1
|
Yuan Y, Hong Y. Medaka insulin-like growth factor-2 supports self-renewal of the embryonic stem cell line and blastomeres in vitro. Sci Rep 2017; 7:78. [PMID: 28250437 PMCID: PMC5428361 DOI: 10.1038/s41598-017-00094-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factors (IGFs) regulate diverse processes including energy metabolism, cell proliferation and embryonic development. They activate the IGF signaling pathway via binding to cell surface receptors. Here we report an essential role of IGF2 in maintaining the pluripotency of embryonic stem (ES) cell from medaka (Oryzias latipes). The medaka igf2 gene was cloned for prokaryotically expression of IGF2 ligand and green fluorescent protein-tagged IGF2 namely IGF2:GFP. With flow cytometry analysis, we demonstrated that the IGF2:GFP can bind to the cultured ES cells from medaka and zebrafish respectively. We also verified that IGF2 is able to activate the phosphorylation of Erk1/2 and Akt, and sustain the viability and pluripotency of medaka ES cells in culture. Furthermore, we characterized the binding of IGF2:GFP to freshly isolated blastomeres by fluorescence microscopy and electron microscopy. Most importantly, we revealed the important role of IGF2 in supporting the derivation of blastomeres in short-term culture. Therefore, Medaka IGF2 is essential for the self-renewal of cultured ES cells and blastomeres from fish embryos. This finding underscores a conserved role of the IGF signaling pathway in stem cells from fish to mammals.
Collapse
Affiliation(s)
- Yongming Yuan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
2
|
Yuan Y, Hong Y. Subcellular redistribution and sequential recruitment of macromolecular components during SGIV assembly. Protein Cell 2016; 7:651-61. [PMID: 27430948 PMCID: PMC5003786 DOI: 10.1007/s13238-016-0292-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/20/2016] [Indexed: 11/30/2022] Open
Abstract
Virus infection consists of entry, synthesis of macromolecular components, virus assembly and release. Understanding of the mechanisms underlying each event is necessary for the intervention of virus infection in human healthcare and agriculture. Here we report the visualization of Singapore grouper iridovirus (SGIV) assembly in the medaka haploid embryonic stem (ES) cell line HX1. SGIV is a highly infectious DNA virus that causes a massive loss in marine aquaculture. Ectopic expression of VP88GFP, a fusion between green fluorescent protein and the envelope protein VP088, did not compromise the ES cell properties and susceptibility to SGIV infection. Although VP88GFP disperses evenly in the cytoplasm of non-infected cells, it undergoes aggregation and redistribution in SGIV-infected cells. Real-time visualization revealed multiple key stages of VP88GFP redistribution and the dynamics of viral assembly site (VAS). Specifically, VP88GFP entry into and condensation in the VAS occurred within a 6-h duration, a similar duration was observed also for the release of VP88GFP-containing SGIV out of the cell. Taken together, VP088 is an excellent marker for visualizing the SGIV infection process. Our results provide new insight into macromolecular component recruitment and SGIV assembly.
Collapse
Affiliation(s)
- Yongming Yuan
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543, Singapore
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
3
|
Li M, Hong N, Xu H, Song J, Hong Y. Germline replacement by blastula cell transplantation in the fish medaka. Sci Rep 2016; 6:29658. [PMID: 27406328 PMCID: PMC4942801 DOI: 10.1038/srep29658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/21/2016] [Indexed: 11/12/2022] Open
Abstract
Primordial germ cell (PGC) specification early in development establishes the germline for reproduction and reproductive technologies. Germline replacement (GR) is a powerful tool for conservation of valuable or endangered animals. GR is achievable by germ cell transplantation into the PGC migration pathway or gonads. Blastula cell transplantation (BCT) can also lead to the chimeric germline containing PGCs of both donor and host origins. It has remained largely unknown whether BCT is able to achieve GR at a high efficiency. Here we report efficient GR by BCT into blastula embryos in the fish medaka (Oryzias latipes). Specifically, dnd depletion completely ablated host PGCs and fertility, and dnd overexpression remarkably boosted PGCs in donor blastulae. BCT between normal donor and host produced a germline transmission rate of ~4%. This rate was enhanced up to ~30% upon PGC boosting in donors. Most importantly, BCT between PGC-boosted donors and PGC-ablated hosts led to more than 90% fertility restoration and 100% GR. Therefore, BCT features an extremely high efficiency of fertility recovery and GR in medaka. This finding makes medaka an ideal model to analyze genetic and physiological donor-host compatibilities for BCT-mediated surrogate production and propagation of endangered lower vertebrates and biodiversity.
