1
|
van der Sluijs P, Hoelen H, Schmidt A, Braakman I. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. J Mol Biol 2024; 436:168591. [PMID: 38677493 DOI: 10.1016/j.jmb.2024.168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.
Collapse
Affiliation(s)
- Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Hanneke Hoelen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Present address: GenDx, Yalelaan 48, 3584 CM Utrecht, The Netherlands
| | - Andre Schmidt
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; 3D-Pharmxchange, Tilburg, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
2
|
Lester A, Sandman M, Herring C, Girard C, Dixon B, Ramsdell H, Reber C, Poulos J, Mitchell A, Spinney A, Henager ME, Evans CN, Turlington M, Johnson QR. Computational Exploration of Potential CFTR Binding Sites for Type I Corrector Drugs. Biochemistry 2023; 62:2503-2515. [PMID: 37437308 PMCID: PMC10433520 DOI: 10.1021/acs.biochem.3c00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Cystic fibrosis (CF) is a recessive genetic disease that is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The recent development of a class of drugs called "correctors", which repair the structure and function of mutant CFTR, has greatly enhanced the life expectancy of CF patients. These correctors target the most common disease causing CFTR mutant F508del and are exemplified by the FDA-approved VX-809. While one binding site of VX-809 to CFTR was recently elucidated by cryo-electron microscopy, four additional binding sites have been proposed in the literature and it has been theorized that VX-809 and structurally similar correctors may engage multiple CFTR binding sites. To explore these five binding sites, ensemble docking was performed on wild-type CFTR and the F508del mutant using a large library of structurally similar corrector drugs, including VX-809 (lumacaftor), VX-661 (tezacaftor), ABBV-2222 (galicaftor), and a host of other structurally related molecules. For wild-type CFTR, we find that only one site, located in membrane spanning domain 1 (MSD1), binds favorably to our ligand library. While this MSD1 site also binds our ligand library for F508del-CFTR, the F508del mutation also opens a binding site in nucleotide binding domain 1 (NBD1), which enables strong binding of our ligand library to this site. This NBD1 site in F508del-CFTR exhibits the strongest overall binding affinity for our library of corrector drugs. This data may serve to better understand the structural changes induced by mutation of CFTR and how correctors bind to the protein. Additionally, it may aid in the design of new, more effective CFTR corrector drugs.
Collapse
Affiliation(s)
- Anna Lester
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Madeline Sandman
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Caitlin Herring
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Christian Girard
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Brandon Dixon
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Havanna Ramsdell
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Callista Reber
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Jack Poulos
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Alexis Mitchell
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Allison Spinney
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Marissa E. Henager
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Claudia N. Evans
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Mark Turlington
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Quentin R. Johnson
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| |
Collapse
|
3
|
Im J, Hillenaar T, Yeoh HY, Sahasrabudhe P, Mijnders M, van Willigen M, Hagos A, de Mattos E, van der Sluijs P, Braakman I. ABC-transporter CFTR folds with high fidelity through a modular, stepwise pathway. Cell Mol Life Sci 2023; 80:33. [PMID: 36609925 PMCID: PMC9825563 DOI: 10.1007/s00018-022-04671-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023]
Abstract
The question how proteins fold is especially pointed for large multi-domain, multi-spanning membrane proteins with complex topologies. We have uncovered the sequence of events that encompass proper folding of the ABC transporter CFTR in live cells by combining kinetic radiolabeling with protease-susceptibility assays. We found that CFTR folds in two clearly distinct stages. The first, co-translational, stage involves folding of the 2 transmembrane domains TMD1 and TMD2, plus one nucleotide-binding domain, NBD1. The second stage is a simultaneous, post-translational increase in protease resistance for both TMDs and NBD2, caused by assembly of these domains onto NBD1. Our assays probe every 2-3 residues (on average) in CFTR. This in-depth analysis at amino-acid level allows detailed analysis of domain folding and importantly also the next level: assembly of the domains into native, folded CFTR. Defects and changes brought about by medicines, chaperones, or mutations also are amenable to analysis. We here show that the well-known disease-causing mutation F508del, which established cystic fibrosis as protein-folding disease, caused co-translational misfolding of NBD1 but not TMD1 nor TMD2 in stage 1, leading to absence of stage-2 folding. Corrector drugs rescued stage 2 without rescuing NBD1. Likewise, the DxD motif in NBD1 that was identified to be required for export of CFTR from the ER we found to be required already upstream of export as CFTR mutated in this motif phenocopies F508del CFTR. The highly modular and stepwise folding process of such a large, complex protein explains the relatively high fidelity and correctability of its folding.
Collapse
Affiliation(s)
- Jisu Im
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Tamara Hillenaar
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hui Ying Yeoh
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Priyanka Sahasrabudhe
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Navigo Proteins GmbH, 06120 Halle, Germany
| | - Marjolein Mijnders
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Marcel van Willigen
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Julius Clinical Ltd, 3703 CD Zeist, The Netherlands
| | - Azib Hagos
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Recovery of ΔF508-CFTR Function by Citrate. Nutrients 2022; 14:nu14204283. [PMID: 36296967 PMCID: PMC9610893 DOI: 10.3390/nu14204283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment of cystic fibrosis relies so far on expensive and sophisticated drugs. A logical approach to rescuing the defective ΔF508-CFTR protein has not yet been published. Therefore, virtual docking of ATP and CFTR activators to the open conformation of the CFTR protein was performed. A new ATP binding site outside of the two known locations was identified. It was located in the cleft between the nucleotide binding domains NBD1 and NBD2 and comprised six basic amino acids in close proximity. Citrate and isocitrate were also bound to this site. Citrate was evaluated for its action on epithelial cells with intact CFTR and defective ΔF508-CFTR. It activated hyaluronan export from human breast carcinoma cells and iodide efflux, and recovered ΔF508-CFTR from premature intracellular degradation. In conclusion, citrate is an activator for ΔF508-CFTR and increases export by defective ΔF508-CFTR into the extracellular matrix of epithelial cells.
Collapse
|
5
|
Prins S, Corradi V, Sheppard DN, Tieleman DP, Vergani P. Can two wrongs make a right? F508del-CFTR ion channel rescue by second-site mutations in its transmembrane domains. J Biol Chem 2022; 298:101615. [PMID: 35065958 PMCID: PMC8861112 DOI: 10.1016/j.jbc.2022.101615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most common cause of cystic fibrosis. The F508 residue is located on nucleotide-binding domain 1 (NBD1) in contact with the cytosolic extensions of the transmembrane helices, in particular intracellular loop 4 (ICL4). To investigate how absence of F508 at this interface impacts the CFTR protein, we carried out a mutagenesis scan of ICL4 by introducing second-site mutations at 11 positions in cis with F508del. Using an image-based fluorescence assay, we measured how each mutation affected membrane proximity and ion-channel function. The scan strongly validated the effectiveness of R1070W at rescuing F508del defects. Molecular dynamics simulations highlighted two features characterizing the ICL4/NBD1 interface of F508del/R1070W-CFTR: flexibility, with frequent transient formation of interdomain hydrogen bonds, and loosely stacked aromatic sidechains (F1068, R1070W, and F1074, mimicking F1068, F508, and F1074 in WT CFTR). F508del-CFTR displayed a distorted aromatic stack, with F1068 displaced toward the space vacated by F508, while in F508del/R1070F-CFTR, which largely retained F508del defects, R1070F could not form hydrogen bonds and the interface was less flexible. Other ICL4 second-site mutations which partially rescued F508del-CFTR included F1068M and F1074M. Methionine side chains allow hydrophobic interactions without the steric rigidity of aromatic rings, possibly conferring flexibility to accommodate the absence of F508 and retain a dynamic interface. These studies highlight how both hydrophobic interactions and conformational flexibility might be important at the ICL4/NBD1 interface, suggesting possible structural underpinnings of F508del-induced dysfunction.
