senti M, Aslibekyan S, Marrugat J, Arnett DK, Elosua R. Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach. The REGICOR study. Hum Mol Genet 2016; 25:4556-4565. [PMID: 28173150 PMCID: PMC6284258 DOI: 10.1093/hmg/ddw285] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/13/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Lipid traits (total, low-density and high-density lipoprotein cholesterol, and triglycerides) are risk factors for cardiovascular disease. DNA methylation is not only an inherited but also modifiable epigenetic mark that has been related to cardiovascular risk factors. Our aim was to identify loci showing differential DNA methylation related to serum lipid levels. Blood DNA methylation was assessed using the Illumina Human Methylation 450 BeadChip. A two-stage epigenome-wide association study was performed, with a discovery sample in the REGICOR study (n = 645) and validation in the Framingham Offspring Study (n = 2,542). Fourteen CpG sites located in nine genes (SREBF1, SREBF2, PHOSPHO1, SYNGAP1, ABCG1, CPT1A, MYLIP, TXNIP and SLC7A11) and 2 intergenic regions showed differential methylation in association with lipid traits. Six of these genes and 1 intergenic region were new discoveries showing differential methylation related to total cholesterol (SREBF2), HDL-cholesterol (PHOSPHO1, SYNGAP1 and an intergenic region in chromosome 2) and triglycerides (MYLIP, TXNIP and SLC7A11). These CpGs explained 0.7%, 9.5% and 18.9% of the variability of total cholesterol, HDL cholesterol and triglycerides in the Framingham Offspring Study, respectively. The expression of the genes SREBF2 and SREBF1 was inversely associated with methylation of their corresponding CpGs (P-value = 0.0042 and 0.0045, respectively) in participants of the GOLDN study (n = 98). In turn, SREBF1 expression was directly associated with HDL cholesterol (P-value = 0.0429). Genetic variants in SREBF1, PHOSPHO1, ABCG1 and CPT1A were also associated with lipid profile. Further research is warranted to functionally validate these new loci and assess the causality of new and established associations between these differentially methylated loci and lipid metabolism.
Collapse
Affiliation(s)
- S Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - I Subirana
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona, Catalonia, Spain
- CIBER Epidemiology and Public Health, Barcelona, Catalonia, Spain
| | - C Lluis-Ganella
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona, Catalonia, Spain
| | - F Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis,
Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza,
Spain
| | - J Roquer
- Department of Neurology, Neurovascular Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona 08003, Catalonia, Spain
| | - AN Do
- Department of Epidemiology, University of Alabama at Birmingham,
Birmingham, AL, USA
| | - D Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - A Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis,
Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza,
Spain
| | - D Muñoz
- Cardiovascular Risk and Nutrition Research Group, IMIM (Hospital del Mar
Medical Research Institute), Barcelona, Catalonia, Spain
| | - C Soriano-Tárraga
- Department of Neurology, Neurovascular Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona 08003, Catalonia, Spain
| | - J Jiménez-Conde
- Department of Neurology, Neurovascular Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona 08003, Catalonia, Spain
| | - J M Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts
University, Boston, MA, USA
| | - M Senti
- Department of Experimental and Health Sciences, Pompeu Fabra
University, Barcelona, Catalonia, Spain
| | - S Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham,
Birmingham, AL, USA
| | - J Marrugat
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona, Catalonia, Spain
| | - D K Arnett
- Dean's Office, College of Public Health, University of Kentucky,
Lexington, KY, USA
| | - R Elosua
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Do HT, Bruelle C, Pham DD, Jauhiainen M, Eriksson O, Korhonen LT, Lindholm D. Nerve growth factor (NGF) and pro-NGF increase low-density lipoprotein (LDL) receptors in neuronal cells partly by different mechanisms: role of LDL in neurite outgrowth. J Neurochem 2015; 136:306-15. [PMID: 26484803 DOI: 10.1111/jnc.13397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022]
Abstract
