1
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
2
|
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease that affects the central nervous system (CNS), particularly, in young adults. Current MS treatments aim to reduce demyelination; however, these have limited efficacy, display side effects and lack of regenerative activities. Oligodendrocyte progenitor cells (OPCs) represents the major source for new myelin. Upon demyelination, OPCs get activated, proliferate, migrate towards the lesion, and differentiate into remyelinating oligodendrocytes. Although myelin repair (remyelination) represents a robust response to myelin damage, during MS, this regenerative phenomenon decays in efficiency or even fails. CNS-resident pericytes (CNS-PCs) are essential for vascular homeostasis regulating blood-brain barrier (BBB) permeability and stability as well as endothelial cells (ECs) function during angiogenesis and neovascularization. Recent studies indicate that CNS-PCs also play a crucial role regulating OPC function during remyelination, and very importantly, these cells are substantially affected in MS. This chapter summarizes important aspects of MS and CNS remyelination as well as it provides new insights supporting the contribution of CNS-PCs to myelin regeneration and to MS pathology. Currently, there is evidence arguing in favor of CNS-PCs as novel therapeutic targets for the development of future treatments for MS.
Collapse
|
3
|
Park JE, Silva AC. Generation of genetically engineered non-human primate models of brain function and neurological disorders. Am J Primatol 2018; 81:e22931. [PMID: 30585654 DOI: 10.1002/ajp.22931] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022]
Abstract
Research with non-human primates (NHP) has been essential and effective in increasing our ability to find cures for a large number of diseases that cause human suffering and death. Extending the availability and use of genetic engineering techniques to NHP will allow the creation and study of NHP models of human disease, as well as broaden our understanding of neural circuits in the primate brain. With the recent development of efficient genetic engineering techniques that can be used for NHP, there's increased hope that NHP will significantly accelerate our understanding of the etiology of human neurological and neuropsychiatric disorders. In this article, we review the present state of genetic engineering tools used in NHP, from the early efforts to induce exogeneous gene expression in macaques and marmosets, to the latest results in producing germline transmission of different transgenes and the establishment of knockout lines of specific genes. We conclude with future perspectives on the further development and employment of these tools to generate genetically engineered NHP.
Collapse
Affiliation(s)
- Jung Eun Park
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta Mol Basis Dis 2016; 1862:461-71. [DOI: 10.1016/j.bbadis.2015.10.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022]
|
5
|
Mastorodemos V, Ioannou M, Verginis P. Cell-based modulation of autoimmune responses in multiple sclerosis and experimental autoimmmune encephalomyelitis: therapeutic implications. Neuroimmunomodulation 2015; 22:181-95. [PMID: 24852748 DOI: 10.1159/000362370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is a prototypic autoimmune inflammatory disorder of the central nervous system (CNS). MS pathogenesis is a complex phenomenon that is influenced by genetic and environmental factors that lead to the dysregulation of immune homeostasis and tolerance. It has been shown that pathogenic T lymphocyte subsets, such as T helper 1 (Th1) and Th17 cells, play a crucial role in the autoimmune cascade influencing disease initiation, progression and subsequent tissue damage during MS. On the other hand, several mechanisms have been described in both patients and animal models of MS with the potential to modulate myelin-specific autoimmune responses and to facilitate amelioration of disease pathology. To this end, regulatory T cells (Tregs) are considered to be a powerful cell subset not only in the maintenance of homeostasis but also in the re-establishment of tolerance. Along these lines, other cell subsets such as dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), γδ T cells and natural killer (NK) cells have been shown to regulate the autoimmune response in the CNS under certain circumstances. This review will attempt to summarize the relevant knowledge of the regulatory mechanisms exerted by immune cells in MS that could hold the promise for the design of novel therapeutic strategies.
Collapse
|
6
|
Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 2014; 54:33-50. [PMID: 25175979 DOI: 10.1016/j.jaut.2014.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disease of the central nervous system (CNS), presents as a complex disease with variable clinical and pathological manifestations, involving different pathogenic pathways. Animal models, particularly experimental autoimmune encephalomyelitis (EAE), have been key to deciphering the pathophysiology of MS, although no single model can recapitulate the complexity and diversity of MS, or can, to date, integrate the diverse pathogenic pathways. Since the first EAE model was introduced decades ago, multiple classic (induced), spontaneous, and humanized EAE models have been developed, each recapitulating particular aspects of MS pathogenesis. The advances in technologies of genetic ablation and transgenesis in mice of C57BL/6J background and the development of myelin-oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6J mice yielded several spontaneous and humanized EAE models, and resulted in a plethora of EAE models in which the role of specific genes or cell populations could be precisely interrogated, towards modeling specific pathways of MS pathogenesis/regulation in MS. Collectively, the numerous studies on the different EAE models contributed immensely to our basic understanding of cellular and molecular pathways in MS pathogenesis as well as to the development of therapeutic agents: several drugs available today as disease modifying treatments were developed from direct studies on EAE models, and many others were tested or validated in EAE. In this review, we discuss the contribution of major classic, spontaneous, and humanized EAE models to our understanding of MS pathophysiology and to insights leading to devising current and future therapies for this disease.