Collapse
Affiliation(s)
- Stella Prins
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Valentina Corradi
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D Peter Tieleman
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Paola Vergani
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
6
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
7
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
8
|
Sabusap CM, Joshi D, Simhaev L, Oliver KE, Senderowitz H, van Willigen M, Braakman I, Rab A, Sorscher EJ, Hong JS. The CFTR P67L variant reveals a key role for N-terminal lasso helices in channel folding, maturation, and pharmacologic rescue. J Biol Chem 2021; 296:100598. [PMID: 33781744 PMCID: PMC8102917 DOI: 10.1016/j.jbc.2021.100598] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Patients with cystic fibrosis (CF) harboring the P67L variant in the cystic fibrosis transmembrane conductance regulator (CFTR) often exhibit a typical CF phenotype, including severe respiratory compromise. This rare mutation (reported in <300 patients worldwide) responds robustly to CFTR correctors, such as lumacaftor and tezacaftor, with rescue in model systems that far exceed what can be achieved for the archetypical CFTR mutant F508del. However, the specific molecular consequences of the P67L mutation are poorly characterized. In this study, we conducted biochemical measurements following low-temperature growth and/or intragenic suppression, which suggest a mechanism underlying P67L that (1) shares key pathogenic features with F508del, including off-pathway (non-native) folding intermediates, (2) is linked to folding stability of nucleotide-binding domains 1 and 2, and (3) demonstrates pharmacologic rescue that requires domains in the carboxyl half of the protein. We also investigated the "lasso" helices 1 and 2, which occur immediately upstream of P67. Based on limited proteolysis, pulse chase, and molecular dynamics analysis of full-length CFTR and a series of deletion constructs, we argue that P67L and other maturational processing (class 2) defects impair the integrity of the lasso motif and confer misfolding of downstream domains. Thus, amino-terminal missense variants elicit a conformational change throughout CFTR that abrogates maturation while providing a robust substrate for pharmacologic repair.
Collapse
Affiliation(s)
- Carleen Mae Sabusap
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Disha Joshi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Luba Simhaev
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Marcel van Willigen
- Department of Cellular Protein Chemistry, Utrecht University, Utrecht, Netherlands
| | - Ineke Braakman
- Department of Cellular Protein Chemistry, Utrecht University, Utrecht, Netherlands
| | - Andras Rab
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Jeong S Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Kleizen B, van Willigen M, Mijnders M, Peters F, Grudniewska M, Hillenaar T, Thomas A, Kooijman L, Peters KW, Frizzell R, van der Sluijs P, Braakman I. Co-Translational Folding of the First Transmembrane Domain of ABC-Transporter CFTR is Supported by Assembly with the First Cytosolic Domain. J Mol Biol 2021; 433:166955. [PMID: 33771570 DOI: 10.1016/j.jmb.2021.166955] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
ABC transporters transport a wealth of molecules across membranes and consist of transmembrane and cytosolic domains. Their activity cycle involves a tightly regulated and concerted domain choreography. Regulation is driven by the cytosolic domains and function by the transmembrane domains. Folding of these polytopic multidomain proteins to their functional state is a challenge for cells, which is mitigated by co-translational and sequential events. We here reveal the first stages of co-translational domain folding and assembly of CFTR, the ABC transporter defective in the most abundant rare inherited disease cystic fibrosis. We have combined biosynthetic radiolabeling with protease-susceptibility assays and domain-specific antibodies. The most N-terminal domain, TMD1 (transmembrane domain 1), folds both its hydrophobic and soluble helices during translation: the transmembrane helices pack tightly and the cytosolic N- and C-termini assemble with the first cytosolic helical loop ICL1, leaving only ICL2 exposed. This N-C-ICL1 assembly is strengthened by two independent events: (i) assembly of ICL1 with the N-terminal subdomain of the next domain, cytosolic NBD1 (nucleotide-binding domain 1); and (ii) in the presence of corrector drug VX-809, which rescues cell-surface expression of a range of disease-causing CFTR mutants. Both lead to increased shielding of the CFTR N-terminus, and their additivity implies different modes of action. Early assembly of NBD1 and TMD1 is essential for CFTR folding and positions both domains for the required assembly with TMD2. Altogether, we have gained insights into this first, nucleating, VX-809-enhanced domain-assembly event during and immediately after CFTR translation, involving structures conserved in type-I ABC exporters.
Collapse
Affiliation(s)
- Bertrand Kleizen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marcel van Willigen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Julius Clinical Ltd, Broederplein 41-43, 3703 CD Zeist, the Netherlands(‡)
| | - Marjolein Mijnders
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands‡
| | - Florence Peters
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Magda Grudniewska
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands; GenomeScan B.V, Plesmanlaan 1d, 2333 BZ Leiden, the Netherlands‡
| | - Tamara Hillenaar
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Ann Thomas
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands; UniQure, Paasheuvelweg 25a, 1105 BP Amsterdam, the Netherlands‡
| | - Laurens Kooijman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland‡
| | - Kathryn W Peters
- Departments of Pediatrics and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raymond Frizzell
- Departments of Pediatrics and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Recent Strategic Advances in CFTR Drug Discovery: An Overview. Int J Mol Sci 2020; 21:ijms21072407. [PMID: 32244346 PMCID: PMC7177952 DOI: 10.3390/ijms21072407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR)-rescuing drugs have already transformed cystic fibrosis (CF) from a fatal disease to a treatable chronic condition. However, new-generation drugs able to bind CFTR with higher specificity/affinity and to exert stronger therapeutic benefits and fewer side effects are still awaited. Computational methods and biosensors have become indispensable tools in the process of drug discovery for many important human pathologies. Instead, they have been used only piecemeal in CF so far, calling for their appropriate integration with well-tried CF biochemical and cell-based models to speed up the discovery of new CFTR-rescuing drugs. This review will give an overview of the available structures and computational models of CFTR and of the biosensors, biochemical and cell-based assays already used in CF-oriented studies. It will also give the reader some insights about how to integrate these tools as to improve the efficiency of the drug discovery process targeted to CFTR.
Collapse
|
11
|
Farkas B, Tordai H, Padányi R, Tordai A, Gera J, Paragi G, Hegedűs T. Discovering the chloride pathway in the CFTR channel. Cell Mol Life Sci 2020; 77:765-778. [PMID: 31327045 PMCID: PMC7039865 DOI: 10.1007/s00018-019-03211-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF), a lethal monogenic disease, is caused by pathogenic variants of the CFTR chloride channel. The majority of CF mutations affect protein folding and stability leading overall to diminished apical anion conductance of epithelial cells. The recently published cryo-EM structures of full-length human and zebrafish CFTR provide a good model to gain insight into structure-function relationships of CFTR variants. Although, some of the structures were determined in the phosphorylated and ATP-bound active state, none of the static structures showed an open pathway for chloride permeation. Therefore, we performed molecular dynamics simulations to generate a conformational ensemble of the protein and used channel detecting algorithms to identify conformations with an opened channel. Our simulations indicate a main intracellular entry at TM4/6, a secondary pore at TM10/12, and a bottleneck region involving numerous amino acids from TM1, TM6, and TM12 in accordance with experiments. Since chloride ions entered the pathway in our equilibrium simulations, but did not traverse the bottleneck region, we performed metadynamics simulations, which revealed two possible exits. One of the chloride ions exits includes hydrophobic lipid tails that may explain the lipid-dependency of CFTR function. In summary, our in silico study provides a detailed description of a potential chloride channel pathway based on a recent cryo-EM structure and may help to understand the gating of the CFTR chloride channel, thus contributing to novel strategies to rescue dysfunctional mutants.
Collapse
Affiliation(s)
- Bianka Farkas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Tordai
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - János Gera
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic System Research Group, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Physics, University of Pécs, Pecs, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
12
|
Poroca DR, Amer N, Li A, Hanrahan JW, Chappe VM. Changes in the R-region interactions depend on phosphorylation and contribute to PKA and PKC regulation of the cystic fibrosis transmembrane conductance regulator chloride channel. FASEB Bioadv 2020; 2:33-48. [PMID: 32123855 PMCID: PMC6996395 DOI: 10.1096/fba.2019-00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/19/2019] [Indexed: 01/30/2023] Open
Abstract
The CFTR chloride channel is regulated by phosphorylation at PKA and PKC consensus sites within its regulatory region (R-region) through a mechanism, which is still not completely understood. We used a split-CFTR construct expressing the N-term-TMD1-NBD1 (Front Half; FH), TMD2-NBD2-C-Term (Back Half; BH), and the R-region as separate polypeptides (Split-R) in BHK cells, to investigate in situ how different phosphorylation conditions affect the R-region interactions with other parts of the protein. In proximity ligation assays, we studied the formation of complexes between the R-region and each half of the Split-CFTR. We found that at basal conditions, the density of complexes formed between the R-region and both halves of the split channel were equal. PKC stimulation alone had no effect, whereas PKA stimulation induced the formation of more complexes between the R-region and both halves compared to basal conditions. Moreover, PKC + PKA stimulation further enhanced the formation of FH-R complexes by 40% from PKA level. In cells expressing the Split-R with the two inhibitory PKC sites on the R-region inactivated (SR-S641A/T682A), density of FH-R complexes was much higher than in Split-R WT expressing cells after PKC or PKC + PKA stimulation. No differences were observed for BH-R complexes measured at all phosphorylation conditions. Since full-length CFTR channels display large functional responses to PKC + PKA in WT and S641A/T682A mutant, we conclude that FH-R interactions are important for CFTR function. Inactivation of consensus PKC site serine 686 (S686A) significantly reduced the basal BH-R interaction and prevented the PKC enhancing effect on CFTR function and FH-R interaction. The phospho-mimetic mutation (S686D) restored basal BH-R interaction and the PKC enhancing effect on CFTR function with enhanced FH-R interaction. As the channel function is mainly stimulated by PKA phosphorylation of the R-region, and this response is known to be enhanced by PKC phosphorylation, our data support a model in which the regulation of CFTR activation results from increased interactions of the R-region with the N-term-TMD1-NBD1. Also, serine S686 was found to be critical for the PKC enhancing effect which requires a permissive BH-R interaction at basal level and increased FH-R interaction after PKC + PKA phosphorylation.