Low-density lipoprotein receptors (LDLRs) mediate the uptake of lipoprotein particles into cells, as studied mainly in peripheral tissues. Here, we show that nerve growth factor (NGF) increases LDLR levels in PC6.3 cells and in cultured septal neurons from embryonic rat brain. Study of the mechanisms showed that NGF enhanced transcription of the LDLR gene, acting mainly via Tropomyosin receptor kinase A receptors. Simvastatin, a cholesterol-lowering drug, also increased the LDLR expression in PC6.3 cells. In addition, pro-NGF and pro-brain-derived neurotrophic factor, acting via the p75 neurotrophin receptor (p75NTR) also increased LDLRs. We further observed that Myosin Regulatory Light Chain-Interacting Protein/Inducible Degrader of the LDLR (Mylip/Idol) was down-regulated by pro-NGF, whereas the other LDLR regulator, proprotein convertase subtilisin kexin 9 (PCSK9) was not significantly changed. On the functional side, NGF and pro-NGF increased lipoprotein uptake by neuronal cells as shown using diacetyl-labeled LDL. The addition of serum-derived lipoprotein particles in conjunction with NGF or simvastatin enhanced neurite outgrowth. Collectively, these results show that NGF and simvastatin are able to stimulate lipoprotein uptake by neurons with a positive effect on neurite outgrowth. Increases in LDLRs and lipoprotein particles in neurons could play a functional role during brain development, in neuroregeneration and after brain injuries. Nerve growth factor (NGF) and pro-NGF induce the expression of low-density lipoprotein receptors (LDLRs) in neuronal cells leading to increased LDLR levels. Pro-NGF also down-regulated myosin regulatory light chain-interacting protein/inducible degrader of the LDLR (Mylip/Idol) that is involved in the degradation of LDLRs. NGF acts mainly via Tropomyosin receptor kinase A (TrkA) receptors, whereas pro-NGF stimulates p75 neurotrophin receptor (p75NTR). Elevated LDLRs upon NGF and pro-NGF treatments enhanced lipoprotein uptake by neurons. Addition of LDL particles further led to the stimulation of neurite outgrowth in PC6.3 cells after NGF or simvastatin treatments, suggesting a stimulatory role of lipoproteins on neuronal differentiation. In contrast, pro-NGF had no effect on neurite outgrowth either in the absence or presence of LDL particles. The precise mechanisms by which increased lipoproteins uptake can affect neurite outgrowth warrant further studies.
Collapse
Affiliation(s)
- Hai Thi Do
- Department of Biochemistry and Developmental Biology, Medical Faculty, Medicum, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Céline Bruelle
- Department of Biochemistry and Developmental Biology, Medical Faculty, Medicum, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Dan Duc Pham
- Department of Biochemistry and Developmental Biology, Medical Faculty, Medicum, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Ove Eriksson
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Laura T Korhonen
- Department of Biochemistry and Developmental Biology, Medical Faculty, Medicum, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Division of Child Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medical Faculty, Medicum, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
9
|
Di Benedetto D, Di Vita G, Romano C, Giudice ML, Vitello GA, Zingale M, Grillo L, Castiglia L, Musumeci SA, Fichera M. 6p22.3 deletion: report of a patient with autism, severe intellectual disability and electroencephalographic anomalies. Mol Cytogenet 2013; 6:4. [PMID: 23324214 PMCID: PMC3564794 DOI: 10.1186/1755-8166-6-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
Background The interstitial 6p deletions, involving the 6p22-p24 chromosomal region, are rare events characterized by variable phenotypes and no clear genotype-phenotype correlation has been established so far. Results High resolution array-CGH identified 1 Mb de novo interstitial deletion in 6p22.3 chromosomal region in a patient affected by severe Intellectual Disability (ID), Autism Spectrum Disorders (ASDs), and electroencephalographic anomalies. This deletion includes ATXN1, DTNBP1, JARID2 and MYLIP genes, known to play an important role in the brain, and the GMPR gene whose function in the nervous system is unknown. Conclusions We support the suggestion that ATXN1, DTNBP1, JARID2 and MYLIP are candidate genes for the pathophysiology of ASDs and ID, and we propose that deletion of DTNBP1 and/or JARID2 contributes to the hypotonia phenotype.
