1
|
Zhang G, Kang Y, Dong J, Shi D, Xiang Y, Gao H, Lin Z, Wei X, Ding R, Fan B, Zhang H, Zhu T, Wang L, Yan X. Fluffy hybrid nanoadjuvants for reversing the imbalance of osteoclastic and osteogenic niches in osteoporosis. Bioact Mater 2024; 39:354-374. [PMID: 38846529 PMCID: PMC11153935 DOI: 10.1016/j.bioactmat.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Osteoporosis is majorly caused by an imbalance between osteoclastic and osteogenic niches. Despite the development of nationally recognized first-line anti-osteoporosis drugs, including alendronate (AL), their low bioavailability, poor uptake rate, and dose-related side effects present significant challenges in treatment. This calls for an urgent need for more effective bone-affinity drug delivery systems. In this study, we produced hybrid structures with bioactive components and stable fluffy topological morphology by cross-linking calcium and phosphorus precursors based on mesoporous silica to fabricate nanoadjuvants for AL delivery. The subsequent grafting of -PEG-DAsp8 ensured superior biocompatibility and bone targeting capacity. RNA sequencing revealed that these fluffy nanoadjuvants effectively activated adhesion pathways through CARD11 and CD34 molecular mechanisms, hence promoting cellular uptake and intracellular delivery of AL. Experiments showed that small-dose AL nanoadjuvants effectively suppress osteoclast formation and potentially promote osteogenesis. In vivo results restored the balance between osteogenic and osteoclastic niches against osteoporosis as well as the consequent significant recovery of bone mass. Therefore, this study constructed a drug nanoadjuvant with peculiar topological structures and high bone targeting capacities, efficient intracellular drug delivery as well as bone bioactivity. This provides a novel perspective on drug delivery for osteoporosis and treatment strategies for other bone diseases.
Collapse
Affiliation(s)
- Guoyang Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yuhao Kang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jizhao Dong
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Dingyi Shi
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Yu Xiang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Haihan Gao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Zhiqi Lin
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaojuan Wei
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Ren Ding
- Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Department of Orthopedics, No. 181 Youyi Road, Shanghai, 201900, China
| | - Beibei Fan
- Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Department of Pharmacy, No. 181 Youyi Road, Shanghai, 201900, China
| | - Hongmei Zhang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Liren Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaoyu Yan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
2
|
Zhang Y, Chen J, Tian J, Zhou Y, Liu Y. Role and function of plakophilin 3 in cancer progression and skin disease. Cancer Sci 2024; 115:17-23. [PMID: 38048779 PMCID: PMC10823275 DOI: 10.1111/cas.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Plakophilin 3 (PKP3), a component of desmosome, is aberrantly expressed in many kinds of human diseases, especially in cancers. Through direct interaction, PKP3 binds with a series of desmosomal proteins, such as desmoglein, desmocollin, plakoglobin, and desmoplakin, to initiate desmosome aggregation, then promotes its stability. As PKP3 is mostly expressed in the skin, loss of PKP3 promotes the development of several skin diseases, such as paraneoplastic pemphigus, pemphigus vulgaris, and hypertrophic scar. Moreover, accumulated clinical data indicate that PKP3 dysregulates in diverse cancers, including breast, ovarian, colon, and lung cancers. Numerous lines of evidence have shown that PKP3 plays important roles in multiple cellular processes during cancer progression, including metastasis, invasion, tumor formation, autophagy, and proliferation. This review examines the diverse functions of PKP3 in regulating tumor formation and development in various types of cancers and summarizes its detailed mechanisms in the occurrence of skin diseases.