Collapse
Affiliation(s)
- Diogo R. Poroca
- Department of Physiology & BiophysicsDalhousie UniversityHalifaxNSCanada
| | - Noha Amer
- Department of Physiology & BiophysicsDalhousie UniversityHalifaxNSCanada
| | - Audrey Li
- Department of Physiology & BiophysicsDalhousie UniversityHalifaxNSCanada
| | | | - Valerie M. Chappe
- Department of Physiology & BiophysicsDalhousie UniversityHalifaxNSCanada
| |
Collapse
|
13
|
Linsdell P. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure. Channels (Austin) 2019; 12:284-290. [PMID: 30152709 PMCID: PMC6986785 DOI: 10.1080/19336950.2018.1502585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a member of the ATP-binding cassette (ABC) family of membrane transport proteins, most members of which function as ATP-dependent pumps. CFTR is unique among human ABC proteins in functioning not as a pump, but as an ion channel. Recent structural data has indicated that CFTR shares broadly similar overall architecture and ATP-dependent conformational changes as other ABC proteins. Functional investigations suggest that CFTR has a unique open portal connecting the cytoplasm to the transmembrane channel pore, that allows for a continuous pathway for Cl− ions to cross the membrane in one conformation. This lateral portal may be what allows CFTR to function as an ion channel rather than as a pump, suggesting a plausible mechanism by which channel function may have evolved in CFTR.
Collapse
Affiliation(s)
- Paul Linsdell
- a Department of Physiology & Biophysics , Dalhousie University , Halifax , Canada
| |
Collapse
|
14
|
Strickland KM, Stock G, Cui G, Hwang H, Infield DT, Schmidt-Krey I, McCarty NA, Gumbart JC. ATP-Dependent Signaling in Simulations of a Revised Model of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Phys Chem B 2019; 123:3177-3188. [PMID: 30921517 DOI: 10.1021/acs.jpcb.8b11970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily that has uniquely evolved to function as a chloride channel. It binds and hydrolyzes ATP at its nucleotide binding domains to form a pore providing a diffusive pathway within its transmembrane domains. CFTR is the only known protein from the ABC superfamily with channel activity, and its dysfunction causes the disease cystic fibrosis. While much is known about the functional aspects of CFTR, significant gaps remain, such as the structure-function relationship underlying signaling of ATP binding. In the present work, we refined an existing homology model using an intermediate-resolution (9 Å) published cryo-electron microscopy map. The newly derived models have been simulated in equilibrium molecular dynamics simulations for a total of 2.5 μs in multiple ATP-occupancy states. Putative conformational movements connecting ATP binding with pore formation are elucidated and quantified. Additionally, new interdomain interactions between E543, K968, and K1292 have been identified and confirmed experimentally; these interactions may be relevant for signaling ATP binding and hydrolysis to the transmembrane domains and induction of pore opening.
Collapse
Affiliation(s)
- Kerry M Strickland
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Gorman Stock
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Guiying Cui
- Division of Pulmonology, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center , Emory University School of Medicine and Children's Healthcare of Atlanta , Atlanta , Georgia 30322 , United States
| | - Hyea Hwang
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Daniel T Infield
- Division of Pulmonology, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center , Emory University School of Medicine and Children's Healthcare of Atlanta , Atlanta , Georgia 30322 , United States
| | - Ingeborg Schmidt-Krey
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Nael A McCarty
- Division of Pulmonology, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis and Airways Disease Research, Emory+Children's Pediatric Research Center , Emory University School of Medicine and Children's Healthcare of Atlanta , Atlanta , Georgia 30322 , United States.,Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - James C Gumbart
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
15
|
Froux L, Billet A, Becq F. Modulating the cystic fibrosis transmembrane regulator and the development of new precision drugs. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1547109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lionel Froux
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Arnaud Billet
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| |
Collapse
|
16
|
Wang C, Aleksandrov AA, Yang Z, Forouhar F, Proctor EA, Kota P, An J, Kaplan A, Khazanov N, Boël G, Stockwell BR, Senderowitz H, Dokholyan NV, Riordan JR, Brouillette CG, Hunt JF. Ligand binding to a remote site thermodynamically corrects the F508del mutation in the human cystic fibrosis transmembrane conductance regulator. J Biol Chem 2018; 293:17685-17704. [PMID: 29903914 PMCID: PMC6240863 DOI: 10.1074/jbc.ra117.000819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Many disease-causing mutations impair protein stability. Here, we explore a thermodynamic strategy to correct the disease-causing F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR). F508del destabilizes nucleotide-binding domain 1 (hNBD1) in hCFTR relative to an aggregation-prone intermediate. We developed a fluorescence self-quenching assay for compounds that prevent aggregation of hNBD1 by stabilizing its native conformation. Unexpectedly, we found that dTTP and nucleotide analogs with exocyclic methyl groups bind to hNBD1 more strongly than ATP and preserve electrophysiological function of full-length F508del-hCFTR channels at temperatures up to 37 °C. Furthermore, nucleotides that increase open-channel probability, which reflects stabilization of an interdomain interface to hNBD1, thermally protect full-length F508del-hCFTR even when they do not stabilize isolated hNBD1. Therefore, stabilization of hNBD1 itself or of one of its interdomain interfaces by a small molecule indirectly offsets the destabilizing effect of the F508del mutation on full-length hCFTR. These results indicate that high-affinity binding of a small molecule to a remote site can correct a disease-causing mutation. We propose that the strategies described here should be applicable to identifying small molecules to help manage other human diseases caused by mutations that destabilize native protein conformation.
Collapse
Affiliation(s)
- Chi Wang
- From the Departments of Biological Sciences and
| | - Andrei A. Aleksandrov
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Zhengrong Yang
- the Department of Chemistry, University of Alabama, Birmingham, Alabama 35294, and
| | | | - Elizabeth A. Proctor
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pradeep Kota
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jianli An
- the Department of Chemistry, University of Alabama, Birmingham, Alabama 35294, and
| | - Anna Kaplan
- From the Departments of Biological Sciences and
| | - Netaly Khazanov
- the Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Brent R. Stockwell
- From the Departments of Biological Sciences and ,Chemistry, Columbia University, New York, New York 10027
| | - Hanoch Senderowitz
- the Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nikolay V. Dokholyan
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - John R. Riordan
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - John F. Hunt
- From the Departments of Biological Sciences and , To whom correspondence should be addressed. Tel.:
212-854-5443; Fax:
212-865-8246; E-mail:
| |
Collapse
|
17
|
Bergougnoux A, Taulan-Cadars M, Claustres M, Raynal C. Current and future molecular approaches in the diagnosis of cystic fibrosis. Expert Rev Respir Med 2018; 12:415-426. [PMID: 29580110 DOI: 10.1080/17476348.2018.1457438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Cystic Fibrosis is among the first diseases to have general population genetic screening tests and one of the most common indications of prenatal and preimplantation genetic diagnosis for single gene disorders. During the past twenty years, thanks to the evolution of diagnostic techniques, our knowledge of CFTR genetics and pathophysiological mechanisms involved in cystic fibrosis has significantly improved. Areas covered: Sanger sequencing and quantitative methods greatly contributed to the identification of more than 2,000 sequence variations reported worldwide in the CFTR gene. We are now entering a new technological age with the generalization of high throughput approaches such as Next Generation Sequencing and Droplet Digital PCR technologies in diagnostics laboratories. These powerful technologies open up new perspectives for scanning the entire CFTR locus, exploring modifier factors that possibly influence the clinical evolution of patients, and for preimplantation and prenatal diagnosis. Expert commentary: Such breakthroughs would, however, require powerful bioinformatics tools and relevant functional tests of variants for analysis and interpretation of the resulting data. Ultimately, an optimal use of all those resources may improve patient care and therapeutic decision-making.