Collapse
Affiliation(s)
- Daniela Di Benedetto
- Laboratory of Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Giuseppa Di Vita
- Unit of Neurology, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Mariangela Lo Giudice
- Unit of Neuromuscular Disease, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | | | - Marinella Zingale
- Unit of Psychology, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Lucia Grillo
- Laboratory of Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Lucia Castiglia
- Laboratory of Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | | | - Marco Fichera
- Laboratory of Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy.,Medical Genetics, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Yan TT, Yin RX, Li Q, Huang P, Zeng XN, Huang KK, Wu DF, Aung LHH. Association of MYLIP rs3757354 SNP and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis 2012; 11:141. [PMID: 23107276 PMCID: PMC3496621 DOI: 10.1186/1476-511x-11-141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/27/2012] [Indexed: 11/10/2022] Open
Abstract
Background The association of rs3757354 single nucleotide polymorphism (SNP) in the E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP, also known as IDOL) gene and serum lipid levels is not well known in the general population. The present study aimed to detect the association of rs3757354 SNP and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Method A total of 627 subjects of Bai Ku Yao minority and 614 participants of Han nationality were randomly selected from our stratified randomized cluster samples. Genotyping of the rs3757354 SNP was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein (Apo) AI and ApoB were lower in Bai Ku Yao than in Han (P < 0.05-0.001). The frequency of G allele was 49.92% in Bai Ku Yao and 56.27% in Han (P < 0.05). The frequencies of AA, GA and GG genotypes were 25.52%, 49.12% and 25.36% in Bai Ku Yao, and 19.87%, 47.72% and 32.41% in Han (P < 0.05); respectively. There were no significant differences in the genotypic and allelic frequencies between males and females in both ethnic groups. The levels of HDL-C in Bai Ku Yao were different among the genotypes (P < 0.05), the G allele carriers had higher serum HDL-C levels than the G allele noncarriers. The levels TC, HDL-C and ApoAI in Han were different among the genotypes (P < 0.05 for all), the participants with GA genotype had lower serum TC, HDL-C and ApoAI levels than the participants with AA genotype. These findings were found only in females but not in males. The levels of TG and HDL-C in Bai Ku Yao were correlated with the genotypes, whereas the levels of TC in Han, and TC, LDL-C in Han females were associated with the genotypes (P < 0.05 for all). Serum lipid parameters were also correlated with age, sex, alcohol consumption, cigarette smoking, blood pressure, and body mass index in both ethnic groups (P < 0.05-0.001). Conclusions The present study suggests that the MYLIP rs3757354 SNP is associated with serum TC, HDL-C and ApoAI levels in the Bai Ku Yao and Han populations. But the association is different between the two ethnic groups.
Collapse
Affiliation(s)
- Ting-Ting Yan
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Do HT, Tselykh TV, Mäkelä J, Ho TH, Olkkonen VM, Bornhauser BC, Korhonen L, Zelcer N, Lindholm D. Fibroblast growth factor-21 (FGF21) regulates low-density lipoprotein receptor (LDLR) levels in cells via the E3-ubiquitin ligase Mylip/Idol and the Canopy2 (Cnpy2)/Mylip-interacting saposin-like protein (Msap). J Biol Chem 2012; 287:12602-11. [PMID: 22378787 DOI: 10.1074/jbc.m112.341248] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The LDLR is a critical factor in the regulation of blood cholesterol levels that are altered in different human diseases. The level of LDLR in the cell is regulated by both transcriptional and post-transcriptional events. The E3 ubiquitin ligase, myosin regulatory light chain-interacting protein (Mylip)/inducible degrader of the LDL-R (Idol) was shown to induce degradation of LDLR via protein ubiquitination. We have here studied novel factors and mechanisms that may regulate Mylip/Idol in human hepatocyte cells and in mouse macrophages. We observed that FGF21 that is present in serum in different conditions reduced Mylip/Idol at the RNA and protein level, and increased LDLR levels and stability in the cells. FGF21 also enhanced expression of Canopy2 (Cnpy2)/MIR-interacting Saposin-like protein (Msap) that is known to interact with Mylip/Idol. Overexpression of Cnpy2/Msap increased LDLRs, and knockdown experiments showed that Cnpy2/Msap is crucial for the FGF21 effect on LDLRs. Experiments using DiI-labeled LDL particles showed that FGF21 increased lipoprotein uptake and the effect of FGF21 was additive to that of statins. Our results are consistent with an important role of FGF21 and Cnpy2/Msap in the regulation of LDLRs in cultured cells, which warrants further studies using human samples.