Collapse
Affiliation(s)
- Yefei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Jiahui Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Jia Tian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Yehui Zhou
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| |
Collapse
|
3
|
Sproule TJ, Philip VM, Chaudhry NA, Roopenian DC, Sundberg JP. Seven naturally variant loci serve as genetic modifiers of Lamc2jeb induced non-Herlitz junctional Epidermolysis Bullosa in mice. PLoS One 2023; 18:e0288263. [PMID: 37437067 PMCID: PMC10337971 DOI: 10.1371/journal.pone.0288263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Epidermolysis Bullosa (EB) is a group of rare genetic disorders that compromise the structural integrity of the skin such that blisters and subsequent erosions occur after minor trauma. While primary genetic risk of all subforms of EB adhere to Mendelian patterns of inheritance, their clinical presentations and severities can vary greatly, implying genetic modifiers. The Lamc2jeb mouse model of non-Herlitz junctional EB (JEB-nH) demonstrated that genetic modifiers can contribute substantially to the phenotypic variability of JEB and likely other forms of EB. The innocuous changes in an 'EB related gene', Col17a1, have shown it to be a dominant modifier of Lamc2jeb. This work identifies six additional Quantitative Trait Loci (QTL) that modify disease in Lamc2jeb/jeb mice. Three QTL include other known 'EB related genes', with the strongest modifier effect mapping to a region including the epidermal hemi-desmosomal structural gene dystonin (Dst-e/Bpag1-e). Three other QTL map to intervals devoid of known EB-associated genes. Of these, one contains the nuclear receptor coactivator Ppargc1a as its primary candidate and the others contain related genes Pparg and Igf1, suggesting modifier pathways. These results, demonstrating the potent disease modifying effects of normally innocuous genetic variants, greatly expand the landscape of genetic modifiers of EB and therapeutic approaches that may be applied.
Collapse
Affiliation(s)
| | - Vivek M. Philip
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
5
|
Prime SS, Cirillo N, Cheong SC, Prime MS, Parkinson EK. Targeting the genetic landscape of oral potentially malignant disorders has the potential as a preventative strategy in oral cancer. Cancer Lett 2021; 518:102-114. [PMID: 34139286 DOI: 10.1016/j.canlet.2021.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers.
Collapse
Affiliation(s)
- S S Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK.
| | - N Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Carlton, Melbourne, Victoria, 3053, Australia.
| | - S C Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 1 Jalan SS12/1A, Subang Jaya, Selangor, Malaysia.
| | - M S Prime
- Roche Diagnostics Information Solutions, Hoffman-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - E K Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
6
|
Computational analysis of TP53 mutational landscape unveils key prognostic signatures and distinct pathobiological pathways in head and neck squamous cell cancer. Br J Cancer 2020; 123:1302-1314. [PMID: 32684626 PMCID: PMC7553957 DOI: 10.1038/s41416-020-0984-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/03/2020] [Accepted: 06/23/2020] [Indexed: 01/22/2023] Open
Abstract
Background Mutations of the tumour-suppressor gene TP53 are the most frequent somatic genomic alterations in head and neck squamous cell carcinoma (HNSCC). However, it is not yet clear whether specific TP53 mutations bear distinct clinical and pathophysiological significance in different HNSCC subgroups. Methods A systematic bioinformatics appraisal of TP53 mutations was performed on 415 HNSCC cases available on The Cancer Genome Atlas (TCGA). The following features were analysed and correlated with known clinicopathological variables: mutational profile of TP53, location (within secondary structure and predicted domains of p53 protein) and well-known hotspot mutations. Interactome–genome–transcriptome network analysis highlighted different gene networks. An algorithm was generated to develop a new prognostic classification system based on patients’ overall survival. Results TP53 mutations in HNSCCs exhibited distinct differences in different anatomical sites. The mutational profile of TP53 was an independent prognostic factor in HNSCC. High risk of death mutations, identified by our novel classification algorithm, was an independent prognostic factor in TCGA HNSCC database. Finally, network analysis suggested that distinct p53 molecular pathways exist in a site- and mutation-specific manner. Conclusions The mutational profile of TP53 may serve as an independent prognostic factor in HNSCC patients, and is associated with distinctive site-specific biological networks.
