1
|
Zhu X, Cao M, Li C, Zhu C, Li H, Tian Y, Shang J, Sun J, Zhou B, Wu X, Zhou S, Xu X. Biochemical and Transcriptomic Analysis Reveals Low Temperature-Driven Oxidative Stress in Pupal Apis mellifera Neural System. INSECTS 2025; 16:250. [PMID: 40266741 PMCID: PMC11942804 DOI: 10.3390/insects16030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 04/25/2025]
Abstract
Exposure to low temperatures during honeybee development has been shown to impede brain development and affect cognitive function in adult bees. On the other hand, neuronal damage due to oxidative stress has been reported in many cases. Hence, biochemical parameters related to oxidative stress in honeybee pupae brain were determined. The levels of GSH in the pupal brain decreased after 24 h and 48 h of exposure to low temperatures; there were also reduced activities of SOD and CAT enzymes following 48 h of low-temperature treatment compared to the control group. Furthermore, analysis of transcriptome data post-24 h and -48 h low-temperature stress revealed the suppression of the glutathione metabolism and peroxisome pathways in pupal brains. Additionally, expression pattern clustering analysis and KEGG enrichment showed that 10 differentially expressed genes with down-regulated expression trends post-low-temperature treatment were significantly enriched in the peroxisome pathway, including PEX10, highlighting their connection to peroxisome function. RT-qPCR validation was conducted on 11 core enriched genes in pathways identified via GSEA, and all these genes exhibited a downregulated expression pattern, confirming the inhibition of glutathione metabolism and peroxisome function under low-temperature stress. The present study showed that exposing honeybee pupae to low temperatures suppressed both the glutathione metabolism and peroxisome pathways, resulting in increased oxidative stress. This research enhances our understanding of how the pupal brain reacts to cold stress and illuminates the neural damage associated with low temperatures during honeybee capped brood development.
Collapse
Affiliation(s)
- Xiangjie Zhu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.C.); (C.Z.); (H.L.); (Y.T.); (J.S.); (J.S.); (B.Z.)
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjie Cao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.C.); (C.Z.); (H.L.); (Y.T.); (J.S.); (J.S.); (B.Z.)
| | - Chenyang Li
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Chenyu Zhu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.C.); (C.Z.); (H.L.); (Y.T.); (J.S.); (J.S.); (B.Z.)
| | - Han Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.C.); (C.Z.); (H.L.); (Y.T.); (J.S.); (J.S.); (B.Z.)
| | - Yuanmingyue Tian
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.C.); (C.Z.); (H.L.); (Y.T.); (J.S.); (J.S.); (B.Z.)
| | - Jiaqi Shang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.C.); (C.Z.); (H.L.); (Y.T.); (J.S.); (J.S.); (B.Z.)
| | - Jiaqi Sun
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.C.); (C.Z.); (H.L.); (Y.T.); (J.S.); (J.S.); (B.Z.)
| | - Bingfeng Zhou
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.C.); (C.Z.); (H.L.); (Y.T.); (J.S.); (J.S.); (B.Z.)
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianda Wu
- Academic Journal Department, Social Sciences Division, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shujing Zhou
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.C.); (C.Z.); (H.L.); (Y.T.); (J.S.); (J.S.); (B.Z.)
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinjian Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.C.); (C.Z.); (H.L.); (Y.T.); (J.S.); (J.S.); (B.Z.)