Collapse
Affiliation(s)
- Anne Bergougnoux
- a Laboratoire de Génétique Moléculaire , Centre Hospitalier Universitaire de Montpellier , Montpellier , France.,b EA 7402 , Université de Montpellier , Montpellier , France
| | | | | | - Caroline Raynal
- a Laboratoire de Génétique Moléculaire , Centre Hospitalier Universitaire de Montpellier , Montpellier , France
| |
Collapse
|
18
|
Molinski SV, Shahani VM, Subramanian AS, MacKinnon SS, Woollard G, Laforet M, Laselva O, Morayniss LD, Bear CE, Windemuth A. Comprehensive mapping of cystic fibrosis mutations to CFTR protein identifies mutation clusters and molecular docking predicts corrector binding site. Proteins 2018; 86:833-843. [DOI: 10.1002/prot.25496] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | | | | | | | - Onofrio Laselva
- Programme in Molecular Structure and Function; Research Institute, Hospital for Sick Children; Toronto Ontario M5G 0A4 Canada
| | | | - Christine E. Bear
- Programme in Molecular Structure and Function; Research Institute, Hospital for Sick Children; Toronto Ontario M5G 0A4 Canada
- Department of Physiology; University of Toronto; Toronto Ontario M5S 1A8 Canada
- Department of Biochemistry; University of Toronto; Toronto Ontario M5S 1A8 Canada
| | | |
Collapse
|
19
|
Sites associated with Kalydeco binding on human Cystic Fibrosis Transmembrane Conductance Regulator revealed by Hydrogen/Deuterium Exchange. Sci Rep 2018; 8:4664. [PMID: 29549268 PMCID: PMC5856801 DOI: 10.1038/s41598-018-22959-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Mutations associated with CF cause loss-of-function in CFTR leading to salt imbalance in epithelial tissues. Kalydeco (also called VX-770 or ivacaftor) was approved for CF treatment in 2012 but little is known regarding the compound’s interactions with CFTR including the site of binding or mechanisms of action. In this study we use hydrogen/deuterium exchange (HDX) coupled with mass spectrometry to assess the conformational dynamics of a thermostabilized form of CFTR in apo and ligand-bound states. We observe HDX protection at a known binding site for AMPPNP and significant protection for several regions of CFTR in the presence of Kalydeco. The ligand-induced changes of CFTR in the presence of Kalydeco suggest a potential binding site.
Collapse
|
20
|
Odera M, Furuta T, Sohma Y, Sakurai M. Molecular dynamics simulation study on the structural instability of the most common cystic fibrosis-associated mutant ΔF508-CFTR. Biophys Physicobiol 2018; 15:33-44. [PMID: 29607278 PMCID: PMC5873040 DOI: 10.2142/biophysico.15.0_33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/28/2017] [Indexed: 02/03/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that belongs to the ATP binding cassette protein superfamily. Deletion of phenylalanine at position 508 (ΔF508) is the most common CF-associated mutation and is present in nearly 90% of CF patients. Currently, atomistic level studies are insufficient for understanding the mechanism by which the deletion of a single amino acid causes greatly reduced folding as well as trafficking and gating defects. To clarify this mechanism, we first constructed an atomic model of the inward-facing ΔF508-CFTR and performed allatom molecular dynamics (MD) simulations of the protein in a membrane environment. All of the computational methodologies used are based on those developed in our previous study for wild-type CFTR. Two important findings were obtained. First, consistent with several previous computational results, the deletion of F508 causes a disruption of a hydrophobic cluster located at the interface between the nucleotide binding domain 1 (NBD1) and intracellular loop 4 (ICL4). This exerts unfavorable influences on the correlated motion between ICLs and transmembrane domains (TMDs), likely resulting in gating defects. Second, the F508 deletion affected the NBD1-NBD2 interface via allosteric communication originating from the correlated motion between NBDs and ICLs. As a result, several unusual inter-residue interactions are caused at the NBD1-NBD2 interface. In other words, their correct dimerization is impaired. This study provided insight into the atomic-level details of structural and dynamics changes caused by the ΔF508 mutation and thus provides good insight for drug design.
Collapse
Affiliation(s)
- Mitsuhiko Odera
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshiro Sohma
- Department of Pharmaceutical Sciences, Graduate School of Pharmacy and Center for Medical Science, International University of Health and Welfare, Ohtawara, Tochigi 324-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
21
|
Molecular dynamics of the cryo-EM CFTR structure. Biochem Biophys Res Commun 2017; 491:986-993. [DOI: 10.1016/j.bbrc.2017.07.165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/11/2022]
|
22
|
Vernon RM, Chong PA, Lin H, Yang Z, Zhou Q, Aleksandrov AA, Dawson JE, Riordan JR, Brouillette CG, Thibodeau PH, Forman-Kay JD. Stabilization of a nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator yields insight into disease-causing mutations. J Biol Chem 2017; 292:14147-14164. [PMID: 28655774 PMCID: PMC5572908 DOI: 10.1074/jbc.m116.772335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/16/2017] [Indexed: 11/06/2022] Open
Abstract
Characterization of the second nucleotide-binding domain (NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR) has lagged behind research into the NBD1 domain, in part because NBD1 contains the F508del mutation, which is the dominant cause of cystic fibrosis. Research on NBD2 has also been hampered by the overall instability of the domain and the difficulty of producing reagents. Nonetheless, multiple disease-causing mutations reside in NBD2, and the domain is critical for CFTR function, because channel gating involves NBD1/NBD2 dimerization, and NBD2 contains the catalytically active ATPase site in CFTR. Recognizing the paucity of structural and biophysical data on NBD2, here we have defined a bioinformatics-based method for manually identifying stabilizing substitutions in NBD2, and we used an iterative process of screening single substitutions against thermal melting points to both produce minimally mutated stable constructs and individually characterize mutations. We present a range of stable constructs with minimal mutations to help inform further research on NBD2. We have used this stabilized background to study the effects of NBD2 mutations identified in cystic fibrosis (CF) patients, demonstrating that mutants such as N1303K and G1349D are characterized by lower stability, as shown previously for some NBD1 mutations, suggesting a potential role for NBD2 instability in the pathology of CF.
Collapse
Affiliation(s)
- Robert M Vernon
- From the Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - P Andrew Chong
- From the Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hong Lin
- From the Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Zhengrong Yang
- Center for Structural Biology and Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Qingxian Zhou
- Center for Structural Biology and Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Andrei A Aleksandrov
- Department of Biochemistry and Biophysics, Cystic Fibrosis Treatment and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Jennifer E Dawson
- From the Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - John R Riordan
- Department of Biochemistry and Biophysics, Cystic Fibrosis Treatment and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Christie G Brouillette
- Center for Structural Biology and Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Patrick H Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Julie D Forman-Kay
- From the Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada,; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
23
|
Hudson RP, Dawson JE, Chong PA, Yang Z, Millen L, Thomas PJ, Brouillette CG, Forman-Kay JD. Direct Binding of the Corrector VX-809 to Human CFTR NBD1: Evidence of an Allosteric Coupling between the Binding Site and the NBD1:CL4 Interface. Mol Pharmacol 2017; 92:124-135. [PMID: 28546419 DOI: 10.1124/mol.117.108373] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/17/2017] [Indexed: 01/06/2023] Open
Abstract
Understanding the mechanism of action of modulator compounds for the cystic fibrosis transmembrane conductance regulator (CFTR) is key for the optimization of therapeutics as well as obtaining insights into the molecular mechanisms of CFTR function. We demonstrate the direct binding of VX-809 to the first nucleotide-binding domain (NBD1) of human CFTR. Disruption of the interaction between C-terminal helices and the NBD1 core upon VX-809 binding is observed from chemical shift changes in the NMR spectra of residues in the helices and on the surface of β-strands S3, S9, and S10. Binding to VX-809 leads to a significant negative shift in NBD1 thermal melting temperature (Tm), pointing to direct VX-809 interaction shifting the NBD1 conformational equilibrium. An inter-residue correlation analysis of the chemical shift changes provides evidence of allosteric coupling between the direct binding site and the NBD1:CL4 interface, thus enabling effects on the interface in the absence of direct binding in that location. These NMR binding data and the negative Tm shifts are very similar to those previously reported by us for binding of the dual corrector-potentiator CFFT-001 to NBD1 (Hudson et al., 2012), suggesting that the two compounds may share some aspects of their mechanisms of action. Although previous studies have shown an important role for VX-809 in modulating the conformation of the first membrane spanning domain (Aleksandrov et al., 2012; Ren et al., 2013), this additional mode of VX-809 binding provides insight into conformational dynamics and allostery within CFTR.
