1
|
Grace R, Massimino C, Shippy TD, Tank W, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D’Elia T, Saha S. Genomic identification, annotation, and comparative analysis of Vacuolar-type ATP synthase subunits in Diaphorina citri. GIGABYTE 2022; 2022:gigabyte39. [PMID: 36824519 PMCID: PMC9933544 DOI: 10.46471/gigabyte.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022] Open
Abstract
The hemipteran insect Diaphorina citri, or Asian citrus psyllid, is a vector for Candidatus Liberibacter asiaticus (CLas), the bacterium causing citrus greening disease, or Huanglongbing (HLB). Millions of citrus trees have been destroyed, and every grove in Florida, USA, has been directly affected by this disease. In eukaryotes, vacuolar-type ATP synthase (V-ATPase) is an abundant heterodimeric enzyme that serves the cell with essential compartment acidification through the active processes that transport protons across the membrane. Fifteen putative V-ATPase genes in the D. citri genome were manually curated. Comparative genomic analysis revealed that D. citri V-ATPase subunits share domains and motifs with other insects, including the V-ATPase-A superfamily domain. Phylogenetic analysis separates D. citri V-ATPase subunits into expected clades with orthologous sequences. Annotation of the D. citri genome is a critical step towards developing directed pest management strategies to reduce the spread of HLB throughout the citrus industry.
Collapse
Affiliation(s)
- Rebecca Grace
- Indian River State College, Fort Pierce, FL 34981, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | - Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Will Tank
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | - Wayne B. Hunter
- USDA-ARS, US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
A Novel Neuron-Specific Regulator of the V-ATPase in Drosophila. eNeuro 2021; 8:ENEURO.0193-21.2021. [PMID: 34620624 PMCID: PMC8541823 DOI: 10.1523/eneuro.0193-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
The V-ATPase is a highly conserved enzymatic complex that ensures appropriate levels of organelle acidification in virtually all eukaryotic cells. While the general mechanisms of this proton pump have been well studied, little is known about the specific regulations of neuronal V-ATPase. Here, we studied CG31030, a previously uncharacterized Drosophila protein predicted from its sequence homology to be part of the V-ATPase family. In contrast to its ortholog ATP6AP1/VhaAC45 which is ubiquitous, we observed that CG31030 expression is apparently restricted to all neurons, and using CRISPR/Cas9-mediated gene tagging, that it is mainly addressed to synaptic terminals. In addition, we observed that CG31030 is essential for fly survival and that this protein co-immunoprecipitates with identified V-ATPase subunits, and in particular ATP6AP2. Using a genetically-encoded pH probe (VMAT-pHluorin) and electrophysiological recordings at the larval neuromuscular junction, we show that CG31030 knock-down induces a major defect in synaptic vesicle acidification and a decrease in quantal size, which is the amplitude of the postsynaptic response to the release of a single synaptic vesicle. These defects were associated with severe locomotor impairments. Overall, our data indicate that CG31030, which we renamed VhaAC45-related protein (VhaAC45RP), is a specific regulator of neuronal V-ATPase in Drosophila that is required for proper synaptic vesicle acidification and neurotransmitter release.
Collapse
|
3
|
Novel vertebrate- and brain-specific driver of neuronal outgrowth. Prog Neurobiol 2021; 202:102069. [PMID: 33933532 DOI: 10.1016/j.pneurobio.2021.102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
During the process of neuronal outgrowth, developing neurons produce new projections, neurites, that are essential for brain wiring. Here, we discover a relatively late-evolved protein that we denote Ac45-related protein (Ac45RP) and that, surprisingly, drives neuronal outgrowth. Ac45RP is a paralog of the Ac45 protein that is a component of the vacuolar proton ATPase (V-ATPase), the main pH regulator in eukaryotic cells. Ac45RP mRNA expression is brain specific and coincides with the peak of neurogenesis and the onset of synaptogenesis. Furthermore, Ac45RP physically interacts with the V-ATPase V0-sector and colocalizes with V0 in unconventional, but not synaptic, secretory vesicles of extending neurites. Excess Ac45RP enhances the expression of V0-subunits, causes a more elaborate Golgi, and increases the number of cytoplasmic vesicular structures, plasma membrane formation and outgrowth of actin-containing neurites devoid of synaptic markers. CRISPR-cas9n-mediated Ac45RP knockdown reduces neurite outgrowth. We conclude that the novel vertebrate- and brain-specific Ac45RP is a V0-interacting constituent of unconventional vesicular structures that drives membrane expansion during neurite outgrowth and as such may furnish a tool for future neuroregenerative treatment strategies.
