1
|
Yang Y, Lin Z, Lin Q, Bei W, Guo J. Pathological and therapeutic roles of bioactive peptide trefoil factor 3 in diverse diseases: recent progress and perspective. Cell Death Dis 2022; 13:62. [PMID: 35039476 PMCID: PMC8763889 DOI: 10.1038/s41419-022-04504-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Trefoil factor 3 (TFF3) is the last small-molecule peptide found in the trefoil factor family, which is mainly secreted by intestinal goblet cells and exerts mucosal repair effect in the gastrointestinal tract. Emerging evidence indicated that the TFF3 expression profile and biological effects changed significantly in pathological states such as cancer, colitis, gastric ulcer, diabetes mellitus, non-alcoholic fatty liver disease, and nervous system disease. More importantly, mucosal protection would no longer be the only effect of TFF3, it gradually exhibits carcinogenic activity and potential regulatory effect of nervous and endocrine systems, but the inner mechanisms remain unclear. Understanding the molecular function of TFF3 in specific diseases might provide a new insight for the clinical development of novel therapeutic strategies. This review provides an up-to-date overview of the pathological effects of TFF3 in different disease and discusses the binding proteins, signaling pathways, and clinical application.
Collapse
Affiliation(s)
- Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Quanyou Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
2
|
Gauvin DV, Zimmermann ZJ, Yoder J, Tapp R, Baird TJ. Predicting the Need for a Tier II Ototoxicity Study From Early Renal Function Data. Int J Toxicol 2019; 38:265-278. [PMID: 31220989 DOI: 10.1177/1091581819851232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
History has established that many drugs, such as the antibiotics, chemotherapies, and loop diuretics, are capable of inducing both nephrotoxicity and ototoxicity. The exact mechanisms by which cellular damage occurs remain to be fully elucidated. Monitoring the indices of renal function conducted in the Food and Drug Administration's prescribed set of early investigational new drug (IND)-enabling studies may be the first signs of ototoxicity properties of the new drug candidate. In developing improved and efficacious new molecular entities, it is critically necessary to understand the cellular and molecular mechanisms underlying the potential ototoxic effects as early in the drug development program as possible. Elucidation of these mechanisms will facilitate the development of safe and effective clinical approaches for the prevention and amelioration of drug-induced ototoxicity prior to the first dose in man. Biomarkers for nephrotoxicity in early tier I or tier II nonclinical IND-enabling studies should raise an inquiry as to the need to conduct a full auditory function assay early in the game to clear the pipeline with a safer candidate that has a higher probability of continued therapeutic compliance once approved for distribution.
Collapse
Affiliation(s)
- David V Gauvin
- 1 Neurobehavioral Sciences Department, Charles River Laboratories, Inc, Mattawan, MI, USA
| | - Zachary J Zimmermann
- 1 Neurobehavioral Sciences Department, Charles River Laboratories, Inc, Mattawan, MI, USA
| | - Joshua Yoder
- 1 Neurobehavioral Sciences Department, Charles River Laboratories, Inc, Mattawan, MI, USA
| | - Rachel Tapp
- 1 Neurobehavioral Sciences Department, Charles River Laboratories, Inc, Mattawan, MI, USA
| | - Theodore J Baird
- 2 Safety Assessment, Charles River Laboratories, Inc, Mattawan, MI, USA
| |
Collapse
|
3
|
Abstract
The identification of transcriptional differences has served as an important starting point in understanding the molecular mechanisms behind biological processes and systems. The developmental biology of the inner ear, the biology of hearing and of course the pathology of deafness are all processes that warrant a molecular description if we are to improve human health. To this end, technological innovation has meant that larger scale analysis of gene transcription has been possible for a number of years now, extending our molecular analysis of genes to beyond those that are currently in vogue for a given system. In this review, some of the contributions gene profiling has made to understanding developmental, pathological and physiological processes in the inner ear are highlighted.
Collapse
Affiliation(s)
- Thomas Schimmang
- Instituto de Biología y Genética MolecularUniversidad de Valladolid y Consejo Superior de Investigaciones CientíficasValladolidSpain
| | - Mark Maconochie
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
4
|
Hertzano R, Elkon R. High throughput gene expression analysis of the inner ear. Hear Res 2012; 288:77-88. [PMID: 22710153 DOI: 10.1016/j.heares.2012.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 12/25/2022]
Abstract
The mouse auditory and vestibular epithelia consist of a complex array of many different cell types. Over the last decade microarrays were used to characterize gene expression in the inner ear. Studies were performed on wild type mice to identify deafness genes, transcriptional networks activated during development, or identify miRNA with a functional role in the ear. Other studies focused on the molecular response of the inner ear to stimuli ranging from ototoxic medications to hypergravity and caloric restriction. Finally, microarrays were used to identify transcriptional networks activated downstream of deafness genes. As template-free high throughput gene expression profiling methods such as RNA-seq are increasingly popular, we offer a critical review of the data generated over the last decade relating to microarrays for gene expression profiling of the inner ear. Moreover, as most of the published data is available through the gene expression omnibus (GEO), we demonstrate the feasibility of integrating data from independent experiments to reach novel insights.
Collapse
Affiliation(s)
- Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, 16 S Eutaw St. Suite 500, Baltimore, MD 21201, USA.
| | | |
Collapse
|