Collapse
Affiliation(s)
- Rhea P Hudson
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada (R.P.H, J.E.D., P.A.C., J.D.F.-K.); Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada (J.D.F.-K.); Center for Structural Biology (Z.Y., C.G.B.) and Department of Chemistry (C.G.B.), University of Alabama at Birmingham, Birmingham, Alabama; and Department of Physiology, UT Southwestern Medical Center, Dallas, Texas (L.M., P.J.T.)
| | - Jennifer E Dawson
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada (R.P.H, J.E.D., P.A.C., J.D.F.-K.); Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada (J.D.F.-K.); Center for Structural Biology (Z.Y., C.G.B.) and Department of Chemistry (C.G.B.), University of Alabama at Birmingham, Birmingham, Alabama; and Department of Physiology, UT Southwestern Medical Center, Dallas, Texas (L.M., P.J.T.)
| | - P Andrew Chong
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada (R.P.H, J.E.D., P.A.C., J.D.F.-K.); Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada (J.D.F.-K.); Center for Structural Biology (Z.Y., C.G.B.) and Department of Chemistry (C.G.B.), University of Alabama at Birmingham, Birmingham, Alabama; and Department of Physiology, UT Southwestern Medical Center, Dallas, Texas (L.M., P.J.T.)
| | - Zhengrong Yang
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada (R.P.H, J.E.D., P.A.C., J.D.F.-K.); Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada (J.D.F.-K.); Center for Structural Biology (Z.Y., C.G.B.) and Department of Chemistry (C.G.B.), University of Alabama at Birmingham, Birmingham, Alabama; and Department of Physiology, UT Southwestern Medical Center, Dallas, Texas (L.M., P.J.T.)
| | - Linda Millen
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada (R.P.H, J.E.D., P.A.C., J.D.F.-K.); Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada (J.D.F.-K.); Center for Structural Biology (Z.Y., C.G.B.) and Department of Chemistry (C.G.B.), University of Alabama at Birmingham, Birmingham, Alabama; and Department of Physiology, UT Southwestern Medical Center, Dallas, Texas (L.M., P.J.T.)
| | - Philip J Thomas
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada (R.P.H, J.E.D., P.A.C., J.D.F.-K.); Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada (J.D.F.-K.); Center for Structural Biology (Z.Y., C.G.B.) and Department of Chemistry (C.G.B.), University of Alabama at Birmingham, Birmingham, Alabama; and Department of Physiology, UT Southwestern Medical Center, Dallas, Texas (L.M., P.J.T.)
| | - Christie G Brouillette
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada (R.P.H, J.E.D., P.A.C., J.D.F.-K.); Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada (J.D.F.-K.); Center for Structural Biology (Z.Y., C.G.B.) and Department of Chemistry (C.G.B.), University of Alabama at Birmingham, Birmingham, Alabama; and Department of Physiology, UT Southwestern Medical Center, Dallas, Texas (L.M., P.J.T.)
| | - Julie D Forman-Kay
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada (R.P.H, J.E.D., P.A.C., J.D.F.-K.); Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada (J.D.F.-K.); Center for Structural Biology (Z.Y., C.G.B.) and Department of Chemistry (C.G.B.), University of Alabama at Birmingham, Birmingham, Alabama; and Department of Physiology, UT Southwestern Medical Center, Dallas, Texas (L.M., P.J.T.).
| |
Collapse
|
24
|
Simhaev L, McCarty NA, Ford RC, Senderowitz H. Molecular Dynamics Flexible Fitting Simulations Identify New Models of the Closed State of the Cystic Fibrosis Transmembrane Conductance Regulator Protein. J Chem Inf Model 2017; 57:1932-1946. [DOI: 10.1021/acs.jcim.7b00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luba Simhaev
- Department
of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Nael A. McCarty
- Division
of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department
of Pediatrics, Emory + Children’s Center for Cystic Fibrosis
and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, Georgia 30322, United States
| | - Robert C. Ford
- Faculty
of Biology Medicine and Health, University of Manchester, Oxford
Road, Manchester, M13 9PL, U.K
| | | |
Collapse
|
25
|
Musgaard M, Paramo T, Domicevica L, Andersen OJ, Biggin PC. Insights into channel dysfunction from modelling and molecular dynamics simulations. Neuropharmacology 2017; 132:20-30. [PMID: 28669899 DOI: 10.1016/j.neuropharm.2017.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/06/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
Developments in structural biology mean that the number of different ion channel structures has increased significantly in recent years. Structures of ion channels enable us to rationalize how mutations may lead to channelopathies. However, determining the structures of ion channels is still not trivial, especially as they necessarily exist in many distinct functional states. Therefore, the use of computational modelling can provide complementary information that can refine working hypotheses of both wild type and mutant ion channels. The simplest but still powerful tool is homology modelling. Many structures are available now that can provide suitable templates for many different types of ion channels, allowing a full three-dimensional interpretation of mutational effects. These structural models, and indeed the structures themselves obtained by X-ray crystallography, and more recently cryo-electron microscopy, can be subjected to molecular dynamics simulations, either as a tool to help explore the conformational dynamics in detail or simply as a means to refine the models further. Here we review how these approaches have been used to improve our understanding of how diseases might be linked to specific mutations in ion channel proteins. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Maria Musgaard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Teresa Paramo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Laura Domicevica
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Ole Juul Andersen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
26
|
Das J, Aleksandrov AA, Cui L, He L, Riordan JR, Dokholyan NV. Transmembrane helical interactions in the CFTR channel pore. PLoS Comput Biol 2017. [PMID: 28640808 PMCID: PMC5501672 DOI: 10.1371/journal.pcbi.1005594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF). Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF) and develop an inward (IWF) facing model employing an integrated experimental-molecular dynamics simulation (200 ns) approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs) of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.
Collapse
Affiliation(s)
- Jhuma Das
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrei A. Aleksandrov
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Liying Cui
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lihua He
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John R. Riordan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JRR); (NVD)
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JRR); (NVD)
| |
Collapse
|
27
|
Kirchner S, Cai Z, Rauscher R, Kastelic N, Anding M, Czech A, Kleizen B, Ostedgaard LS, Braakman I, Sheppard DN, Ignatova Z. Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biol 2017; 15:e2000779. [PMID: 28510592 PMCID: PMC5433685 DOI: 10.1371/journal.pbio.2000779] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/13/2017] [Indexed: 01/22/2023] Open
Abstract
Synonymous single nucleotide polymorphisms (sSNPs) are considered neutral for protein function, as by definition they exchange only codons, not amino acids. We identified an sSNP that modifies the local translation speed of the cystic fibrosis transmembrane conductance regulator (CFTR), leading to detrimental changes to protein stability and function. This sSNP introduces a codon pairing to a low-abundance tRNA that is particularly rare in human bronchial epithelia, but not in other human tissues, suggesting tissue-specific effects of this sSNP. Up-regulation of the tRNA cognate to the mutated codon counteracts the effects of the sSNP and rescues protein conformation and function. Our results highlight the wide-ranging impact of sSNPs, which invert the programmed local speed of mRNA translation and provide direct evidence for the central role of cellular tRNA levels in mediating the actions of sSNPs in a tissue-specific manner. Synonymous single nucleotide polymorphisms (sSNPs) occur at high frequency in the human genome and are associated with ~50 diseases in humans; the responsible molecular mechanisms remain enigmatic. Here, we investigate the impact of the common sSNP, T2562G, on cystic fibrosis transmembrane conductance regulator (CFTR). Although this sSNP, by itself, does not cause cystic fibrosis (CF), it is prevalent in patients with CFTR-related disorders. T2562G sSNP modifies the local translation speed at the Thr854 codon, leading to changes in CFTR stability and channel function. This sSNP introduces a codon pairing to a low-abundance tRNA, which is particularly rare in human bronchial epithelia, but not in other human tissues, suggesting a tissue-specific effect of this sSNP. Enhancement of the cellular concentration of the tRNA cognate to the mutant ACG codon rescues the stability and conduction defects of T2562G-CFTR. These findings reveal an unanticipated mechanism—inverting the programmed local speed of mRNA translation in a tRNA-dependent manner—for sSNP-associated diseases.