Collapse
|
7
|
|
8
|
Choi YJ, Laclef C, Yang N, Andreu-Cervera A, Lewis J, Mao X, Li L, Snedecor ER, Takemaru KI, Qin C, Schneider-Maunoury S, Shroyer KR, Hannun YA, Koch PJ, Clark RA, Payne AS, Kowalczyk AP, Chen J. RPGRIP1L is required for stabilizing epidermal keratinocyte adhesion through regulating desmoglein endocytosis. PLoS Genet 2019; 15:e1007914. [PMID: 30689641 PMCID: PMC6366717 DOI: 10.1371/journal.pgen.1007914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/07/2019] [Accepted: 12/24/2018] [Indexed: 02/01/2023] Open
Abstract
Cilia-related proteins are believed to be involved in a broad range of cellular processes. Retinitis pigmentosa GTPase regulator interacting protein 1-like (RPGRIP1L) is a ciliary protein required for ciliogenesis in many cell types, including epidermal keratinocytes. Here we report that RPGRIP1L is also involved in the maintenance of desmosomal junctions between keratinocytes. Genetically disrupting the Rpgrip1l gene in mice caused intraepidermal blistering, primarily between basal and suprabasal keratinocytes. This blistering phenotype was associated with aberrant expression patterns of desmosomal proteins, impaired desmosome ultrastructure, and compromised cell-cell adhesion in vivo and in vitro. We found that disrupting the RPGRIP1L gene in HaCaT cells, which do not form primary cilia, resulted in mislocalization of desmosomal proteins to the cytoplasm, suggesting a cilia-independent function of RPGRIP1L. Mechanistically, we found that RPGRIP1L regulates the endocytosis of desmogleins such that RPGRIP1L-knockdown not only induced spontaneous desmoglein endocytosis, as determined by AK23 labeling and biotinylation assays, but also exacerbated EGTA- or pemphigus vulgaris IgG-induced desmoglein endocytosis. Accordingly, inhibiting endocytosis with dynasore or sucrose rescued these desmosomal phenotypes. Biotinylation assays on cell surface proteins not only reinforced the role of RPGRIP1L in desmoglein endocytosis, but also suggested that RPGRIP1L may be more broadly involved in endocytosis. Thus, data obtained from this study advanced our understanding of the biological functions of RPGRIP1L by identifying its role in the cellular endocytic pathway.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Christine Laclef
- Sorbonne Université, CNRS UMR7622, Inserm U1156, IBPS-Laboratoire de Biologie du Développement, Paris, France
| | - Ning Yang
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Abraham Andreu-Cervera
- Sorbonne Université, CNRS UMR7622, Inserm U1156, IBPS-Laboratoire de Biologie du Développement, Paris, France
| | - Joshua Lewis
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Li Li
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Elizabeth R Snedecor
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Ken-Ichi Takemaru
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, United States of America
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science; and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, Inserm U1156, IBPS-Laboratoire de Biologie du Développement, Paris, France
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Yusuf A Hannun
- Department of Medicine and Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Peter J Koch
- Department of Dermatology and Center for Regenerative Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Richard A Clark
- Department of Dermatology, Stony Brook University, Stony Brook, NY, United States of America
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jiang Chen
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science; and Comparative Medical Center, Peking Union Medical College, Beijing, China
- Department of Dermatology, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
9
|
Cirillo N, Hassona Y, Celentano A, Lim K, Manchella S, Parkinson E, Prime S. Cancer-associated fibroblasts regulate keratinocyte cell–cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis 2016; 38:76-85. [DOI: 10.1093/carcin/bgw113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/11/2016] [Accepted: 10/28/2016] [Indexed: 11/14/2022] Open
|
10
|