Collapse
Affiliation(s)
- Mingyou Li
- Ministry of Education Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai 201306, China
| | - Ni Hong
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543, Singapore.,Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Hongyan Xu
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | - Jianxing Song
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
4
|
Dazl is a critical player for primordial germ cell formation in medaka. Sci Rep 2016; 6:28317. [PMID: 27328644 PMCID: PMC4916430 DOI: 10.1038/srep28317] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/01/2016] [Indexed: 11/27/2022] Open
Abstract
The DAZ family genes boule, daz and dazl have conserved functions in primordial germ cell (PGC) migration, germ stem cell proliferation, differentiation and meiosis progression. It has remained unknown whether this family is required for PGC formation in developing embryos. Our recent study in the fish medaka (Oryzias latipes) has defined dnd as the critical PGC specifier and predicted the presence of additional factors essential for PGC formation. Here we report that dazl is a second key player for medaka PGC formation. Dazl knockdown did not prevent PGC formation even in the absence of normal somatic structures. It turned out that a high level of Dazl protein was maternally supplied and persisted until gastrulation, and hardly affected by two antisense morpholino oligos targeting the dazl RNA translation. Importantly, microinjection of a Dazl antibody remarkably reduced the number of PGCs and even completely abolished PGC formation without causing detectable somatic abnormality. Therefore, medaka PGC formation requires the Dazl protein as maternal germ plasm component, offering first evidence that dazl is a critical player in PGC formation in vivo. Our results demonstrate that antibody neutralization is a powerful tool to study the roles of maternal protein factors in PGC development in vivo.
Collapse
|
5
|
Hong N, Li M, Yuan Y, Wang T, Yi M, Xu H, Zeng H, Song J, Hong Y. Dnd Is a Critical Specifier of Primordial Germ Cells in the Medaka Fish. Stem Cell Reports 2016; 6:411-21. [PMID: 26852942 PMCID: PMC4788760 DOI: 10.1016/j.stemcr.2016.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 11/28/2022] Open
Abstract
Primordial germ cell (PGC) specification occurs early in development. PGC specifiers have been identified in Drosophila, mouse, and human but remained elusive in most animals. Here we identify the RNA-binding protein Dnd as a critical PGC specifier in the medaka fish (Oryzias latipes). Dnd depletion specifically abolished PGCs, and its overexpression boosted PGCs. We established a single-cell culture procedure enabling lineage tracing in vitro. We show that individual blastomeres from cleavage embryos at the 32- and 64-cell stages are capable of PGC production in culture. Importantly, Dnd overexpression increases PGCs via increasing PGC precursors. Strikingly, dnd RNA forms prominent particles that segregate asymmetrically. Dnd concentrates in germ plasm and stabilizes germ plasm RNA. Therefore, Dnd is a critical specifier of fish PGCs and utilizes particle partition as a previously unidentified mechanism for asymmetric segregation. These findings offer insights into PGC specification and manipulation in medaka as a lower vertebrate model. The medaka RNA-binding protein Dnd specifies primordial germ cells Cells from medaka cleavage embryos can be singly cultured for lineage tracing The dnd RNA forms particles as a new mechanism for asymmetric segregation These findings offer new insights into PGC specification and manipulation
Collapse
Affiliation(s)
- Ni Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A(∗)STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Mingyou Li
- Ministry of Education Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yongming Yuan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Tiansu Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Meisheng Yi
- Laboratory of Molecular Reproductive Biology, School of Marine Sciences, Sun Yat-sen University, 135 Xingang West Road, Guangzhou 510275, China
| | - Hongyan Xu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Huaqiang Zeng
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A(∗)STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Jianxing Song
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
6
|
Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci Rep 2016; 6:19738. [PMID: 26813267 PMCID: PMC4728440 DOI: 10.1038/srep19738] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
Sex is pivotal for reproduction, healthcare and evolution. In the fish medaka, the Y-chromosomal dmy (also dmrt1bY) serves the sex determiner, which activates dmrt1 for male sex maintenance. However, how dmy makes the male decision via initiating testicular differentiation has remained unknown. Here we report that autosomal gsdf serves a male sex initiator. Gene addition and deletion revealed that gsdf was necessary and sufficient for maleness via initiating testicular differentiation. We show that gsdf transcription is activated directly by dmy. These results establish the autosomal gsdf as the first male sex initiator. We propose that dmy determines maleness through activating gsdf and dmrt1 without its own participation in developmental processes of sex initiation and maintenance. gsdf may easily become a sex determiner or other autosomal genes can be recruited as new sex determiners to initiate gsdf expression. Our findings offer new insights into molecular mechanisms underlying sex development and evolution of sex-controlling genes in vertebrates.