Collapse
Affiliation(s)
- Sebastian Kirchner
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zhiwei Cai
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Robert Rauscher
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Nicolai Kastelic
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Melanie Anding
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Andreas Czech
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Bertrand Kleizen
- Cellular Protein Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Lynda S. Ostedgaard
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ineke Braakman
- Cellular Protein Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - David N. Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- * E-mail: (ZI); (DNS)
| | - Zoya Ignatova
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
- * E-mail: (ZI); (DNS)
| |
Collapse
|
28
|
PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. Int J Pharm 2017; 524:382-396. [PMID: 28391040 DOI: 10.1016/j.ijpharm.2017.03.094] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
Achieving stable, efficient and non-toxic pulmonary gene delivery is most challenging requirement for successful gene therapy to lung. Composite nanoparticles (NPs) of the poly(lactic-co-glycolic acid) (PLGA) and cationic polymer polyethyleneimine (PEI) is an efficient alternative to viral and liposomal vectors for the pulmonary delivery of pDNA. NPs with different weight ratios (0-12.5%w/w) of PLGA/PEI were prepared and characterized for size, morphology, surface charge, pDNA loading and in vitro release. The in vitro cell uptake and transfection studies in the CFBE41o-cell line revealed that NPs with 10% w/w PEI were more efficient but they exhibited significant cytotoxicity in MTT assays, challenging the safety of this formulation. Surface modifications of these composite NPs through PEGylation reduced toxicity and enhanced cellular uptake and pDNA expression. PEGylation improved diffusion of NPs through the mucus barrier and prevented uptake by pulmonary macrophages. Finally, PEGylated composite NPs were converted to DPI by lyophilization and combined with lactose carrier particles, which resulted in improved aerosolization properties and lung deposition, without affecting pDNA bioactivity. This study demonstrates that a multidisciplinary approach may enable the local delivery of pDNA to lung tissue for effective treatment of deadly lung diseases.
Collapse
|
29
|
Biophysical Approaches Facilitate Computational Drug Discovery for ATP-Binding Cassette Proteins. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2017; 2017:1529402. [PMID: 28409029 PMCID: PMC5376479 DOI: 10.1155/2017/1529402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
Although membrane proteins represent most therapeutically relevant drug targets, the availability of atomic resolution structures for this class of proteins has been limited. Structural characterization has been hampered by the biophysical nature of these polytopic transporters, receptors, and channels, and recent innovations to in vitro techniques aim to mitigate these challenges. One such class of membrane proteins, the ATP-binding cassette (ABC) superfamily, are broadly expressed throughout the human body, required for normal physiology and disease-causing when mutated, yet lacks sufficient structural representation in the Protein Data Bank. However, recent improvements to biophysical techniques (e.g., cryo-electron microscopy) have allowed for previously “hard-to-study” ABC proteins to be characterized at high resolution, providing insight into molecular mechanisms-of-action as well as revealing novel druggable sites for therapy design. These new advances provide ample opportunity for computational methods (e.g., virtual screening, molecular dynamics simulations, and structure-based drug design) to catalyze the discovery of novel small molecule therapeutics that can be easily translated from computer to bench and subsequently to the patient's bedside. In this review, we explore the utility of recent advances in biophysical methods coupled with well-established in silico techniques towards drug development for diseases caused by dysfunctional ABC proteins.
Collapse
|
30
|
Moran O. The biophysics, biochemistry and physiology of CFTR. Cell Mol Life Sci 2017; 74:1-2. [PMID: 27704173 PMCID: PMC11107758 DOI: 10.1007/s00018-016-2384-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, CNR, Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
31
|
Callebaut I, Hoffmann B, Lehn P, Mornon JP. Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 2017; 74:3-22. [PMID: 27717958 PMCID: PMC11107702 DOI: 10.1007/s00018-016-2385-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.
Collapse
Affiliation(s)
- Isabelle Callebaut
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France.
| | - Brice Hoffmann
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Jean-Paul Mornon
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| |
Collapse
|
32
|
Janahi IA, Rehman A, Al-Naimi AR. Allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Ann Thorac Med 2017; 12:74-82. [PMID: 28469716 PMCID: PMC5399694 DOI: 10.4103/atm.atm_231_16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a pulmonary disorder that often occurs in patients with asthma or cystic fibrosis (CF) and is characterized by a hypersensitivity response to the allergens of the fungus Aspergillus fumigatus. In patients with CF, growth of A. fumigatus hyphae within the bronchial lumen triggers an immunoglobulin E (IgE)-mediated hypersensitivity response that results in airway inflammation, bronchospasm, and bronchiectasis. In most published studies, the prevalence of ABPA is about 8.9% in patients with CF. Since the clinical features of this condition overlap significantly with that of CF, ABPA is challenging to diagnose and remains underdiagnosed in many patients. Diagnosis of ABPA in CF patients should be sought in those with evidence of clinical and radiologic deterioration that is not attributable to another etiology, a markedly elevated total serum IgE level (while off steroid therapy) and evidence of A. fumigatus sensitization. Management of ABPA involves the use of systemic steroids to reduce inflammation and modulate the immune response. In patients who do not respond to steroids or cannot tolerate them, antifungal agents should be used to reduce the burden of A. fumigatus allergens. Recent studies suggest that omalizumab may be an effective option to reduce the frequency of ABPA exacerbations in patients with CF. Further randomized controlled trials are needed to better establish the efficacy of omalizumab in managing patients with CF and ABPA.
Collapse
Affiliation(s)
- Ibrahim Ahmed Janahi
- Department of Clinical Pediatrics, Weill Cornell Medical College-Qtar, Doha, Qatar.,Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Amal Rashid Al-Naimi
- Department of Clinical Pediatrics, Weill Cornell Medical College-Qtar, Doha, Qatar.,Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
33
|
Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med 2016; 16:174. [PMID: 27919253 PMCID: PMC5139081 DOI: 10.1186/s12890-016-0339-5] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Background The airways of patients with cystic fibrosis (CF) are highly complex, subject to various environmental conditions as well as a distinct microbiota. Pseudomonas aeruginosa is recognized as one of the most important pulmonary pathogens and the predominant cause of morbidity and mortality in CF. A multifarious interplay between the host, pathogens, microbiota, and the environment shapes the course of the disease. There have been several excellent reviews detailing CF pathology, Pseudomonas and the role of environment in CF but only a few reviews connect these entities with regards to influence on the overall course of the disease. A holistic understanding of contributing factors is pertinent to inform new research and therapeutics. Discussion In this article, we discuss the deterministic alterations in lung physiology as a result of CF. We also revisit the impact of those changes on the microbiota, with special emphasis on P. aeruginosa and the influence of other non-genetic factors on CF. Substantial past and current research on various genetic and non-genetic aspects of cystic fibrosis has been reviewed to assess the effect of different factors on CF pulmonary infection. A thorough review of contributing factors in CF and the alterations in lung physiology indicate that CF lung infection is multi-factorial with no isolated cause that should be solely targeted to control disease progression. A combinatorial approach may be required to ensure better disease outcomes. Conclusion CF lung infection is a complex disease and requires a broad multidisciplinary approach to improve CF disease outcomes. A holistic understanding of the underlying mechanisms and non-genetic contributing factors in CF is central to development of new and targeted therapeutic strategies.
Collapse
|
34
|
The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability. Cell Mol Life Sci 2016; 74:23-38. [PMID: 27734094 PMCID: PMC5209436 DOI: 10.1007/s00018-016-2386-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for the disease cystic fibrosis (CF). It is a membrane protein belonging to the ABC transporter family functioning as a chloride/anion channel in epithelial cells around the body. There are over 1500 mutations that have been characterised as CF-causing; the most common of these, accounting for ~70 % of CF cases, is the deletion of a phenylalanine at position 508. This leads to instability of the nascent protein and the modified structure is recognised and then degraded by the ER quality control mechanism. However, even pharmacologically ‘rescued’ F508del CFTR displays instability at the cell’s surface, losing its channel function rapidly and it is rapidly removed from the plasma membrane for lysosomal degradation. This review will, therefore, explore the link between stability and structure/function relationships of membrane proteins and CFTR in particular and how approaches to study CFTR structure depend on its stability. We will also review the application of a fluorescence labelling method for the assessment of the thermostability and the tertiary structure of CFTR.
Collapse
|
35
|
Abstract
The anion channel cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ATP-binding cassette (ABC) transporter. CFTR plays a pivotal role in transepithelial ion transport as its dysfunction in the genetic disease cystic fibrosis (CF) dramatically demonstrates. Phylogenetic analysis suggests that CFTR first appeared in aquatic vertebrates fulfilling important roles in osmosensing and organ development. Here, we review selectively, knowledge of CFTR structure, function and pharmacology, gleaned from cross-species comparative studies of recombinant CFTR proteins, including CFTR chimeras. The data argue that subtle changes in CFTR structure can affect strongly channel function and the action of CF mutations.