Celentano A, Mignogna MD, McCullough M, Cirillo N. Pathophysiology of the Desmo-Adhesome. J Cell Physiol 2016; 232:496-505. [PMID: 27505028 DOI: 10.1002/jcp.25515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Advances in our understanding of desmosomal diseases have provided a clear demonstration of the key role played by desmosomes in tissue and organ physiology, highlighting the importance of their dynamic and finely regulated structure. In this context, non-desmosomal regulatory molecules have acquired increasing relevance in the study of this organelle resulting in extending the desmosomal interactome, named the "desmo-adhesome." Spatiotemporal changes in the expression and regulation of the desmo-adhesome underlie a number of genetic, infectious, autoimmune, and malignant conditions. The aim of the present article was to examine the structural and functional relationship of the desmosome, by providing a comprehensive, yet focused overview of the constituents targeted in human disease. The inclusion of the novel regulatory network in the desmo-adhesome pathophysiology opens new avenues to a deeper understanding of desmosomal diseases, potentially unveiling pathogenic mechanisms waiting to be explored. J. Cell. Physiol. 232: 496-505, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antonio Celentano
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy.,Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia
| | - Michele Davide Mignogna
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Michael McCullough
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia.,Oral Health Cooperative Research Centre (CRC), University of Melbourne, Carlton, Victoria, Australia
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia.,Oral Health Cooperative Research Centre (CRC), University of Melbourne, Carlton, Victoria, Australia
| |
Collapse
|
11
|
Celentano A, Cirillo N. Desmosomes in disease: a guide for clinicians. Oral Dis 2016; 23:157-167. [PMID: 27329525 DOI: 10.1111/odi.12527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 12/24/2022]
Abstract
The large number of diseases occurring when desmosome constituents are impaired provides striking evidence for the key role of desmosomes in maintaining tissue integrity. A detailed understanding of the molecular alterations causing desmosomal dysfunction has, in turn, underpinned the development of novel diagnostic tools. This has salient clinical implications for dentists and oral medicine practitioners because the majority of desmosomal diseases affect the oral cavity. In the present article, we review the autoimmune, infectious, genetic, and neoplastic diseases that target the desmosome, with particular emphasis on clinical manifestations, diagnostic pathways, and relevant laboratory investigations.
Collapse
Affiliation(s)
- A Celentano
- Melbourne Dental School and Oral Health CRC, University of Melbourne, Melbourne, Vic., Australia.,Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples, Italy
| | - N Cirillo
- Melbourne Dental School and Oral Health CRC, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
12
|
Cirillo N, Prime SS. The predictive power of the desmo-adhesome. Cell Mol Life Sci 2016; 73:685-6. [PMID: 26703436 PMCID: PMC11108476 DOI: 10.1007/s00018-015-2114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, VIC, 3053, Australia.
| | - Stephen S Prime
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Hassona Y, Cirillo N, Heesom K, Parkinson EK, Prime SS. Senescent cancer-associated fibroblasts secrete active MMP-2 that promotes keratinocyte dis-cohesion and invasion. Br J Cancer 2014; 111:1230-7. [PMID: 25117810 PMCID: PMC4453858 DOI: 10.1038/bjc.2014.438] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 05/02/2014] [Accepted: 06/26/2014] [Indexed: 12/17/2022] Open
Abstract
Background: Previous studies have demonstrated that senescent cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), unlike non-senescent CAFs from genetically stable carcinomas (GS-OSCC), promoted keratinocyte invasion in vitro in a paracrine manner. The mechanism by which this occurs is unclear. Methods: Previous work to characterise the senescent-associated secretory phenotype (SASP) has used antibody arrays, technology that is limited by the availability of suitable antibodies. To extend this work in an unbiased manner, we used 2D gel electrophoresis and mass spectroscopy for protein identification. Matrix metalloproteinases (MMPs) were investigated by gelatin zymography and western blotting. Neutralising antibodies were used to block key molecules in the functional assays of keratinocyte adhesion and invasion. Results: Among a variety of proteins that were differentially expressed between CAFs from GU-OSCC and GS-OSCC, MMP-2 was a major constituent of senescent CAF-CM derived from GU-OSCC. The presence of active MMP-2 was confirmed by gelatine zymography. MMP-2 derived from senescent CAF-CM induced keratinocyte dis-cohesion and epithelial invasion into collagen gels in a TGF-β-dependent manner. Conclusions: Senescent CAFs from GU-OSCC promote a more aggressive oral cancer phenotype by production of active MMP-2, disruption of epithelial adhesion and induction of keratinocyte invasion.