Collapse
|
7
|
Liu R, Li M, Li Z, Hong N, Xu H, Hong Y. Medaka Oct4 is essential for pluripotency in blastula formation and ES cell derivation. Stem Cell Rev Rep 2015; 11:11-23. [PMID: 25142379 DOI: 10.1007/s12015-014-9523-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The origin and evolution of molecular mechanisms underlying cellular pluripotency is a fundamental question in stem cell biology. The transcription factor Oct4 or Pou5f1 identified in mouse features pluripotency expression and activity in the inner cell mass and embryonic stem (ES) cells. Pou2 identified in zebrafish is the non-mammalian homolog prototype of mouse Oct4. The genes oct4 and pou2 have reportedly evolved by pou5 gene duplication in the common ancestor of vertebrates. Unlike mouse oct4, however, zebrafish pou2 lacks pluripotency expression and activity. Whether the presence of pluripotency expression and activity is specific for mammalian Oct4 or common to the ancestor of vertebrate Oct4 and Pou2 proteins has remained to be determined. Here we report that Oloct4, the medaka oct4/pou2, is essential for early embryogenesis and pluripotency maintenance. Oloct4 exists as a single copy gene and is orthologous to pou2 by sequence and chromosome synteny. Oloct4 expression occurs in early embryos, germ stem cells and ES cells like mouse oct4 but also in the brain and tail bud like zebrafish pou2. Importantly, OlOct4 depletion caused blastula lethality or blockage. We show that Oloct4 depletion abolishes ES cell derivation from midblastula embryos. Thus, Oloct4 has pluripotency expression and is essential for early embryogenesis and pluripotency maintenance. Our results demonstrate the conservation of pluripotency expression and activity in vertebrate Oct4 and Pou2 proteins. The finding that Oloct4 combines the features of mouse oct4 and zebrafish pou2 in expression and function suggests that Oloct4 might represent the ancestral prototype of vertebrate oct4 and pou2 genes.
Collapse
Affiliation(s)
- Rong Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | | | | | | | | | | |
Collapse
|
8
|
Li M, Zhao H, Wei J, Zhang J, Hong Y. Medaka vasa gene has an exonic enhancer for germline expression. Gene 2015; 555:403-8. [DOI: 10.1016/j.gene.2014.11.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/04/2014] [Accepted: 11/15/2014] [Indexed: 11/26/2022]
|
9
|
Qiu C, Cheng B, Zhang Y, Huang R, Liao L, Li Y, Luo D, Hu W, Wang Y. Efficient knockout of transplanted green fluorescent protein gene in medaka using TALENs. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:674-683. [PMID: 25056495 DOI: 10.1007/s10126-014-9584-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Transcription activator-like effector nucleases (TALENs) are used for gene knockout and genome-editing studies in zebrafish, and these techniques have the potential to be applied to other fish species. Here, we show that TALENs can directly knock out a green fluorescent protein (GFP) transgene in medaka by affecting translation and synthesis of the GFP. We constructed a transgenic plasmid (pGFP-RFP) carrying the GFP and red fluorescent protein (RFP) genes, and used a modified TALEN method to assemble a pair of TALENs for the core chromophore Y66 region of GFP. Embryo toxicity of TALEN messenger RNA (mRNA) was far lower than the linearized plasmid; meanwhile, 76.3 % embryos, green fluorescence of embryos decreased significantly after co-injection of TALEN mRNA and the linearized plasmid, but red fluorescence showed no significant change. Real-time quantitative polymerase chain reaction and sequencing results showed that nearly 100 % mutated GFP position was disrupted at the Y66 region of GFP in the co-injected medaka embryos, caused by TALENs. This led to random insertion-deletion of nucleotides, which affected the translation of GFP and disrupted GFP synthesis. This provides new experimental evidence for designing TALEN sites in genes for which only key functional domains are known. Our results show that a modified TALEN method can efficiently and specifically mediate a transgene knockout in medaka. This report may promote the application of TALENs in gene-editing studies of fish species other than zebrafish.
Collapse
Affiliation(s)
- Chao Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Guan G, Zhang X, Naruse K, Nagahama Y, Hong Y. Gene replacement by zinc finger nucleases in medaka embryos. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:739-747. [PMID: 25097139 DOI: 10.1007/s10126-014-9587-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
Gene replacement (GR) via homologous recombination is a powerful tool for genome editing. Recently, direct GR is achieved successfully by coinjection of mRNAs for engineered endonucleases such as zinc finger nucleases (ZFNs) and donor DNA in developing embryos of diverse organisms. Here, we report the procedures and efficiency for direct GR by using ZFNs in the fish medaka. Upon zygotic coinjection of mRNAs encoding ZFNs that target the gonad-specifically expressed gsdf locus, linear DNA of GR vector pGRgsdf containing the red fluorescent protein (rfp) gene flanked by two homology arms of ~1-kb each underwent GR via homologous recombination. Specifically, 15 of 231 adults from manipulated embryos contained a GR allele in the caudal fin, producing an efficiency of ~7 % for somatic GR. Progeny test revealed that two out of nine fertile fish containing the GR allele in the fin were capable of transmitting the GR allele to ~6 % of F1 generation at adulthood, generating an efficiency of ~22 % for germline transmission. Sequencing and Southern blotting validated precise GR. We show that the GR allele expressed a chimeric gsdf:rfp RNA between gsdf and cointegrated rfp specifically in the gonad, demonstrating recapitulation of endogenous RNA expression as predicted for the defined GR allele. Most importantly, RFP expression coincides faithfully with the gonad-specific gsdf expression in developing embryos and adults. These results demonstrate, for the first time, the feasibility and efficiency of ZFN-mediated precise GR directly in the developing embryo of medaka as a lower vertebrate model.