Collapse
|
36
|
Pollock NL, Satriano L, Zegarra-Moran O, Ford RC, Moran O. Structure of wild type and mutant F508del CFTR: A small-angle X-ray scattering study of the protein–detergent complexes. J Struct Biol 2016; 194:102-11. [DOI: 10.1016/j.jsb.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
37
|
Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:13-32. [PMID: 27311317 DOI: 10.1007/5584_2016_33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial cell anion channel. Potentiator drugs used in the treatment of cystic fibrosis act on the channel to increase overall channel function, by increasing the stability of its open state and/or decreasing the stability of its closed state. The structure of the channel in either the open state or the closed state is not currently known. However, changes in the conformation of the protein as it transitions between these two states have been studied using functional investigation and molecular modeling techniques. This review summarizes our current understanding of the architecture of the transmembrane channel pore that controls the movement of chloride and other small anions, both in the open state and in the closed state. Evidence for different kinds of changes in the conformation of the pore as it transitions between open and closed states is described, as well as the mechanisms by which these conformational changes might be controlled to regulate normal channel gating. The ways that key conformational changes might be targeted by small compounds to influence overall CFTR activity are also discussed. Understanding the changes in pore structure that might be manipulated by such small compounds is key to the development of novel therapeutic strategies for the treatment of cystic fibrosis.
Collapse
|
38
|
Estácio SG, Martiniano HFMC, Faísca PFN. Thermal unfolding simulations of NBD1 domain variants reveal structural motifs associated with the impaired folding of F508del-CFTR. MOLECULAR BIOSYSTEMS 2016; 12:2834-48. [DOI: 10.1039/c6mb00193a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The deletion of phenylalanine 508 reshapes the conformational space of the NBD1 domain that populates unique intermediate states that provide insights into the molecular events that underlie the impaired folding of F508del-NBD1.
Collapse
Affiliation(s)
- Sílvia G. Estácio
- BioISI – Biosystems & Integrative Sciences Institute
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - Hugo F. M. C. Martiniano
- BioISI – Biosystems & Integrative Sciences Institute
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - Patrícia F. N. Faísca
- BioISI – Biosystems & Integrative Sciences Institute
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| |
Collapse
|
39
|
Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL, Kirk KL. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. FASEB J 2015; 30:1247-62. [PMID: 26606940 DOI: 10.1096/fj.15-278382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.
Collapse
Affiliation(s)
- Shipeng Wei
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bryan C Roessler
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mert Icyuz
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sylvain Chauvet
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Binli Tao
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John L Hartman
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin L Kirk
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
40
|
Zhenin M, Noy E, Senderowitz H. REMD Simulations Reveal the Dynamic Profile and Mechanism of Action of Deleterious, Rescuing, and Stabilizing Perturbations to NBD1 from CFTR. J Chem Inf Model 2015; 55:2349-64. [PMID: 26418372 DOI: 10.1021/acs.jcim.5b00312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cystic Fibrosis (CF) is a lethal, genetic disease caused by mutations to the CFTR chloride channel. The most common CF causing mutation is the deletion of F508 from the first Nucleotide Binding Domain (F508del-NBD1). This mutation leads to a thermally unstable domain and a misfolded, nonfunctioning CFTR. Replica Exchange MD simulations were used to simulate seven NBD1 constructs including wt and F508del-NBD1 both alone and in the presence of known rescuing mutations as well as F508del-NBD1 in complex with a known small (ligand) stabilizer. Analyzing the resulting trajectories suggests that differences in the biochemical properties of the constructs result from local and coupled differences in their dynamic profiles. A comparative analysis of these profiles as well as of the resulting trajectories reveals how the different perturbations exert their deleterious, rescuing, and stabilizing effects on NBD1. These simulations may therefore be useful for the design and mechanism-of-action analysis of new NBD1 stabilizers.
Collapse
Affiliation(s)
- Michael Zhenin
- Department of Chemistry, Bar Ilan University , Ramat-Gan 52900, Israel
| | - Efrat Noy
- Department of Chemistry, Bar Ilan University , Ramat-Gan 52900, Israel
| | | |
Collapse
|
41
|
Sorum B, Czégé D, Csanády L. Timing of CFTR pore opening and structure of its transition state. Cell 2015; 163:724-33. [PMID: 26496611 DOI: 10.1016/j.cell.2015.09.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/25/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022]
Abstract
In CFTR, the chloride ion channel mutated in cystic fibrosis (CF) patients, pore opening is coupled to ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) and closure to dimer disruption following ATP hydrolysis. CFTR opening rate, unusually slow because of its high-energy transition state, is further slowed by CF mutation ΔF508. Here, we exploit equilibrium gating of hydrolysis-deficient CFTR mutant D1370N and apply rate-equilibrium free-energy relationship analysis to estimate relative timing of opening movements in distinct protein regions. We find clear directionality of motion along the longitudinal protein axis and identify an opening transition-state structure with the NBD dimer formed but the pore still closed. Thus, strain at the NBD/pore-domain interface, the ΔF508 mutation locus, underlies the energetic barrier for opening. Our findings suggest a therapeutic opportunity to stabilize this transition-state structure pharmacologically in ΔF508-CFTR to correct its opening defect, an essential step toward restoring CFTR function.
Collapse
Affiliation(s)
- Ben Sorum
- Department of Medical Biochemistry, Semmelweis University, Tűzoltó u. 37-47, Budapest 1094, Hungary; MTA-SE Ion Channel Research Group, Semmelweis University, Tűzoltó u. 37-47, Budapest 1094, Hungary
| | - Dávid Czégé
- MTA-SE Ion Channel Research Group, Semmelweis University, Tűzoltó u. 37-47, Budapest 1094, Hungary
| | - László Csanády
- Department of Medical Biochemistry, Semmelweis University, Tűzoltó u. 37-47, Budapest 1094, Hungary; MTA-SE Ion Channel Research Group, Semmelweis University, Tűzoltó u. 37-47, Budapest 1094, Hungary.
| |
Collapse
|
42
|
Molinski SV, Ahmadi S, Hung M, Bear CE. Facilitating Structure-Function Studies of CFTR Modulator Sites with Efficiencies in Mutagenesis and Functional Screening. ACTA ACUST UNITED AC 2015; 20:1204-17. [PMID: 26385858 DOI: 10.1177/1087057115605834] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/23/2015] [Indexed: 12/20/2022]
Abstract
There are nearly 2000 mutations in the CFTR gene associated with cystic fibrosis disease, and to date, the only approved drug, Kalydeco, has been effective in rescuing the functional expression of a small subset of these mutant proteins with defects in channel activation. However, there is currently an urgent need to assess other mutations for possible rescue by Kalydeco, and further, definition of the binding site of such modulators on CFTR would enhance our understanding of the mechanism of action of such therapeutics. Here, we describe a simple and rapid one-step PCR-based site-directed mutagenesis method to generate mutations in the CFTR gene. This method was used to generate CFTR mutants bearing deletions (p.Gln2_Trp846del, p.Ser700_Asp835del, p.Ile1234_Arg1239del) and truncation with polyhistidine tag insertion (p.Glu1172-3Gly-6-His*), which either recapitulate a disease phenotype or render tools for modulator binding site identification, with subsequent evaluation of drug responses using a high-throughput (384-well) membrane potential-sensitive fluorescence assay of CFTR channel activity within a 1 wk time frame. This proof-of-concept study shows that these methods enable rapid and quantitative comparison of multiple CFTR mutants to emerging drugs, facilitating future large-scale efforts to stratify mutants according to their "theratype" or most promising targeted therapy.
Collapse
Affiliation(s)
- Steven V Molinski
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Saumel Ahmadi
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maurita Hung
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Christine E Bear
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Farrokhi V, Bajrami B, Nemati R, McShane AJ, Rueckert F, Wells B, Yao X. Development of Structural Marker Peptides for Cystic Fibrosis Transmembrane Conductance Regulator in Cell Plasma Membrane by Reversed-Footprinting Mass Spectrometry. Anal Chem 2015; 87:8603-7. [DOI: 10.1021/acs.analchem.5b01962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | | | - Franz Rueckert
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Barrett Wells
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | | |
Collapse
|
44
|
Corradi V, Vergani P, Tieleman DP. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS. J Biol Chem 2015; 290:22891-906. [PMID: 26229102 PMCID: PMC4645605 DOI: 10.1074/jbc.m115.665125] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/06/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of "rational" approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287-288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287-288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel.
Collapse
Affiliation(s)
- Valentina Corradi
- From the Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Paola Vergani
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - D Peter Tieleman
- From the Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| |
Collapse
|
45
|
Micoud J, Chauvet S, Scheckenbach KEL, Alfaidy N, Chanson M, Benharouga M. Involvement of the heterodimeric interface region of the nucleotide binding domain-2 (NBD2) in the CFTR quaternary structure and membrane stability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2420-31. [PMID: 26083625 DOI: 10.1016/j.bbamcr.2015.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 11/27/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is the only member of the ATP-binding cassette (ABC) superfamily that functions as a chloride channel. The predicted structure of CFTR protein contains two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD1 and NBD2). The opening of the Cl- channel is directly linked to ATP-driven tight dimerization of CFTR's NBD1 and NBD2 domains. The presence of a heterodimeric interfaces (HI) region in NBD1 and NBD2 generated a head to tail orientation necessary for channel activity. This process was also suggested to promote important conformational changes in the associated transmembrane domains of CFTR, which may impact the CFTR plasma membrane stability. To better understand the role of the individual HI region in this process, we generated recombinant CFTR protein with suppressed HI-NBD1 and HI-NBD2. Our results indicate that HI-NBD2 deletion leads to the loss of the dimerization profile of CFTR that affect its plasma membrane stability. We conclude that, in addition to its role in Cl- transport, HI-NBD2 domain confers membrane stability of CFTR by consolidating its quaternary structure through interactions with HI-NBD1 region.