Collapse
|
4
|
Jerry R, Sullivan-Brown J, Yoder MD. GTP binding protein 10 is a member of the OBG family of proteins and is differentially expressed in the early Xenopus embryo. Gene Expr Patterns 2019; 32:12-17. [PMID: 30831265 DOI: 10.1016/j.gep.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Razhan Jerry
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, PA, 19063, USA
| | | | - Michael D Yoder
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, PA, 19063, USA.
| |
Collapse
|
5
|
Rao VK, Zavala G, Deb Roy A, Mains RE, Eipper BA. A pH-sensitive luminal His-cluster promotes interaction of PAM with V-ATPase along the secretory and endocytic pathways of peptidergic cells. J Cell Physiol 2018; 234:8683-8697. [PMID: 30317586 DOI: 10.1002/jcp.27528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/11/2018] [Indexed: 01/18/2023]
Abstract
The biosynthetic and endocytic pathways of secretory cells are characterized by progressive luminal acidification, a process which is crucial for posttranslational modifications and membrane trafficking. This progressive fall in luminal pH is mainly achieved by the vacuolar-type-H+ ATPase (V-ATPase). V-ATPases are large, evolutionarily ancient rotary proton pumps that consist of a peripheral V1 complex, which hydrolyzes ATP, and an integral membrane V0 complex, which transports protons from the cytosol into the lumen. Upon sensing the desired luminal pH, V-ATPase activity is regulated by reversible dissociation of the complex into its V1 and V0 components. Molecular details of how intraluminal pH is sensed and transmitted to the cytosol are not fully understood. Peptidylglycine α-amidating mono-oxygenase (PAM; EC 1.14.17.3), a secretory pathway membrane enzyme which shares similar topology with two V-ATPase accessory proteins (Ac45 and prorenin receptor), has a pH-sensitive luminal linker region. Immunofluorescence and sucrose gradient analysis of peptidergic cells (AtT-20) identified distinct subcellular compartments exhibiting spatial co-occurrence of PAM and V-ATPase. In vitro binding assays demonstrated direct binding of the cytosolic domain of PAM to V1H. Blue native PAGE identified heterogeneous high-molecular weight complexes of PAM and V-ATPase. A PAM-1 mutant (PAM-1/H3A) with altered pH sensitivity had diminished ability to form high-molecular weight complexes. In addition, V-ATPase assembly status was altered in PAM-1/H3A expressing cells. Our analysis of the secretory and endocytic pathways of peptidergic cells supports the hypothesis that PAM serves as a luminal pH-sensor, regulating V-ATPase action by altering its assembly status.
Collapse
Affiliation(s)
- Vishwanatha K Rao
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Gerardo Zavala
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas
| | - Abhijit Deb Roy
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
6
|
Gokey JJ, Dasgupta A, Amack JD. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish. Dev Biol 2015; 407:115-30. [PMID: 26254189 DOI: 10.1016/j.ydbio.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/20/2022]
Abstract
Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry.
Collapse
Affiliation(s)
- Jason J Gokey
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Agnik Dasgupta
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
7
|
Sun-Wada GH, Wada Y. Role of vacuolar-type proton ATPase in signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1166-72. [PMID: 26072192 DOI: 10.1016/j.bbabio.2015.06.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
The vacuolar H(+)-ATPase (V-ATPase) was first identified as an electrogenic proton pump that acidifies the lumen of intra- and extracellular compartments. The acidic pH generated by V-ATPase is important for a wide range of cellular processes as well as acidification-independent processes such as secretion and membrane fusion. In addition to these housekeeping functions, recent studies implicate V-ATPase in the direct regulation and function of signaling pathways. In this review, we describe recent findings on the functions of V-ATPase in growth regulation and tissue physiology.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto 610-0395, Japan.
| | - Yoh Wada
- Division of Biological Science, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
8
|
Abstract
The vacuolar (H(+))-ATPases are ATP-dependent proton pumps that acidify intracellular compartments and, in some cases, transport protons across the plasma membrane of eukaryotic cells. Intracellular V-ATPases play an important role in normal physiological processes such as receptor-mediated endocytosis, intracellular membrane trafficking, pro-hormone processing, protein degradation, and the coupled uptake of small molecules, such as neurotransmitters. They also function in the entry of various pathogenic agents, including many envelope viruses, like influenza virus, and toxins, like anthrax toxin. Plasma membrane V-ATPases function in renal pH homeostasis, bone resorption and sperm maturation, and various disease processes, including renal tubular acidosis, osteopetrosis, and tumor metastasis. V-ATPases are composed of a peripheral V(1) domain containing eight different subunits that is responsible for ATP hydrolysis and an integral V(0) domain containing six different subunits that translocates protons. In mammalian cells, most of the V-ATPase subunits exist in multiple isoforms which are often expressed in a tissue specific manner. Isoforms of one of the V(0) subunits (subunit a) have been shown to possess information that targets the V-ATPase to distinct cellular destinations. Mutations in isoforms of subunit a lead to the human diseases osteopetrosis and renal tubular acidosis. A number of mechanisms are employed to regulate V-ATPase activity in vivo, including reversible dissociation of the V(1) and V(0) domains, control of the tightness of coupling of proton transport and ATP hydrolysis, and selective targeting of V-ATPases to distinct cellular membranes. Isoforms of subunit a are involved in regulation both via the control of coupling and via selective targeting. This review will begin with a brief introduction to the function, structure, and mechanism of the V-ATPases followed by a discussion of the role of V-ATPase subunit isoforms and the mechanisms involved in regulation of V-ATPase activity.
Collapse
Affiliation(s)
| | | | - Michael Forgac
- Department of Physiology, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|