Collapse
Affiliation(s)
- Guijun Guan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | | | | | | | | |
Collapse
|
11
|
Ho SY, Goh CWP, Gan JY, Lee YS, Lam MKK, Hong N, Hong Y, Chan WK, Shu-Chien AC. Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. Zebrafish 2014; 11:407-20. [PMID: 24967707 PMCID: PMC4172385 DOI: 10.1089/zeb.2013.0879] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.
Collapse
Affiliation(s)
- Sing Yee Ho
- 1 Malaysian Institute of Pharmaceuticals and Nutraceuticals , Malaysian Ministry of Science, Technology and Innovation, Pulau Pinang, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li Z, Li M, Hong N, Yi M, Hong Y. Formation and cultivation of medaka primordial germ cells. Cell Tissue Res 2014; 357:71-81. [PMID: 24770933 DOI: 10.1007/s00441-014-1867-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 12/12/2022]
Abstract
Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.
Collapse
Affiliation(s)
- Zhendong Li
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543, Singapore
| | | | | | | | | |
Collapse
|
13
|
Zhang X, Guan G, Chen J, Naruse K, Hong Y. Parameters and efficiency of direct gene disruption by zinc finger nucleases in medaka embryos. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:125-134. [PMID: 24149659 DOI: 10.1007/s10126-013-9556-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Zinc finger nucleases (ZFNs) can generate targeted gene disruption (GD) directly in developing embryos of zebrafish, mouse and human. In the fish medaka, ZFNs have been attempted on a transgene. Here, we developed procedures and parameters for ZFN-mediated direct GD on the gonad-specifically expressed gsdf locus in medaka. A pair of ZFNs was designed to target the first exon of gsdf and their synthetic mRNAs were microinjected into 1-cell stage embryos. We reveal dose-dependent survival rate and GD efficiency. In fry, ZFN mRNA injection at 10 ng/μl led to a GD efficiency of 30 %. This value increased up to nearly 100 % when the dose was enhanced to 40 ng/μl. In a typical series of experiments of ZFN mRNA injection at 10 ng/μl, 420 injected embryos developed into 94 adults, 4 of which had altered gsdf alleles. This leads to a GD efficacy of ∼4 % in the adulthood. Sequencing revealed a wide variety of subtle allelic alterations including additions and deletions of 1∼18 bp in length in ZFN-injected samples. Most importantly, one of the 4 adults examined was capable of germline transmission to 15.2 % of its F1 progeny. Interestingly, ontogenic analyses of the allelic profile revealed that GD commenced early in development, continued during subsequent stages of development and in primordia for different adult organs of the three germ layers. These results demonstrate the feasibility and--for the first time to our knowledge--the efficacy of ZFN-mediated direct GD on a chromosomal gene in medaka embryos.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | | | | | | | | |
Collapse
|
14
|
Yuan Y, Li M, Hong N, Hong Y. Correlative light and electron microscopic analyses of mitochondrial distribution in blastomeres of early fish embryos. FASEB J 2014; 28:577-585. [DOI: 10.1096/fj.13-233635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yongming Yuan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Mingyou Li
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Ni Hong
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Yunhan Hong
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| |
Collapse
|
15
|
Medaka haploid embryonic stem cells are susceptible to Singapore grouper iridovirus as well as to other viruses of aquaculture fish species. J Gen Virol 2013; 94:2352-2359. [DOI: 10.1099/vir.0.054460-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral infection is a challenge in high-density aquaculture, as it leads to various diseases and causes massive or even complete loss. The identification and disruption of host factors that viruses utilize for infection offer a novel approach to generate viral-resistant seed stocks for cost-efficient and sustainable aquaculture. Genetic screening in haploid cell cultures represents an ideal tool for host factor identification. We have recently generated haploid embryonic stem (ES) cells in the laboratory fish medaka. Here, we report that HX1, one of the three established medaka haploid ES cell lines, was susceptible to the viruses tested and is thus suitable for genetic screening to identify host factors. HX1 cells displayed a cytopathic effect and massive death upon inoculation with three highly infectious and notifiable fish viruses, namely Singapore grouper iridovirus (SGIV), spring viremia of carp virus (SVCV) and red-spotted grouper nervous necrosis virus (RGNNV). Reverse transcription-PCR and Western blot analyses revealed the expression of virus genes. SGIV infection in HX1 cells elicited a host immune response and apoptosis. Viral replication kinetics were determined from a virus growth curve, and electron microscopy revealed propagation, assembly and release of infectious SGIV particles in HX1 cells. Our results demonstrate that medaka haploid ES cells are susceptible to SGIV, as well as to SVCV and RGNNV, offering a unique opportunity for the identification of host factors by genetic screening.