Collapse
Affiliation(s)
- Y Hassona
- 1] Department of Oral and Dental Sciences, University of Bristol, Bristol, UK [2] Department of Dentistry, University of Jordan, Amman, Jordan
| | - N Cirillo
- 1] Melbourne Dental School and Oral Health CRC, University of Melbourne, 720 Swanston Street, Carlton, Victoria 3053, Australia [2] Centre for Innovation, Research, Education and Health (IRIS), Italy
| | - K Heesom
- Department of Biochemistry, University of Bristol, Bristol, UK
| | - E K Parkinson
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| | - S S Prime
- 1] Department of Oral and Dental Sciences, University of Bristol, Bristol, UK [2] Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| |
Collapse
|
14
|
Paschoal PO, Chamberlin W. Review of the 1st Annual World Congress of Immunodiseases and Therapeutics. Expert Rev Clin Immunol 2014; 6:757-9. [DOI: 10.1586/eci.10.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Cirillo N, AlShwaimi E, McCullough M, Prime SS. Pemphigus vulgaris autoimmune globulin induces Src-dependent tyrosine-phosphorylation of plakophilin 3 and its detachment from desmoglein 3. Autoimmunity 2013; 47:134-40. [PMID: 24328683 DOI: 10.3109/08916934.2013.866100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cell adhesion molecule plakophilin 3 (Pkp3) plays an essential role in the maintenance of skin integrity and is targeted in certain autoimmune conditions. In one example, we have shown that Pkp3 is instrumental in mediating the discohesive effects of sera from patients with pemphigus vulgaris (PV), a life-threatening autoimmune disease that targets intercellular adhesion in the epidermis. In the present study, we determine the effect of PV autoimmune globulin (PV IgG) on Pkp3 in an in-vitro model of PV. We demonstrate that Pkp3 becomes tyrosine phosphorylated as early as 30 min upon binding of PV IgG to keratinocyte surface and eventually detaches from its binding partner desmoglein 3 (Dsg3). In parallel, Pkp3 is depleted from the membrane (Triton X-soluble) fraction and accumulates in the cytoplasm within 240 min of incubation with PV IgG. Inhibition of Pkp3 phosphorylation by a Src inhibitor attenuates the discohesive effects of PV IgG. Taken together, the data demonstrate that activation of Src-kinase signalling is crucial for PV acantholysis and acts, at least in part, via phosphorylation of the adaptor protein Pkp3.
Collapse
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School & Oral Health CRC, The University of Melbourne , Melbourne , Australia
| | | | | | | |
Collapse
|
16
|
Cirillo N, Al-Jandan BA. Desmosomal adhesion and pemphigus vulgaris: the first half of the story. ACTA ACUST UNITED AC 2013; 20:1-10. [PMID: 23368972 DOI: 10.3109/15419061.2013.763799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pemphigus vulgaris (PV) is a paradigm of autoimmune disease affecting intercellular adhesion. The mechanisms that lead to cell-cell detachment (acantholysis) have crucial therapeutic implications and are currently undergoing major scrutiny. The first part of this review focuses on the classical view of the pathogenesis of PV, which is dominated by the cell adhesion molecules of the desmosome, namely desmogleins (Dsgs). Cloning of the DSG3 gene, generation DSG3 knock-out mice and isolation of monoclonal anti-Dsg3 IgG have aided to clarify the pathogenic mechanisms of PV, which are in part dependent on the fate of desmosomal molecules. These include perturbation of the desmosomal network at the transcriptional, translational, and interaction level, kinase activation, proteinase-mediated degradation, and hyper-adhesion. By the use of PV models, translational research has in turn helped shed light into the basic structure, function, and dynamics of assembly of desmosomal cadherins. The combined efforts of basic and applied research has resulted in tremendous advance into the understanding of epidermal adhesion and helped debunk old myths on the supposedly unique role of desmogleins in the mechanisms of cell-cell detachment in PV.
