1
|
Carmona P, Pérez B, Trujillo C, Espinosa G, Miranda F, Mendez N, Torres-Farfan C, Richter HG, Vergara K, Brebi P, Sarmiento J. Long-Term Effects of Altered Photoperiod During Pregnancy on Liver Gene Expression of the Progeny. Front Physiol 2019; 10:1377. [PMID: 31824324 PMCID: PMC6883370 DOI: 10.3389/fphys.2019.01377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/18/2019] [Indexed: 01/16/2023] Open
Abstract
Experimental and epidemiological studies have revealed a relationship between an adverse intrauterine environment and chronic non-communicable disease (NCD) like cardiovascular disease (CVD) in adulthood. An important risk factor for CVD is the deregulation of the fibrinolytic system particularly high levels of expression of plasminogen activator inhibitor 1 (Pai-1). Chronic exposure to altered photoperiod disrupts the circadian organization of physiology in the pregnant female, known as gestational chronodisruption, and cause long-term effects on the adult offspring's circadian physiology. The Pai-1 expression is regulated by the molecular components of the circadian system, termed clock genes. The present study aimed to evaluate the long-term effects of chronic photoperiod shifts (CPS) during pregnancy on the expression of the clock genes and the fibrinolytic system in the liver of adult male offspring. Our results using an animal model demonstrated statistically significant differences at the transcriptional level in males gestated under CPS. At 90 days of postnatal age, the liver transcript levels of the clock gene Bmal1 were downregulated, whereas Rorα, Rorγ, Nfil3, and Pai-1 were upregulated. Our data indicate that CPS during pregnancy affects gene expression in the liver of male adult progeny, showing that alteration of the photoperiod in the mother's environment leads to persistent effects in the offspring. In conclusion, these results reveal for the first time the long-term effects of gestational chronodisruption on the transcriptional activity of one well-established risk factor associated with CVD in the adult male offspring.
Collapse
Affiliation(s)
- Pamela Carmona
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile
| | - Bárbara Pérez
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Trujillo
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Programa de Doctorado en Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriel Espinosa
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Miranda
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Hans G. Richter
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Priscilla Brebi
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Patología Molecular, Departamento de Patología, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - José Sarmiento
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
2
|
Pfefferle PI, von Mutius E. Hygiene and the cytokine jungle in Brazil. J Allergy Clin Immunol 2013; 131:1417-8. [PMID: 23545273 DOI: 10.1016/j.jaci.2013.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
|
3
|
Thum C, Cookson AL, Otter DE, McNabb WC, Hodgkinson AJ, Dyer J, Roy NC. Can nutritional modulation of maternal intestinal microbiota influence the development of the infant gastrointestinal tract? J Nutr 2012; 142:1921-8. [PMID: 22990463 DOI: 10.3945/jn.112.166231] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gastrointestinal microbiota plays an important role in maintaining host health by preventing the colonization of pathogens, fermenting dietary compounds, and maintaining normal mucosal immunity. Particularly in early life, the composition of the microbiota profoundly influences the development and maturation of the gastrointestinal tract (GIT) mucosa, which may affect health in later life. Therefore, strategies to manipulate the microbiota during infancy may prevent the development of some diseases later in adult life. Earlier research suggested that term fetuses are sterile and that the initial bacterial colonization of the newborn GIT occurs only after the baby transits through the birth canal. However, recent studies have demonstrated that the colonization and/or contact of the fetus with the maternal GIT microbiota may start in utero. After vaginal birth, the colonization of the neonate GIT continues through contact with maternal feces and vaginal bacteria, leading to a relatively simple microbial community that is influenced by feeding type (breast vs. formula feeding). Maternal GIT microbiota, vaginal microbiota, and breast milk composition are influenced by maternal diet. Alterations of the maternal GIT microbiota composition via supplementation with probiotics and prebiotics have been shown; however, transfer of these benefits to the offspring remains to be demonstrated. This review focuses on the influence of maternal GIT microbiota during the pre- and postpartum periods on the colonization of the infant GIT. In particular, it examines the manipulation of the maternal GIT microbiota composition through the use of probiotics and/or prebiotics and subsequent consequences for the health of the offspring.
Collapse
Affiliation(s)
- Caroline Thum
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch Grasslands, Palmerston North, New Zealand
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The 7th International Congress of Autoimmunity was held in Ljubljana, Slovenia in May 2010. At the conclusion of the Congress, a list was prepared of the major unresolved clinical issues in autoimmunity. The list grew to be extensive but one subject that was found in nearly all of the concerns was geoepidemiology of autoimmunity and, in particular, the increased risk of women to develop autoimmune disease. Indeed, one does not need to be an autoimmunologist to appreciate that the risk of developing rheumatoid arthritis, for example, has been known to be increased in women compared to men, almost from the time of its original description. In fact, although the sex ratios of autoimmune disease have varied from center to center, from country to country, from decade to decade, the data has remained virtually constant. It is not surprising that the very first mouse model of lupus was described in female New Zealand black x white female mice. Although there have been subsequent descriptions of lupus in male murine strains, the initial data on the NZB × NZW F1 mouse led to some of the original descriptions of the relative roles of sex hormones on the immune response. The 8th Congress of Autoimmunity will be held in Granada, Spain in May 2012 and one of the intents of the Congress and of this volume is to address the needs originally noted in Slovenia two years earlier. Towards this extent, this volume contains a special double issue of papers that will be published in the Journal of Autoimmunity and Autoimmunity Reviews, all of whom have the focus of addressing critical issues in sex, gender and autoimmunity.
Collapse
|