Collapse
|
16
|
Guan G, Yan Y, Chen T, Yi M, Ni H, Naruse K, Nagahama Y, Hong Y. Nanos3 gene targeting in medaka ES cells. Int J Biol Sci 2013; 9:444-54. [PMID: 23678294 PMCID: PMC3654493 DOI: 10.7150/ijbs.6507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/08/2013] [Indexed: 11/05/2022] Open
Abstract
Gene targeting (GT) by homologous recombination offers the best precision for genome editing in mice. nanos3 is a highly conserved gene and encodes a zinc-finger RNA binding protein essential for germ stem cell maintenance in Drosophila, zebrafish and mouse. Here we report nanos3 GT in embryonic stem (ES) cells of the fish medaka as a lower vertebrate model organism. A vector was designed for GT via homologous recombination on the basis of positive-negative selection (PNS). The ES cell line MES1 after gene transfer and PNS produced 56 colonies that were expanded into ES cell sublines. Nine sublines were GT-positive by PCR genotyping, 4 of which were homologous recombinants as revealed by Southern blot. We show that one of the 4, A15, contains a precisely targeted nanos3 allele without any random events, demonstrating the GT feasibility in medaka ES cells. Importantly, A15 retained all features of undifferentiated ES cells, including stable self-renewal, an undifferentiated phenotype, pluripotency gene expression and differentiation during chimeric embryogenesis. These results provide first evidence that the GT procedure and genuine GT on a chromosomal locus such as nanos3 do not compromise pluripotency in ES cells of a lower vertebrate.
Collapse
Affiliation(s)
- Guijun Guan
- Department of Bioresource, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
p53 gene targeting by homologous recombination in fish ES cells. PLoS One 2013; 8:e59400. [PMID: 23527183 PMCID: PMC3602087 DOI: 10.1371/journal.pone.0059400] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 02/17/2013] [Indexed: 12/12/2022] Open
Abstract
Background Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) events in the fish medaka (Oryzias latipes). Methodology and Principal Findings Here we report HR-mediated GT in this organism. We designed a GT vector to disrupt the tumor suppressor gene p53 (also known as tp53). We show that all the three medaka ES cell lines, MES1∼MES3, are highly proficient for HR, as they produced detectable HR without drug selection. Furthermore, the positive-negative selection (PNS) procedure enhanced HR by ∼12 folds. Out of 39 PNS-resistant colonies analyzed, 19 (48.7%) were positive for GT by PCR genotyping. When 11 of the PCR-positive colonies were further analyzed, 6 (54.5%) were found to be bona fide homologous recombinants by Southern blot analysis, sequencing and fluorescent in situ hybridization. This produces a high efficiency of up to 26.6% for p53 GT under PNS conditions. We show that p53 disruption and long-term propagation under drug selection conditions do not compromise the pluripotency, as p53-targeted ES cells retained stable growth, undifferentiated phenotype, pluripotency gene expression profile and differentiation potential in vitro and in vivo. Conclusions Our results demonstrate that medaka ES cells are proficient for HR-mediated GT, offering a first model organism of lower vertebrates towards the development of full ES cell-based GT technology.
Collapse
|
18
|
Li M, Guan G, Hong N, Hong Y. Multiple regulatory regions control the transcription of medaka germ gene vasa. Biochimie 2012; 95:850-7. [PMID: 23232104 DOI: 10.1016/j.biochi.2012.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 12/03/2012] [Indexed: 12/23/2022]
Abstract
Numerous regulatory DNA regions and trans-acting protein factors controlling transcription have been characterized for many genes that are expressed in somatic cells. Little is known about the transcriptional control of germ genes, and no cell culture system has been explored for quantitative reporter assay of germ gene transcription in vitro. Here we report the development of such an in vitro system and the identification of regulatory regions in the medaka germ gene vasa. We established the medaka germ cell line SG3 as a suitable in vitro system for analyzing germ gene transcription. Transgenic production revealed that VAS, a 5.1-kb genomic fragment of medaka vasa, possessed regulatory regions essential for germ cell-specific transcription. Importantly, reporter assays revealed 11 positive and negative regulatory regions alternatively positioned throughout VAS including the first intron. Strikingly, the regulatory regions may act in additive, non-additive and dependent manners. We show that a 39-bp element within one regulatory region is able to interact with the nuclear factor(s) of vasa-expressing embryos and testes. These results demonstrate the complexity of transcriptional control of medaka vasa and provide important insights into opposing mechanisms underlying germ gene transcription.