Collapse
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria 3053, Australia.
| | | |
Collapse
|
17
|
Early detection, prevention and management of cutaneous adverse events due to sorafenib: Recommendations from the Sorafenib Working Group. Crit Rev Oncol Hematol 2012; 82:378-86. [DOI: 10.1016/j.critrevonc.2011.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 11/18/2022] Open
|
18
|
Cirillo N. Merging experimental data and in silicoanalysis: a systems-level approach to autoimmune disease and cancer. Expert Rev Clin Immunol 2012; 8:361-372. [DOI: 10.1586/eci.12.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
19
|
Abstract
Pemphigus vulgaris (PV) is the most common type of pemphigus. PV pathogenesis is still debated, and treatment remains challenging. We investigated five controversial topics: (1) What are the target antigens in PV? (2) Do desmogleins adequately address PV pathophysiology? (3) How does acantholysis occur in PV? (4) Is PV still a lethal disease? (5) What is the role of rituximab (RTX) in PV treatment? Results from extensive literature searches suggested the following: (1) Target antigens of PV include a variety of molecules and receptors that are not physically compartmentalized within the epidermis. (2) PV is caused by a variety of autoantibodies to keratinocyte self-antigens, which concur to cause blistering by acting synergistically. (3) The concept of apoptolysis distinguishes the unique mechanism of autoantibody-induced keratinocyte damage in PV from other known forms of cell death. (4) PV remains potentially life-threatening largely because of treatment side effects, but it is uncertain which therapies carry the highest likelihood of lethal risk. (5) RTX is a very promising treatment option in patients with widespread recalcitrant or life-threatening PV. RTX's cost is an issue, its long-term side effects are still unknown, and randomized controlled trials are needed to establish the optimal dosing regimen.
Collapse
Affiliation(s)
- N Cirillo
- Department of Oral and Dental Sciences, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|
20
|
Golias C, Batistatou A, Bablekos G, Charalabopoulos A, Peschos D, Mitsopoulos P, Charalabopoulos K. Physiology and pathophysiology of selectins, integrins, and IgSF cell adhesion molecules focusing on inflammation. A paradigm model on infectious endocarditis. ACTA ACUST UNITED AC 2011; 18:19-32. [PMID: 21892874 DOI: 10.3109/15419061.2011.606381] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of adhesion bonds, either among cells or among cells and components of the extracellular matrix, is a crucial process. These interactions are mediated by some molecules collectively known as adhesion molecules (CAMs). CAMs are ubiquitously expressed proteins playing a central role in controlling cell migration, proliferation, survival, and apoptosis. Besides their key function in physiological maintenance of tissue integrity, CAMs play an eminent role in various pathological processes such as cardiovascular disorders, atherogenesis, atherosclerotic plaque progression and regulation of the inflammatory response. CAMs such as selectins, integrins, and immunoglobulin superfamily take part in interactions between leukocyte and vascular endothelium (leukocyte rolling, arrest, firm adhesion, migration). Experimental data and pathologic observations support the assumption that pathogenic microorganisms attach to vascular endothelial cells or sites of vascular injury initiating intravascular infections. In this review a paradigm focusing on cell adhesion molecules pathophysiology and infective endocarditis development is given.