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Vujovic F, Farahani RM. Thyroid Hormones and Brain Development: A Focus on the Role of Mitochondria as Regulators of Developmental Time. Cells 2025; 14:150. [PMID: 39936942 PMCID: PMC11816491 DOI: 10.3390/cells14030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Thyroid hormones (THs) regulate metabolism in a homeostatic state in an adult organism. During the prenatal period, prior to the establishment of homeostatic mechanisms, THs assume additional functions as key regulators of brain development. Here, we focus on reviewing the role of THs in orchestrating cellular dynamics in a developing brain. The evidence from the reviewed scientific literature suggests that the developmental roles of the hormones are predominantly mediated by non-genomic mitochondrial effects of THs due to attenuation of genomic effects of THs that antagonise non-genomic impacts. We argue that the key function of TH signalling during brain development is to orchestrate the tempo of self-organisation of neural progenitor cells. Further, evidence is provided that major neurodevelopmental consequences of hypothyroidism stem from an altered tempo of cellular self-organisation.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/WSLHD Research and Education Network, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ramin M Farahani
- IDR/WSLHD Research and Education Network, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Naselli F, Volpes S, Cardinale PS, Palumbo FS, Cancilla F, Lopresti F, Villanova V, Girgenti A, Nuzzo D, Caradonna F, Picone P. New Nanovesicles from Prickly Pear Fruit Juice: A Resource with Antioxidant, Anti-Inflammatory, and Nutrigenomic Properties. Cells 2024; 13:1756. [PMID: 39513863 PMCID: PMC11544800 DOI: 10.3390/cells13211756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Plant-derived nanovesicles represent a novel approach in the field of plant-derived biomaterials, offering a sustainable and biocompatible option for various biomedical applications. The unique properties of these vesicles, such as their ability to encapsulate bioactive compounds, make them suitable for therapeutic, cosmetic, and nutraceutical purposes. In this study, we have, for the first time, successfully bio-fabricated vesicles derived from Opuntia ficus-indica (FicoVes) using an efficient and cost-effective method. Characterized by a size of approximately of 114 nm and a negative zeta potential of -20.9 mV, FicoVes exhibited excellent biocompatibility and hemocompatibility, showing no reduction in the viability of human and animal cells. Our results showed that FicoVes possess significant antioxidant properties as they reduced ROS generation in TBH-stimulated cells. FicoVes displayed anti-inflammatory properties by reducing the expression of pro-inflammatory cytokines (Il 1β, TNF α) and enhancing the expression of anti-inflammatory cytokines (IL4, IL10) following an inflammatory stimulus. Furthermore, FicoVes accelerated epithelial wound closure in L929 fibroblast monolayers in a dose-dependent manner, highlighting their potential role in tissue repair. This study establishes FicoVes as a promising candidate for nutrigenomic applications, particularly in the context of inflammation-related disorders and wound healing. Further research, including in vivo studies, is essential to validate these findings and fully explore their therapeutic potential.
Collapse
Affiliation(s)
- Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
| | - Sara Volpes
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
| | - Paola Sofia Cardinale
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
| | - Fabio Salvatore Palumbo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
| | - Francesco Cancilla
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Valeria Villanova
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
| | - Antonella Girgenti
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
| | - Domenico Nuzzo
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Pasquale Picone
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
| |
Collapse
|
4
|
Khavari B, Barnett MM, Mahmoudi E, Geaghan MP, Graham A, Cairns MJ. microRNA and the Post-Transcriptional Response to Oxidative Stress during Neuronal Differentiation: Implications for Neurodevelopmental and Psychiatric Disorders. Life (Basel) 2024; 14:562. [PMID: 38792584 PMCID: PMC11121913 DOI: 10.3390/life14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress is one of the most important environmental exposures associated with psychiatric disorders, but the underlying molecular mechanisms remain to be elucidated. In a previous study, we observed a substantial alteration of the gene expression landscape in neuron-like cells that were differentiated from SH-SY5Y cells after or during exposure to oxidative stress, with a subset of dysregulated genes being enriched for neurodevelopmental processes. To further explore the regulatory mechanisms that might account for such profound perturbations, we have now applied small RNA-sequencing to investigate changes in the expression of miRNAs. These molecules are known to play crucial roles in brain development and response to stress through their capacity to suppress gene expression and influence complex biological networks. Through these analyses, we observed more than a hundred differentially expressed miRNAs, including 80 previously reported to be dysregulated in psychiatric disorders. The seven most influential miRNAs associated with pre-treatment exposure, including miR-138-5p, miR-96-5p, miR-34c-5p, miR-1287-5p, miR-497-5p, miR-195-5p, and miR-16-5p, supported by at least 10 negatively correlated mRNA connections, formed hubs in the interaction network with 134 genes enriched with neurobiological function, whereas in the co-treatment condition, miRNA-mRNA interaction pairs were enriched in cardiovascular and immunity-related disease ontologies. Interestingly, 12 differentially expressed miRNAs originated from the DLK1-DIO3 location, which encodes a schizophrenia-associated miRNA signature. Collectively, our findings suggest that early exposure to oxidative stress, before and during prenatal neuronal differentiation, might increase the risk of mental illnesses in adulthood by disturbing the expression of miRNAs that regulate neurodevelopmentally significant genes and networks.