Collapse
Affiliation(s)
- Hai Thi Do
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Haartmaninkatu 8, FIN-00290 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, Maouche S, Germain M, Lackner K, Rossmann H, Eleftheriadis M, Sinning CR, Schnabel RB, Lubos E, Mennerich D, Rust W, Perret C, Proust C, Nicaud V, Loscalzo J, Hübner N, Tregouet D, Münzel T, Ziegler A, Tiret L, Blankenberg S, Cambien F. Genetics and beyond--the transcriptome of human monocytes and disease susceptibility. PLoS One 2010; 5:e10693. [PMID: 20502693 PMCID: PMC2872668 DOI: 10.1371/journal.pone.0010693] [Citation(s) in RCA: 504] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/26/2010] [Indexed: 12/18/2022] Open
Abstract
Background Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in physiological and disease processes. Methodology/Principal Findings To get better insight into the overall variability of gene expression, we assessed the transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490 unrelated individuals and investigated its association with >675,000 SNPs and 10 common cardiovascular risk factors. Out of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P<5.78×10−12), most of them (90%) being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids, body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a study-wide level (P<3.9×10−7), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor. Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene expression. Because of the structure of correlation among expression traits, the variability of risk factors could be characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis than smoking itself. Conclusions/Significance This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and non-genetic influences of relevance for disease pathophysiology and risk assessment.
Collapse
Affiliation(s)
- Tanja Zeller
- Medizinische Klinik und Poliklinik, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Philipp Wild
- Medizinische Klinik und Poliklinik, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Silke Szymczak
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Maxime Rotival
- INSERM UMRS 937, Pierre and Marie Curie University and Medical School, Paris, France
| | - Arne Schillert
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Raphaele Castagne
- INSERM UMRS 937, Pierre and Marie Curie University and Medical School, Paris, France
| | - Seraya Maouche
- INSERM UMRS 937, Pierre and Marie Curie University and Medical School, Paris, France
| | - Marine Germain
- INSERM UMRS 937, Pierre and Marie Curie University and Medical School, Paris, France
| | - Karl Lackner
- Institut für Klinische Chemie und Laboratoriumsmediizin, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Heidi Rossmann
- Institut für Klinische Chemie und Laboratoriumsmediizin, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Medea Eleftheriadis
- Medizinische Klinik und Poliklinik, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Christoph R. Sinning
- Medizinische Klinik und Poliklinik, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Renate B. Schnabel
- Medizinische Klinik und Poliklinik, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Edith Lubos
- Medizinische Klinik und Poliklinik, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | | | - Werner Rust
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany
| | - Claire Perret
- INSERM UMRS 937, Pierre and Marie Curie University and Medical School, Paris, France
| | - Carole Proust
- INSERM UMRS 937, Pierre and Marie Curie University and Medical School, Paris, France
| | - Viviane Nicaud
- INSERM UMRS 937, Pierre and Marie Curie University and Medical School, Paris, France
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - David Tregouet
- INSERM UMRS 937, Pierre and Marie Curie University and Medical School, Paris, France
| | - Thomas Münzel
- Medizinische Klinik und Poliklinik, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Andreas Ziegler
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Laurence Tiret
- INSERM UMRS 937, Pierre and Marie Curie University and Medical School, Paris, France
| | - Stefan Blankenberg
- Medizinische Klinik und Poliklinik, Johannes-Gutenberg Universität Mainz, Mainz, Germany
- * E-mail: (SB) (SB); (FC) (FC)
| | - François Cambien
- INSERM UMRS 937, Pierre and Marie Curie University and Medical School, Paris, France
- * E-mail: (SB) (SB); (FC) (FC)
| |
Collapse
|