Collapse
Affiliation(s)
- Christos Golias
- Department of Physiology, Medical Faculty, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | | | |
Collapse
|
21
|
Cirillo N, Prime SS. Keratinocytes synthesize and activate cortisol. J Cell Biochem 2011; 112:1499-505. [PMID: 21344493 DOI: 10.1002/jcb.23081] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The bioavailability of circulating and/or endogenous hydrocortisone (cortisol) in epidermal cells is a key determinant in inflammatory disease and chronic wounds. It is not known, however, whether epidermal cells can regulate tissue cortisol and whether they are capable of producing endogenous glucocorticoids. In the present study, we show by microarray analysis that epidermal cells express mRNAs to all the major enzymes involved in the metabolic chain from cholesterol to cortisol, including cytocrome P450 chain, 11β-hydroxysteroid dehydrogenases (HSD11Bs), adrenocorticotropic hormone (ACTH) receptor (MC2R), and glucocorticoid receptor. The two enzymes mediating activation/deactivation of cortisone to cortisol, namely HSD11B1 and HSD11B2, were expressed at the protein level in cultured keratinocytes as well as human skin samples, as shown by Western blotting and immunohistochemistry, respectively. In functional assays, we show that keratinocytes are not only able to activate cortisone to cortisol in a HSD11B-dependent manner but also silencing of either HSD11B1 or HSD11B2 specifically modulates the bioavailability of the inactive glucocorticoid and the active steroid, respectively. A further key observation was that keratinocytes responded to stimulation with ACTH by a significant increase in the de novo synthesis of cortisol. Taken together, we provide evidence for a novel non-adrenal steroideal system in human keratinocytes.
Collapse
Affiliation(s)
- Nicola Cirillo
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| | | |
Collapse
|
22
|
Lanza A, Lanza M, Santoro R, Soro V, Prime SS, Cirillo N. Deregulation of PERK in the autoimmune disease pemphigus vulgaris occurs via IgG-independent mechanisms. Br J Dermatol 2011; 164:336-43. [PMID: 21039404 DOI: 10.1111/j.1365-2133.2010.10084.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Serum and IgG isolated from patients with the autoimmune blistering disease pemphigus vulgaris (PV) trigger complex intracellular pathways in keratinocytes, including alterations of the cell cycle and metabolism, which ultimately lead to cell-cell detachment (acantholysis). We have shown previously that one of the earliest pathogenic events in PV is the activation of protein kinases, including the PKR-like endoplasmic reticulum (ER) kinase PERK. OBJECTIVES In the present study we investigated in more detail the role of PERK in the pathogenesis of PV. METHODS PERK levels were assessed by Western blotting and in-cell enzyme-linked immunosorbent assay, and PERK expression was silenced by siRNA technology. The effects of PV sera/IgG on keratinocyte cultures were investigated by flow cytometry, MTT and adhesion assays. RESULTS We show that PERK is activated in keratinocytes exposed to PV serum, as demonstrated by an increase in phosphorylated PERK levels and phosphorylation of eIF2α. Decreased expression of PERK by siRNA reduced the effects of PV serum on the cell cycle and keratinocyte viability, two key events in PV pathophysiology. As impairment of metabolic activity in PV is partially due to non-IgG serum factors, we then investigated the activation of PERK in keratinocytes incubated with whole PV serum, purified PV IgG and IgG-depleted PV serum. The data demonstrated that PV sera depleted of IgG, but not PV IgG, triggered PERK phosphorylation and this correlated with a marked reduction of metabolic activity in keratinocytes exposed to IgG-free serum. Knockdown of PERK by siRNA abrogated the changes in the cell cycle and apoptosis induced by IgG-depleted PV serum. Finally, the reduction of metabolic activity observed in keratinocytes exposed to IgG-depleted PV serum was almost absent in PERK-deficient cells. CONCLUSIONS Taken together, the results demonstrate that activation of PERK participates in the reduction of metabolic activity and cell viability seen in PV and that this phenomenon depends on non-IgG factors. PERK activation may represent a novel signalling mechanism linking ER stress and acantholysis in PV.
Collapse
Affiliation(s)
- A Lanza
- Dipartimento di Discipline Odontostomatologiche, Seconda Università di Napoli, Naples, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Lim KP, Cirillo N, Hassona Y, Wei W, Thurlow JK, Cheong SC, Pitiyage G, Parkinson EK, Prime SS. Fibroblast gene expression profile reflects the stage of tumour progression in oral squamous cell carcinoma. J Pathol 2011; 223:459-69. [DOI: 10.1002/path.2841] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/28/2010] [Accepted: 11/29/2010] [Indexed: 11/08/2022]
|
24
|
Sciubba JJ. Autoimmune oral mucosal diseases: clinical, etiologic, diagnostic, and treatment considerations. Dent Clin North Am 2011; 55:89-103. [PMID: 21094720 DOI: 10.1016/j.cden.2010.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This article discusses the classic autoimmune diseases: pemphigus vulgaris, mucosal pemphigoid, and oral lichen planus. These are generally considered of autoimmune origin or, at a minimum, immune system mediated. Cause, diagnosis, and treatment are discussed. As management of these diseases progresses, continued advances in molecular pathogenesis will allow insight into which strategies can be employed in interfering with the complex cascade of events leading to mucosal impairment and clinical morbidity.