Collapse
Affiliation(s)
- Behnaz Khavari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michelle M. Barnett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michael P. Geaghan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Adam Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
5
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
6
|
Moubarak MM, Pagano Zottola AC, Larrieu CM, Cuvellier S, Daubon T, Martin OCB. Exploring the multifaceted role of NRF2 in brain physiology and cancer: A comprehensive review. Neurooncol Adv 2024; 6:vdad160. [PMID: 38221979 PMCID: PMC10785770 DOI: 10.1093/noajnl/vdad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Chronic oxidative stress plays a critical role in the development of brain malignancies due to the high rate of brain oxygen utilization and concomitant production of reactive oxygen species. The nuclear factor-erythroid-2-related factor 2 (NRF2), a master regulator of antioxidant signaling, is a key factor in regulating brain physiology and the development of age-related neurodegenerative diseases. Also, NRF2 is known to exert a protective antioxidant effect against the onset of oxidative stress-induced diseases, including cancer, along with its pro-oncogenic activities through regulating various signaling pathways and downstream target genes. In glioblastoma (GB), grade 4 glioma, tumor resistance, and recurrence are caused by the glioblastoma stem cell population constituting a small bulk of the tumor core. The persistence and self-renewal capacity of these cell populations is enhanced by NRF2 expression in GB tissues. This review outlines NRF2's dual involvement in cancer and highlights its regulatory role in human brain physiology and diseases, in addition to the development of primary brain tumors and therapeutic potential, with a focus on GB.
Collapse
Affiliation(s)
- Maya M Moubarak
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | | | | | | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | |
Collapse
|
7
|
Maugeri G, Amato A, Sortino M, D Agata V, Musumeci G. The Influence of Exercise on Oxidative Stress after Spinal Cord Injury: A Narrative Review. Antioxidants (Basel) 2023; 12:1401. [PMID: 37507940 PMCID: PMC10376509 DOI: 10.3390/antiox12071401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease resulting in partial or total loss of sensory and motor function. The pathophysiology of SCI is characterized by an initial primary injury phase followed by a secondary phase in which reactive oxygen species (ROSs) and associated oxidative stress play hallmark roles. Physical exercise is an indispensable means of promoting psychophysical well-being and improving quality of life. It positively influences the neuromuscular, cardiovascular, respiratory, and immune systems. Moreover, exercise may provide a mechanism to regulate the variation and equilibrium between pro-oxidants and antioxidants. After a brief overview of spinal cord anatomy and the different types of spinal cord injury, the purpose of this review is to investigate the evidence regarding the effect of exercise on oxidative stress among individuals with SCI.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alessandra Amato
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Martina Sortino
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Velia D Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
| |
Collapse
|
8
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Simchi L, Gupta PK, Feuermann Y, Kaphzan H. Elevated ROS levels during the early development of Angelman syndrome alter the apoptotic capacity of the developing neural precursor cells. Mol Psychiatry 2023; 28:2382-2397. [PMID: 36991133 PMCID: PMC10611580 DOI: 10.1038/s41380-023-02038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder caused by the maternally inherited loss of function of the UBE3A gene. AS is characterized by a developmental delay, lack of speech, motor dysfunction, epilepsy, autistic features, happy demeanor, and intellectual disability. While the cellular roles of UBE3A are not fully understood, studies suggest that the lack of UBE3A function is associated with elevated levels of reactive oxygen species (ROS). Despite the accumulating evidence emphasizing the importance of ROS during early brain development and its involvement in different neurodevelopmental disorders, up to date, the levels of ROS in AS neural precursor cells (NPCs) and the consequences on AS embryonic neural development have not been elucidated. In this study we show multifaceted mitochondrial aberration in AS brain-derived embryonic NPCs, which exhibit elevated mitochondrial membrane potential (ΔΨm), lower levels of endogenous reduced glutathione, excessive mitochondrial ROS (mROS) levels, and increased apoptosis compared to wild-type (WT) littermates. In addition, we report that glutathione replenishment by glutathione-reduced ethyl ester (GSH-EE) corrects the excessive mROS levels and attenuates the enhanced apoptosis in AS NPCs. Studying the glutathione redox imbalance and mitochondrial abnormalities in embryonic AS NPCs provides an essential insight into the involvement of UBE3A in early neural development, information that can serve as a powerful avenue towards a broader view of AS pathogenesis. Moreover, since mitochondrial dysfunction and elevated ROS levels were associated with other neurodevelopmental disorders, the findings herein suggest some potential shared underlying mechanisms for these disorders as well.