Collapse
Affiliation(s)
- Mingyou Li
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
19
|
Hong N, He BP, Schartl M, Hong Y. Medaka embryonic stem cells are capable of generating entire organs and embryo-like miniatures. Stem Cells Dev 2012; 22:750-7. [PMID: 23067146 DOI: 10.1089/scd.2012.0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Embryonic stem (ES) cells have the potency to produce many cell types of the embryo and adult body. Upon transplantation into early host embryos, ES cells are able to differentiate into various specialized cells and contribute to host tissues and organs of all germ layers. Here we present data in the fish medaka (Oryzias latipes) that ES cells have a novel ability to form extra organs and even embryo-like miniatures. Upon transplantation as individual cells according to the standard procedure, ES cells distributed widely to various organ systems of 3 germ layers. Upon transplantation as aggregates, ES cells were able to form extra organs, including the hematopoietic organ and contracting heart. We show that localized ES cell transplantation often led to the formation of extra axes that comprised essentially of either host cells or donor ES cells. These extra axes were associated with the head region of the embryo proper or formed at ectopic sites on the yolk sac. Surprisingly, certain ectopic axes were even capable of forming embryo-like miniatures. We conclude that ES cells have the ability to form entire organs and even embryo-like miniatures under proper environmental conditions. This finding points to a new possibility to generate ES cell-derived axes and organs.
Collapse
Affiliation(s)
- Ni Hong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
20
|
Chen J, Zhang X, Wang T, Li Z, Guan G, Hong Y. Efficient detection, quantification and enrichment of subtle allelic alterations. DNA Res 2012; 19:423-33. [PMID: 23075543 PMCID: PMC3473374 DOI: 10.1093/dnares/dss023] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/03/2012] [Indexed: 12/20/2022] Open
Abstract
Gene targeting (GT) can introduce subtle alterations into a particular locus and represents a powerful tool for genome editing. Engineered zinc finger nucleases (ZFNs) are effective for generating minor allelic alterations. Efficient detection of such minor alterations remains one of the challenges in ZFN-mediated GT experiments. Here, we report the establishment of procedures allowing for efficient detection, quantification and enrichment of such subtle alterations. In a biallelic model, polyacrylamide gel electrophoresis (PAGE) is capable of detecting rare allelic variations in the form of DNA heteroduplexes at a high efficiency of ~0.4% compared with ~6.3% by the traditional T7 endonuclease I-digestion and agarose gel electrophoresis. In a multiple allelic model, PAGE could discriminate different alleles bearing addition or deletion of 1-18 bp as distinct bands that were easily quantifiable by densitometry. Furthermore, PAGE enables enrichment for rare alleles. We show for the first time that direct endogenous GT is possible in medaka by ZFN RNA injection, whereas PAGE allows for detection and cloning of ZFN-targeted alleles in adults arising from ZFN-injected medaka embryos. Therefore, PAGE is effective for detection, quantification and enrichment of multiple fine allelic differences and thus offers a versatile tool for screening targeted subtle gene alterations.
Collapse
Affiliation(s)
- Jianbin Chen
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Xi Zhang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Tiansu Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Guijun Guan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
- Department of Bioresources, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| |
Collapse
|
21
|
Zhao H, Li M, Purwanti YI, Liu R, Chen T, Li Z, Hong N, Guan G, Yin A, Xiao L, Ge R, Song J, Hong Y. Mitf is a transcriptional activator of medaka germ genes in culture. Biochimie 2012; 94:759-67. [DOI: 10.1016/j.biochi.2011.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 11/11/2011] [Indexed: 12/17/2022]
|
22
|
Hong N, Chen S, Ge R, Song J, Yi M, Hong Y. Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation. Stem Cells Dev 2012; 21:2333-41. [PMID: 22204449 DOI: 10.1089/scd.2011.0630] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos.