Collapse
Affiliation(s)
- Julien Micoud
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France
| | - Sylvain Chauvet
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France
| | | | - Nadia Alfaidy
- Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1036 Grenoble, France
| | - Marc Chanson
- Laboratory of Clinical Investigation III, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| | - Mohamed Benharouga
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France.
| |
Collapse
|
46
|
Zhang J, Hwang TC. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway. Biochemistry 2015; 54:3839-50. [PMID: 26024338 DOI: 10.1021/acs.biochem.5b00427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies have identified several transmembrane segments (TMs), including TM1, TM3, TM6, TM9, TM11, and TM12, as pore-lining segments in cystic fibrosis transmembrane conductance regulator (CFTR), but the role of TM5 in pore construction remains controversial. In this study, we employed substituted cysteine accessibility methodology (SCAM) to screen the entire TM5 defined by the original topology model and its cytoplasmic extension in a Cysless background. We found six positions (A299, R303, N306, S307, F310, and F311) where engineered cysteines react to intracellular 2-sulfonatoethyl methanethiosulfonate (MTSES⁻). Quantification of the modification rate of engineered cysteines in the presence or absence of ATP suggests that these six residues are accessible in both the open and closed states. Whole-cell experiments with external MTSES⁻ identified only two positive positions (L323 and A326), resulting in a segment containing 11 consecutive amino acids, where substituted cysteines respond to neither internal nor external MTSES⁻, a unique feature not seen previously in CFTR's pore-lining segments. The observation that these positions are inaccessible to channel-permeant thiol-specific reagent [Au(CN)₂]⁻ suggests that this segment of TM5 between F311 and L323 is concealed from the pore by other TMs and/or lipid bilayers. In addition, our data support the idea that the positively charged arginine at position 303 poses a pure electrostatic action in determining the single-channel current amplitude of CFTR and the effect of an open-channel blocker glibencalmide. Collectively, we conclude that the cytoplasmic portion of CFTR's TM5 lines the pore. Our functional data are remarkably consistent with predicted structural arrangements of TM5 in some homology models of CFTR.
Collapse
Affiliation(s)
- Jingyao Zhang
- †Department of Biological Engineering, University of Missouri-Columbia, 254 Agricultural Engineering, Columbia, Missouri 65211, United States.,‡Dalton Cardiovascular Research Center, University of Missouri-Columbia, 134 Research Park, Columbia, Missouri 65211, United States
| | - Tzyh-Chang Hwang
- †Department of Biological Engineering, University of Missouri-Columbia, 254 Agricultural Engineering, Columbia, Missouri 65211, United States.,‡Dalton Cardiovascular Research Center, University of Missouri-Columbia, 134 Research Park, Columbia, Missouri 65211, United States.,§Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Medical Sciences Building, Columbia, Missouri 65212, United States
| |
Collapse
|
47
|
El Hiani Y, Linsdell P. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. J Biol Chem 2015; 290:15855-15865. [PMID: 25944907 DOI: 10.1074/jbc.m115.656181] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/19/2022] Open
Abstract
As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm.
Collapse
Affiliation(s)
- Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
48
|
Pizzo L, Iriarte A, Alvarez-Valin F, Marín M. Conservation of CFTR codon frequency through primates suggests synonymous mutations could have a functional effect. Mutat Res 2015; 775:19-25. [PMID: 25839760 DOI: 10.1016/j.mrfmmm.2015.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 02/05/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Cystic fibrosis is an inherited chronic disease that affects the lungs and digestive system, with a prevalence of about 1:3000 people. Cystic fibrosis is caused by mutations in CFTR gene, which lead to a defective function of the chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Up-to-date, more than 1900 mutations have been reported in CFTR. However for an important proportion of them, their functional effects and the relation to disease are still not understood. Many of these mutations are silent (or synonymous), namely they do not alter the encoded amino acid. These synonymous mutations have been considered as neutral to protein function. However, more recent evidence in bacterial and human proteins has put this concept under revision. With the aim of understanding possible functional effects of synonymous mutations in CFTR, we analyzed human and primates CFTR codon usage and divergence patterns. We report the presence of regions enriched in rare and frequent codons. This spatial pattern of codon preferences is conserved in primates, but this cannot be explained by sequence conservation alone. In sum, the results presented herein suggest a functional implication of these regions of the gene that may be maintained by purifying selection acting to preserve a particular codon usage pattern along the sequence. Overall these results support the idea that several synonymous mutations in CFTR may have functional importance, and could be involved in the disease.
Collapse
Affiliation(s)
- Lucilla Pizzo
- Sección Bioquímica-Biología Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Andrés Iriarte
- Dpto. de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Dpto. de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, IIBCE, Montevideo, Uruguay; Dpto. de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, IIBCE, Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- Sección Biomatemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mónica Marín
- Sección Bioquímica-Biología Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
49
|
Wang G. Molecular Basis for Fe(III)-Independent Curcumin Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Activity. Biochemistry 2015; 54:2828-40. [DOI: 10.1021/acs.biochem.5b00219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangyu Wang
- Department of Physiology
and Biophysics and Gregory Fleming James Cystic Fibrosis Research
Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, United States
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557, United States
- Department of Physiology
and Membrane Biology, University of California School of Medicine, Davis, California 95616, United States
| |
Collapse
|
50
|
Cai Z, Palmai-Pallag T, Khuituan P, Mutolo MJ, Boinot C, Liu B, Scott-Ward TS, Callebaut I, Harris A, Sheppard DN. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating. J Physiol 2015; 593:2427-46. [PMID: 25763566 DOI: 10.1113/jp270227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR), a gated pathway for chloride movement, causes the common life-shortening genetic disease cystic fibrosis (CF). Towards the development of a sheep model of CF, we have investigated the function of sheep CFTR. We found that sheep CFTR was noticeably more active than human CFTR, while the most common CF mutation, F508del, had reduced impact on sheep CFTR function. Our results demonstrate that subtle changes in protein structure have marked effects on CFTR function and the consequences of the CF mutation F508del. ABSTRACT Cross-species comparative studies are a powerful approach to understanding the epithelial Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR), which is defective in the genetic disease cystic fibrosis (CF). Here, we investigate the single-channel behaviour of ovine CFTR and the impact of the most common CF mutation, F508del-CFTR, using excised inside-out membrane patches from transiently transfected CHO cells. Like human CFTR, ovine CFTR formed a weakly inwardly rectifying Cl(-) channel regulated by PKA-dependent phosphorylation, inhibited by the open-channel blocker glibenclamide. However, for three reasons, ovine CFTR was noticeably more active than human CFTR. First, single-channel conductance was increased. Second, open probability was augmented because the frequency and duration of channel openings were increased. Third, with enhanced affinity and efficacy, ATP more strongly stimulated ovine CFTR channel gating. Consistent with these data, the CFTR modulator phloxine B failed to potentiate ovine CFTR Cl(-) currents. Similar to its impact on human CFTR, the F508del mutation caused a temperature-sensitive folding defect, which disrupted ovine CFTR protein processing and reduced membrane stability. However, the F508del mutation had reduced impact on ovine CFTR channel gating in contrast to its marked effects on human CFTR. We conclude that ovine CFTR forms a regulated Cl(-) channel with enhanced conductance and ATP-dependent channel gating. This phylogenetic analysis of CFTR structure and function demonstrates that subtle changes in structure have pronounced effects on channel function and the consequences of the CF mutation F508del.
Collapse
Affiliation(s)
- Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Timea Palmai-Pallag
- Human Molecular Genetics Program, Lurie Children's Research Center and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA.,Harris Laboratory, formerly at the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Pissared Khuituan
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,Center of Calcium and Bone Research, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Michael J Mutolo
- Human Molecular Genetics Program, Lurie Children's Research Center and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
| | - Clément Boinot
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS FRE 3511, 86022, Poitiers, France
| | - Beihui Liu
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Toby S Scott-Ward
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Isabelle Callebaut
- IMPMC, Sorbonne Universités - UPMC Univ Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, 75005, Paris, France
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|