Collapse
Affiliation(s)
- Lilach Simchi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Pooja Kri Gupta
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yonatan Feuermann
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
10
|
Lee J, Hyun DH. The Interplay between Intracellular Iron Homeostasis and Neuroinflammation in Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12040918. [PMID: 37107292 PMCID: PMC10135822 DOI: 10.3390/antiox12040918] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is essential for life. Many enzymes require iron for appropriate function. However, dysregulation of intracellular iron homeostasis produces excessive reactive oxygen species (ROS) via the Fenton reaction and causes devastating effects on cells, leading to ferroptosis, an iron-dependent cell death. In order to protect against harmful effects, the intracellular system regulates cellular iron levels through iron regulatory mechanisms, including hepcidin-ferroportin, divalent metal transporter 1 (DMT1)-transferrin, and ferritin-nuclear receptor coactivator 4 (NCOA4). During iron deficiency, DMT1-transferrin and ferritin-NCOA4 systems increase intracellular iron levels via endosomes and ferritinophagy, respectively. In contrast, repleting extracellular iron promotes cellular iron absorption through the hepcidin-ferroportin axis. These processes are regulated by the iron-regulatory protein (IRP)/iron-responsive element (IRE) system and nuclear factor erythroid 2-related factor 2 (Nrf2). Meanwhile, excessive ROS also promotes neuroinflammation by activating the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB forms inflammasomes, inhibits silent information regulator 2-related enzyme 1 (SIRT1), and induces pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β). Furthermore, 4-hydroxy-2,3-trans-nonenal (4-HNE), the end-product of ferroptosis, promotes the inflammatory response by producing amyloid-beta (Aβ) fibrils and neurofibrillary tangles in Alzheimer's disease, and alpha-synuclein aggregation in Parkinson's disease. This interplay shows that intracellular iron homeostasis is vital to maintain inflammatory homeostasis. Here, we review the role of iron homeostasis in inflammation based on recent findings.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
11
|
Ottappilakkil H, Babu S, Balasubramanian S, Manoharan S, Perumal E. Fluoride Induced Neurobehavioral Impairments in Experimental Animals: a Brief Review. Biol Trace Elem Res 2023; 201:1214-1236. [PMID: 35488996 DOI: 10.1007/s12011-022-03242-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/09/2022] [Indexed: 02/07/2023]
Abstract
Fluoride is one of the major toxicants in the environment and is often found in drinking water at higher concentrations. Living organisms including humans exposed to high fluoride levels are found to develop mild-to-severe detrimental pathological conditions called fluorosis. Fluoride can cross the hematoencephalic barrier and settle in various brain regions. This accumulation affects the structure and function of both the central and peripheral nervous systems. The neural ultrastructure damages are reflected in metabolic and cognitive activities. Hindrances in synaptic plasticity and signal transmission, early neuronal apoptosis, functional alterations of the intercellular signaling pathway components, improper protein synthesis, dyshomeostasis of the transcriptional and neurotrophic factors, oxidative stress, and inflammatory responses are accounted for the fluoride neurotoxicity. Fluoride causes a decline in brain functions that directly influence the overall quality of life in both humans and animals. Animal studies are widely used to explore the etiology of fluoride-induced neurotoxicity. A good number of these studies support a positive correlation between fluoride intake and toxicity phenotypes closely associated with neurotoxicity. However, the experimental dosages highly surpass the normal environmental concentrations and are difficult to compare with human exposures. The treatment procedures are highly dependent on the dosage, duration of exposure, sex, and age of specimens among other factors which make it difficult to arrive at general conclusions. Our review aims to explore fluoride-induced neuronal damage along with associated histopathological, behavioral, and cognitive effects in experimental models. Furthermore, the correlation of various molecular mechanisms upon fluoride intoxication and associated neurobehavioral deficits has been discussed. Since there is no well-established mechanism to prevent fluorosis, phytochemical-based alleviation of its characteristic indications has been proposed as a possible remedial measure.