Collapse
Affiliation(s)
- Ni Hong
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
23
|
Zhao H, Hong N, Lu W, Zeng H, Song J, Hong Y. Fusion gene vectors allowing for simultaneous drug selection, cell labeling, and reporter assay in vitro and in vivo. Anal Chem 2012; 84:987-93. [PMID: 22081858 DOI: 10.1021/ac202541t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vector systems allowing simultaneously for rapid drug selection, cell labeling, and reporter assay are highly desirable in biomedical research including stem cell biology. Here, we present such a vector system including pCVpf or pCVpr, plasmids that express pf or pr, a fusion protein between puromycin acetyltransferase and green or red fluorescent protein from CV, the human cytomegalovirus enhancer/promoter. Transfection with pCVpf or pCVpr produced a ∼10% efficiency of gene transfer. A 2-day pulse puromycin selection resulted in ∼13-fold enrichment for transgenic cells, and continuous puromycin selection produced stable transgenic stem cell clones with retained pluripotency. Furthermore, we developed a PAC assay protocol for quantification of transgene expression. To test the usefulness for cell labeling and PAC assay in vivo, we constructed pVASpf containing pf linked to the regulatory sequence of medaka germ gene vasa and generated transgenic fish with visible GFP expression in germ cells. PAC assay revealed the highest expression in the testis. Interestingly, PAC activity was also detectable in somatic organs including the eye, which was validated by fluorescence in situ hybridization. Therefore, the pf and pr vectors provide a useful system for simultaneous drug selection, live labeling, and reporter assay in vitro and in vivo.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543
| | | | | | | | | | | |
Collapse
|
24
|
Liu T, Liu L, Wei Q, Hong Y. Sperm nuclear transfer and transgenic production in the fish medaka. Int J Biol Sci 2011; 7:469-475. [PMID: 21547064 PMCID: PMC3088289 DOI: 10.7150/ijbs.7.469] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/10/2011] [Indexed: 12/04/2022] Open
Abstract
Sperm nuclear transfer or intracytoplasmic sperm injection (ICSI) is a powerful assisted reproductive technology (ART) for treating human male infertility. Controversial reports of increased birth defects have raised concerns about the ART's safety. The cause for birth defects, however, has remained elusive for analysis in human because of the sample size, male infertility genetics, physiological heterogeneity and associated procedures such as embryo manipulations. Animal models are required to evaluate factors leading to the increased birth defects. Here we report the establishment of medakafish model for ICSI and transgenic production. This small laboratory fish has high fecundity and easy embryology. We show that ICSI produced a 5% high percentage of fertile animals that exhibited both paternal and maternal contribution as evidenced by the pigmentation marker. Furthermore, when sperm were pre-incubated with a plasmid ubiquitously expressing RFP and subjected to ICSI, 50% of sperm nuclear transplants showed germline transmission. We conclude that medaka is an excellent model for ICSI to evaluate birth defects and that sperm nuclear transfer can mediate stable gene transfer at high efficiency. Although more demanding for experimentation, sperm-mediated transgenesis should be particularly applicable for aquaculture species with a lengthy generation time and/or a large adult body size.
Collapse
Affiliation(s)
- Tongming Liu
- 1. Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | - Ling Liu
- 2. Key Laboratory of Freshwater Ecology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, 1st Wudayuan Road, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China
| | - Qiwei Wei
- 2. Key Laboratory of Freshwater Ecology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, 1st Wudayuan Road, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China
| | - Yunhan Hong
- 1. Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
- 2. Key Laboratory of Freshwater Ecology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, 1st Wudayuan Road, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China
| |
Collapse
|
25
|
Rao F, Wang T, Li M, Li Z, Hong N, Zhao H, Yan Y, Lu W, Chen T, Wang W, Lim M, Yuan Y, Liu L, Zeng L, Wei Q, Guan G, Li C, Hong Y. Medaka tert produces multiple variants with differential expression during differentiation in vitro and in vivo. Int J Biol Sci 2011; 7:426-39. [PMID: 21547060 PMCID: PMC3088285 DOI: 10.7150/ijbs.7.426] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 04/01/2011] [Indexed: 12/31/2022] Open
Abstract
Embryonic stem (ES) cells have immortality for self-renewal and pluripotency. Differentiated human cells undergo replicative senescence. In human, the telomerase reverse transcriptase (Tert), namely the catalytic subunit of telomerase, exhibits differential expression to regulate telomerase activity governing cellular immortality or senescence, and telomerase activity or tert expression is a routine marker of pluripotent ES cells. Here we have identified the medaka tert gene and determined its expression and telomerase activity in vivo and in vitro. We found that the medaka tert locus produces five variants called terta to terte encoding isoforms TertA to TertE. The longest TertA consists of 1090 amino acid residues and displays a maximum of 34% identity to the human TERT and all the signature motifs of the Tert family. TertB to TertE are novel isoforms and have considerable truncation due to alternative splicing. The terta RNA is ubiquitous in embryos, adult tissues and cell lines, and accompanies ubiquitous telomerase activity in vivo and in vitro as revealed by TRAP assays. The tertb RNA was restricted to the testis, absent in embryos before gastrulation and barely detectable in various cell lines The tertc transcript was absent in undifferentiated ES cells but became evident upon ES cell differentiation, in vivo it was barely detectable in early embryos and became evident when embryogenesis proceeds. Therefore, ubiquitous terta expression correlates with ubiquitous telomerase activity in medaka, and expression of other tert variants appears to delineate cell differentiation in vitro and in vivo.