Collapse
Affiliation(s)
- James J Sciubba
- The Milton J. Dance Head & Neck Center, The Greater Baltimore Medical Center, 6569 North Charles Street, Baltimore, MD 21204, USA.
| |
Collapse
|
25
|
Lie PPY, Cheng CY, Mruk DD. The biology of the desmosome-like junction a versatile anchoring junction and signal transducer in the seminiferous epithelium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:223-69. [PMID: 21199783 PMCID: PMC4381909 DOI: 10.1016/b978-0-12-385859-7.00005-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian spermatogenesis, a complex process that involves the movement of developing germ cells across the seminiferous epithelium, entails extensive restructuring of Sertoli-Sertoli and Sertoli-germ cell junctions. Presently, it is not entirely clear how zygotene spermatocytes gain entry into the adluminal compartment of the seminiferous epithelium, which is sealed off from the systemic circulation by the Sertoli cell component of the blood-testis barrier, without compromising barrier integrity. To begin to address this question, it is critical that we first have a good understanding of the biology and the regulation of different types of Sertoli-Sertoli and Sertoli-germ cell junctions in the testis. Supported by recent studies in the field, we discuss how crosstalk between different types of junctions contributes to their restructuring during germ cell movement across the blood-testis barrier. We place special emphasis on the emerging role of desmosome-like junctions as signal transducers during germ cell movement across the seminiferous epithelium.
Collapse
Affiliation(s)
- Pearl P Y Lie
- Population Council, Center for Biomedical Research, New York, New York, USA
| | | | | |
Collapse
|
26
|
Abstract
Desmosomes are intercellular junctions whose primary function is strong intercellular adhesion, known as hyperadhesion. In the present review, we discuss how their structure appears to support this function as well as how they are assembled and down-regulated. Desmosomal components also have signalling functions that are important in tissue development and remodelling. Their adhesive and signalling functions are both compromised in genetic and autoimmune diseases that affect the heart, skin and mucous membranes. We conclude that much work is required on structure–function relationships within desmosomes in vivo and on how they participate in signalling processes to enhance our knowledge of tissue homoeostasis and human disease.
Collapse
|
27
|
The desmosomal plaque proteins of the plakophilin family. Dermatol Res Pract 2010; 2010:101452. [PMID: 20585595 PMCID: PMC2879962 DOI: 10.1155/2010/101452] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/26/2010] [Indexed: 11/18/2022] Open
Abstract
Three related proteins of the plakophilin family (PKP1_3) have been identified as junctional proteins that are essential for the formation and stabilization of desmosomal cell contacts. Failure of PKP expression can have fatal effects on desmosomal adhesion, leading to abnormal tissue and organ development. Thus, loss of functional PKP 1 in humans leads to ectodermal dysplasia/skin fragility (EDSF) syndrome, a genodermatosis with severe blistering of the epidermis as well as abnormal keratinocytes differentiation. Mutations in the human PKP 2 gene have been linked to severe heart abnormalities that lead to arrhythmogenic right ventricular cardiomyopathy (ARVC). In the past few years it has been shown that junctional adhesion is not the only function of PKPs. These proteins have been implicated in cell signaling, organization of the cytoskeleton, and control of protein biosynthesis under specific cellular circumstances. Clearly, PKPs are more than just cell adhesion proteins. In this paper we will give an overview of our current knowledge on the very distinct roles of plakophilins in the cell.
Collapse
|