Collapse
Affiliation(s)
| | - Srija Babu
- Bharathiar University, Coimbatore, Tamilnadu, India
| | | | | | | |
Collapse
|
12
|
Jaenen V, Bijnens K, Heleven M, Artois T, Smeets K. Live Imaging in Planarians: Immobilization and Real-Time Visualization of Reactive Oxygen Species. Methods Mol Biol 2023; 2680:209-229. [PMID: 37428380 DOI: 10.1007/978-1-0716-3275-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Imaging of living animals allows the study of metabolic processes in relation to cellular structures or larger functional entities. To enable in vivo imaging during long-term time-lapses in planarians, we combined and optimized existing protocols, resulting in an easily reproducible and inexpensive procedure. Immobilization with low-melting-point agarose eliminates the use of anesthetics, avoids interfering with the animal during imaging-functionally or physically-and allows recovering the organisms after the imaging procedure. As an example, we used the immobilization workflow to image the highly dynamic and fast-changing reactive oxygen species (ROS) in living animals. These reactive signaling molecules can only be studied in vivo and mapping their location and dynamics during different physiological conditions is crucial to understand their role in developmental processes and regeneration. In the current protocol, we describe both the immobilization and ROS detection procedure. We used the intensity of the signals together with pharmacological inhibitors to validate the signal specificity and to distinguish it from the autofluorescent nature of the planarian.
Collapse
Affiliation(s)
- Vincent Jaenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karolien Bijnens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Martijn Heleven
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tom Artois
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
13
|
Neurotoxicity evoked by organophosphates and available countermeasures. Arch Toxicol 2023; 97:39-72. [PMID: 36335468 DOI: 10.1007/s00204-022-03397-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.
Collapse
|
14
|
Li N, Pang Q, Zhang Y, Lin J, Li H, Li Z, Liu Y, Fang X, An Y, Bai H, Li D, Cao Z, Liu J, Yang Q, Hu S. Ginsenoside ompound K reduces neuronal damage and improves neuronal synaptic dysfunction by targeting Aβ. Front Pharmacol 2023; 14:1103012. [PMID: 36873999 PMCID: PMC9977807 DOI: 10.3389/fphar.2023.1103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Background: Alzheimer's disease (AD) is the most common neurodegenerative condition worldwide, with amyloid ß (Aβ) fibrils presenting as its main pathological feature. This study investigated whether Ginsenoside Compound K (CK) has activity against Aβ and its mechanism in reducing synaptic damage and cognitive impairment. Methods: The binding capacity of CK to Aβ42 and Nrf2/Keap1 was determined using molecular docking. Transmission electron microscopy was used to monitor CK-mediated degradation of Aβ fibrils. The effect of CK on the survival of Aβ42-damaged HT22 cells was determined using a CCK-8 assay. The therapeutic efficacy of CK in a scopoletin hydrobromide (SCOP) induced cognitive dysfunction mouse model was measured using a step-down passive avoidance test. GO enrichment analysis of mouse brain tissue was peformed using Genechip. Hydroxyl radical scavenging and reactive oxygen species assays were performed to verify the antioxidant activity of CK. The effects of CK on the expression of Aβ42, the Nrf2/Keap1 signaling pathway, and other proteins were determined by western blotting, immunofluorescence, and immunohistochemistry. Results: Molecular docking results showed that CK interacts with Lys16 and Glu3 of Aβ42. CK reduced the aggregation of Aβ42 as observed using transmission electron microscopy. CK increased the level of insulin-degrading enzyme and decreased the levels ß-secretase and γ-secretase; therefore, it can potentially inhibit the accumulation of Aβ in neuronal extracellular space in vivo. CK improved cognitive impairment and increased postsynaptic density protein 95 and synaptophysin expression levels in mice with SCOP-induced cognitive dysfunction. Further, CK inhibited the expression of cytochrome