Collapse
Affiliation(s)
- Feng Rao
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang D, Manali D, Wang T, Bhat N, Hong N, Li Z, Wang L, Yan Y, Liu R, Hong Y. Identification of pluripotency genes in the fish medaka. Int J Biol Sci 2011; 7:440-51. [PMID: 21547061 PMCID: PMC3088286 DOI: 10.7150/ijbs.7.440] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 04/01/2011] [Indexed: 11/05/2022] Open
Abstract
Stem cell cultures can be derived directly from early developing embryos and indirectly from differentiated cells by forced expression of pluripotency transcription factors. Pluripotency genes are routinely used to characterize mammalian stem cell cultures at the molecular level. However, such genes have remained unknown in lower vertebrates. In this regard, the laboratory fish medaka is uniquely suited because it has embryonic stem (ES) cells and genome sequence data. We identified seven medaka pluripotency genes by homology search and expression in vivo and in vitro. By RT-PCR analysis, the seven genes fall into three groups of expression pattern. Group I includes nanog and oct4 showing gonad-specific expression; Group II contains sall4 and zfp281 displaying gonad-preferential expression; Group III has klf4, ronin and tcf3 exhibiting expression also in several somatic tissues apart from the gonads. The transcripts of the seven genes are maternally supplied and persist at a high level during early embryogenesis. We made use of early embryos and adult gonads to examine expression in stem cells and differentiated derivatives by in situ hybridization. Strikingly, nanog and oct4 are highly expressed in pluripotent blastomeres of 16-cell embryos. In the adult testis, nanog expression was specific to spermatogonia, the germ stem cells, whereas tcf3 expression occurred in spermatogonia and differentiated cells. Most importantly, all the seven genes are pluripotency markers in vitro, because they have high expression in undifferentiated ES cells but dramatic down-regulation upon differentiation. Therefore, these genes have conserved their pluripotency-specific expression in vitro from mammals to lower vertebrates.
Collapse
Affiliation(s)
- Danke Wang
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.
Collapse
Affiliation(s)
- Ni Hong
- Department of Biological Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | | | |
Collapse
|
28
|
Medaka fish stem cells and their applications. SCIENCE CHINA-LIFE SCIENCES 2010; 53:426-34. [PMID: 20596908 DOI: 10.1007/s11427-010-0079-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/02/2009] [Indexed: 10/19/2022]
Abstract
Stem cells are present in developing embryos and adult tissues of multicellular organisms. Owing to their unique features, stem cells provide excellent opportunities for experimental analyses of basic developmental processes such as pluripotency control and cell fate decision and for regenerative medicine by stem cell-based therapy. Stem cell cultures have been best studied in 3 vertebrate organisms. These are the mouse, human and a small laboratory fish called medaka. Specifically, medaka has given rise to the first embryonic stem (ES) cells besides the mouse, the first adult testis-derived male stem cells spermatogonia capable of test-tube sperm production, and most recently, even haploid ES cells capable of producing Holly, a semi-cloned fertile female medaka from a mosaic oocyte created by microinjecting a haploid ES cell nucleus directly into a normal oocyte. These breakthroughs make medaka a favoring vertebrate model for stem cell research, the topic of this review.
Collapse
|
29
|
Xu H, Li M, Gui J, Hong Y. Fish germ cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:435-46. [PMID: 20596909 DOI: 10.1007/s11427-010-0058-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/02/2009] [Indexed: 01/15/2023]
Abstract
Fish, like many other animals, have two major cell lineages, namely the germline and soma. The germ-soma separation is one of the earliest events of embryonic development. Germ cells can be specifically labeled and isolated for culture and transplantation, providing tools for reproduction of endangered species in close relatives, such as surrogate production of trout in salmon. Haploid cell cultures, such as medaka haploid embryonic stem cells have recently been obtained, which are capable of mimicking sperm to produce fertile offspring, upon nuclear being directly transferred into normal eggs. Such fish originated from a mosaic oocyte that had a haploid meiotic nucleus and a transplanted haploid mitotic cell culture nucleus. The first semi-cloned fish is Holly. Here we review the current status and future directions of understanding and manipulating fish germ cells in basic research and reproductive technology.
Collapse
Affiliation(s)
- HongYan Xu
- Department of Biological Sciences, National University of Singapore, Singapore 119260, Singapore
| | | | | | | |
Collapse
|