Collapse
Affiliation(s)
- Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Naoto Kawakami
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany; Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | | | - Kerstin Berer
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| | | | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | - Hartmut Wekerle
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| |
Collapse
|
7
|
Duarte J, Carrié N, Oliveira VG, Almeida C, Agua-Doce A, Rodrigues L, Simas JP, Mars LT, Graca L. T cell apoptosis and induction of Foxp3+ regulatory T cells underlie the therapeutic efficacy of CD4 blockade in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2012; 189:1680-8. [PMID: 22802417 DOI: 10.4049/jimmunol.1201269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pathogenesis of multiple sclerosis requires the participation of effector neuroantigen-specific T cells. Thus, T cell targeting has been proposed as a promising therapeutic strategy. However, the mechanism underlying effective disease prevention following T cell targeting remains incompletely known. We found, using several TCR-transgenic strains, that CD4 blockade is effective in preventing experimental autoimmune encephalopathy and in treating mice after the disease onset. The mechanism does not rely on direct T cell depletion, but the anti-CD4 mAb prevents the proliferation of naive neuroantigen-specific T cells, as well as acquisition of effector Th1 and Th17 phenotypes. Simultaneously, the mAb favors peripheral conversion of Foxp3(+) regulatory T cells. Pre-existing effector cells, or neuroantigen-specific cells that undergo cell division despite the presence of anti-CD4, are committed to apoptosis. Therefore, protection from experimental autoimmune encephalopathy relies on a combination of dominant mechanisms grounded on regulatory T cell induction and recessive mechanisms based on apoptosis of neuropathogenic cells. We anticipate that the same mechanisms may be implicated in other T cell-mediated autoimmune diseases that can be treated or prevented with Abs targeting T cell molecules, such as CD4 or CD3.
Collapse
Affiliation(s)
- Joana Duarte
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kipp M, van der Star B, Vogel DYS, Puentes F, van der Valk P, Baker D, Amor S. Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Mult Scler Relat Disord 2011; 1:15-28. [PMID: 25876447 DOI: 10.1016/j.msard.2011.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/05/2011] [Indexed: 12/16/2022]
Abstract
Although the primary cause of multiple sclerosis (MS) is unknown, the widely accepted view is that aberrant (auto)immune responses possibly arising following infection(s) are responsible for the destructive inflammatory demyelination and neurodegeneration in the central nervous system (CNS). This notion, and the limited access of human brain tissue early in the course of MS, has led to the development of autoimmune, viral and toxin-induced demyelination animal models as well as the development of human CNS cell and organotypic brain slice cultures in an attempt to understand events in MS. The autoimmune models, collectively known as experimental autoimmune encephalomyelitis (EAE), and viral models have shaped ideas of how environmental factors may trigger inflammation, demyelination and neurodegeneration in the CNS. Understandably, these models have also heavily influenced the development of therapies targeting the inflammatory aspect of MS. Demyelination and remyelination in the absence of overt inflammation are better studied in toxin-induced demyelination models using cuprizone and lysolecithin. The paradigm shift of MS as an autoimmune disease of myelin to a neurodegenerative disease has required more appropriate models reflecting the axonal and neuronal damage. Thus, secondary progressive EAE and spastic models have been crucial to develop neuroprotective approaches. In this review the current in vivo and in vitro experimental models to examine pathological mechanisms involved in inflammation, demyelination and neuronal degeneration, as well as remyelination and repair in MS are discussed. Since this knowledge is the basis for the development of new therapeutic approaches for MS, we particularly address whether the currently available models truly reflect the human disease, and discuss perspectives to further optimise and develop more suitable experimental models to study MS.
Collapse
Affiliation(s)
- Markus Kipp
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands; Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Baukje van der Star
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Daphne Y S Vogel
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Fabìola Puentes
- Neuroimmunology Unit, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Paul van der Valk
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - David Baker
- Neuroimmunology Unit, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Sandra Amor
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands; Neuroimmunology Unit, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
9
|
Sriram S. Role of glial cells in innate immunity and their role in CNS demyelination. J Neuroimmunol 2011; 239:13-20. [PMID: 21907419 DOI: 10.1016/j.jneuroim.2011.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/09/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022]
Abstract
The adaptive and innate arms of the immune system are the two pillars of host defense against environmental pathogens. Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS which is considered to be autoimmune and is thought to result from breakdown in the usual checks and balances of the adaptive immune response. The major pathological outcome of the disease is "the MS plaque" a unique feature of CNS demyelination characterized by the destruction of oligodendrocytes with loss of myelin and underlying axons. The MS plaque is not seen in other inflammatory disorders of the CNS. The prevailing opinion suggests that MS is mediated by the activation of an adaptive immune response which targets neural antigens. Currently, the role of an innate immune in the development of the lesions in MS has remained unclear. We explore the potential cellular elements of the innate immune system and in particular glial cells, which are likely candidates in inducing the specific pathological picture that is evident in MS. Activated microglia and the release of molecules which are detrimental to oligodendrocyte have been suggested as mechanisms by which innate immunity causes demyelination in MS. However a microglia/macrophage centric model does not explain the specificity of lesion development in MS. We propose that activation pathways of receptors of the innate immune system present on oligodendrocytes and astrocytes rather than microglia are central to the pathogenesis of demyelination seen in MS.
Collapse
Affiliation(s)
- Subramaniam Sriram
- Department of Neurology, Multiple Sclerosis Research Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA.
| |
Collapse
|
10
|
Gong S, Worth CL, Cheng TMK, Blundell TL. Meet Me Halfway: When Genomics Meets Structural Bioinformatics. J Cardiovasc Transl Res 2011; 4:281-303. [DOI: 10.1007/s12265-011-9259-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/08/2011] [Indexed: 01/08/2023]
|