C, Caspase-3, and cleaved Caspase-3. Based on Genechip data, CK was found to regulate molecular functions such as oxygen binding, peroxidase activity, hemoglobin binding, and oxidoreductase activity, thus affecting the production of oxidative free radicals in neurons. Further, CK regulated the expression of the Nrf2/Keap1 signaling pathway through its interaction with the Nrf2/Keap1 complex. Conclusion: Our findings show that CK regulates the balance between Aβ monomers production and clearance, CK binds to Aβ monomer to inhibits the accumulation of Aβ, increases the level of Nrf2 in neuronal nuclei, reduces oxidative damage of neurons, improves synaptic function, thus ultimately protecting neurons.
Collapse
Affiliation(s)
- Na Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Qihang Pang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yanhong Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Lin
- Changchun University of Chinese Medicine, Changchun, China
| | - Hui Li
- Department of General Surgery, Qian Wei Hospital of Jilin Province, Changchun, China
| | - Zhen Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Xingyu Fang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yu An
- Changchun University of Chinese Medicine, Changchun, China
| | - Haonan Bai
- Changchun University of Chinese Medicine, Changchun, China
| | - Dianyu Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Zhanhong Cao
- Changchun University of Chinese Medicine, Changchun, China
| | - Jian Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Qing Yang
- Changchun University of Chinese Medicine, Changchun, China
| | - Shaodan Hu
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
15
|
Liu Y, Guo Z, Zhu R, Gou D, Jia PP, Pei DS. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120673. [PMID: 36400143 DOI: 10.1016/j.envpol.2022.120673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Di-2-Ethylhexyl Phthalate (DEHP) is often used as an additive in polyvinyl chloride (PVC) to give plastics flexibility, which makes DEHP widely used in food packaging, daily necessities, medical equipment, and other products. However, due to the unstable combination of DEHP and polymer, it will migrate to the environment in the materials and eventually contact the human body. It has been recorded that low-dose DEHP will increase neurotoxicity in the nervous system, and the human health effects of DEHP have been paid attention to because of the extensive exposure to DEHP and its high absorption during brain development. In this study, we review the evidence that DEHP exposure is associated with neurodevelopmental abnormalities and neurological diseases based on human epidemiological and animal behavioral studies. Besides, we also summarized the oxidative damage, apoptosis, and signal transduction disorder related to neurobehavioral abnormalities and nerve injury, and described the potential mechanisms of neurotoxicity caused by DEHP. Overall, we found exposure to DEHP during the critical developmental period will increase the risk of neurobehavioral abnormalities, depression, and autism spectrum disorders. This effect is sex-specific and will continue to adulthood and even have an intergenerational effect. However, the research results on the sex-dependence of DEHP neurotoxicity are inconsistent, and there is a lack of systematic mechanisms research as theoretical support. Future investigations need to be carried out in a large-scale population and model organisms to produce more consistent and convincing results. And we emphasize the importance of mechanism research, which can enhance the understanding of the environmental and human health risks of DEHP exposure.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Piccirillo S, Magi S, Preziuso A, Serfilippi T, Cerqueni G, Orciani M, Amoroso S, Lariccia V. The Hidden Notes of Redox Balance in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:1456. [PMID: 35892658 PMCID: PMC9331713 DOI: 10.3390/antiox11081456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) are versatile molecules that, even if produced in the background of many biological processes and responses, possess pleiotropic roles categorized in two interactive yet opposite domains. In particular, ROS can either function as signaling molecules that shape physiological cell functions, or act as deleterious end products of unbalanced redox reactions. Indeed, cellular redox status needs to be tightly regulated to ensure proper cellular functioning, and either excessive ROS accumulation or the dysfunction of antioxidant systems can perturb the redox homeostasis, leading to supraphysiological concentrations of ROS and potentially harmful outcomes. Therefore, whether ROS would act as signaling molecules or as detrimental factors strictly relies on a dynamic equilibrium between free radical production and scavenging resources. Of notice, the mammalian brain is particularly vulnerable to ROS-mediated toxicity, because it possesses relatively poor antioxidant defenses to cope with the redox burden imposed by the elevated oxygen consumption rate and metabolic activity. Many features of neurodegenerative diseases can in fact be traced back to causes of oxidative stress, which may influence both the onset and progression of brain demise. This review focuses on the description of the dual roles of ROS as double-edge sword in both physiological and pathological settings, with reference to Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| |
Collapse
|
17
|
Lim JS, Oh J, Yun HS, Lee JS, Hahn D, Kim JS. Anti-neuroinflammatory activity of 6,7-dihydroxy-2,4-dimethoxy phenanthrene isolated from Dioscorea batatas Decne partly through suppressing the p38 MAPK/NF-κB pathway in BV2 microglial cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114633. [PMID: 34520827 DOI: 10.1016/j.jep.2021.114633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizome of Dioscorea batatas Decne (called Chinses yam) widely distributed in East Asian countries including China, Japan, Korea and Taiwan has long been used in oriental folk medicine owing to its tonic, antitussive, expectorant and anti-ulcerative effects. It has been reported to have anti-inflammatory, antioxidative, cholesterol-lowering, anticholinesterase, growth hormone-releasing, antifungal and immune cell-stimulating activities. AIM OF THE STUDY Neuroinflammation caused by activated microglia contributes to neuronal dysfunction and neurodegeneration. In the present study, the anti-neuroinflammatory activity of 6,7-dihydroxy-2,4-dimethoxy phenanthrene (DHDMP), a phenanthrene compound isolated from Dioscorea batatas Decne, was examined in microglial and neuronal cells. MATERIALS AND METHODS A natural phenanthrene compound, DHDMP, was isolated from the peel of Dioscorea batatas Decne. The anti-neuroinflammatory capability of the compound was examined using the co-culture system of BV2 murine microglial and HT22 murine neuronal cell lines. The expression levels of inflammatory mediators and cytoprotective proteins in the cells were quantified by enzyme-linked immunosorbent assay and Western blot analysis. RESULTS DHDMP at the concentrations of ≤1 μg/mL did not exhibit a cytotoxic effect for BV2 and HT22 cells. Rather DHDMP effectively restored the growth rate of HT22 cells, which was reduced by co-culture with lipopolysaccharide (LPS)-treated BV2 cells. DHDMP significantly decreased the production of proinflammatory mediators, such as nitric oxide, tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2 in BV2 cells. Moreover, DHDMP strongly inhibited the nuclear translocation of nuclear factor κB (NF-κB) and phosphorylation of p38 mitogen-activated protein kinase (MAPK) in BV2 cells. The compound did not affect the levels and phosphorylation of ERK and JNK. Concurrently, DHDMP increased the expression of heme oxygenase-1 (HO-1), an inducible cytoprotective enzyme, in HT22 cells. CONCLUSIONS Our findings indicate that DHDMP effectively dampened LPS-mediated inflammatory responses in BV2 microglial cells by suppressing transcriptional activity of NF-κB and its downstream mediators and contributed to HT22 neuronal cell survival. This study provides insight into the therapeutic potential of DHDMP for inflammation-related neurological diseases.
Collapse
Affiliation(s)
- Ji Sun Lim
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566, South Korea.
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566, South Korea.
| | - Hyun Seok Yun
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea.
| | - Jeong Soon Lee
- Forest Resources Development Institute of Gyeongsangbuk-do, Andong, 36605, South Korea.
| | - Dongyup Hahn
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea.
| | - Jong-Sang Kim
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566, South Korea; School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
18
|
Dopamine signaling impairs ROS modulation by mitochondrial hexokinase in human neural progenitor cells. Biosci Rep 2021; 41:230295. [PMID: 34821365 PMCID: PMC8661505 DOI: 10.1042/bsr20211191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Dopamine signaling has numerous roles during brain development. In addition, alterations in dopamine signaling may be also involved in the pathophysiology of psychiatric disorders. Neurodevelopment is modulated in multiple steps by reactive oxygen species (ROS), byproducts of oxidative metabolism that are signaling factors involved in proliferation, differentiation, and migration. Hexokinase (HK), when associated with the mitochondria (mt-HK), is a potent modulator of the generation of mitochondrial ROS in the brain. In the present study, we investigated whether dopamine could affect both the activity and redox function of mt-HK in human neural progenitor cells (NPCs). We found that dopamine signaling via D1R decreases mt-HK activity and impairs ROS modulation, which is followed by an expressive release of H2O2 and impairment in calcium handling by the mitochondria. Nevertheless, mitochondrial respiration is not affected, suggesting specificity for dopamine on mt-HK function. In neural stem cells (NSCs) derived from induced-pluripotent stem cells (iPSCs) of schizophrenia patients, mt-HK is unable to decrease mitochondrial ROS, in contrast with NSCs derived from healthy individuals. Our data point to mitochondrial hexokinase as a novel target of dopaminergic signaling, as well as a redox modulator in human neural progenitor cells, which may be relevant to the pathophysiology of neurodevelopmental disorders such as schizophrenia.
Collapse
|
19
|
Weis GCC, Assmann CE, Mostardeiro VB, Alves ADO, da Rosa JR, Pillat MM, de Andrade CM, Schetinger MRC, Morsch VMM, da Cruz IBM, Costabeber IH. Chlorpyrifos pesticide promotes oxidative stress and increases inflammatory states in BV-2 microglial cells: A role in neuroinflammation. CHEMOSPHERE 2021; 278:130417. [PMID: 33839396 DOI: 10.1016/j.chemosphere.2021.130417] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/20/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The exposure to environmental stressors, such as organophosphate (OP) pesticides, has been associated with the development of neurodegenerative diseases. Chlorpyrifos (CPF) is the worldwide most used OP pesticide and one of the most hazardous pesticides as it can cross the blood-brain barrier. Since studies evaluating the effects of CPF on brain immune cells are scarce, this research investigated the oxidative and inflammatory responses of CPF exposure in murine microglial cells. BV-2 cells were exposed to different concentrations of CPF pesticide (0.3-300 μM). CPF induced activation of microglial cells, confirmed by Iba-1 and CD11b marking, and promoted microglial proliferation and cell cycle arrest at S phase. Moreover, CPF exposure increased oxidative stress production (NO, MDA, and O2∙), and upregulated pro-inflammatory cytokines (IL-1β and NLRP3) genes expression in BV-2 cells. Overall, data showed that CPF exposure, at the lowest concentrations, acted by promoting pro-oxidative and pro-inflammatory states in microglial cells. These results provide important information on the potential role of microglial activation in CPF-induced neuroinflammation and add to the expanding knowledge on the neurotoxicity of OP.
Collapse
Affiliation(s)
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | - Audrei de Oliveira Alves
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Micheli Mainardi Pillat
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Cinthia Melazzo de Andrade
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | | |
Collapse
|
20
|
Oxidative Stress as a Common Key Event in Developmental Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685204. [PMID: 34336113 PMCID: PMC8315852 DOI: 10.1155/2021/6685204] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
The developing brain is extremely sensitive to many chemicals. Perinatal exposure to neurotoxicants has been implicated in several neurodevelopmental disorders, including autism spectrum disorder, attention-deficit hyperactive disorder, and schizophrenia. Studies of the molecular and cellular events related to developmental neurotoxicity have identified a number of “adverse outcome pathways,” many of which share oxidative stress as a key event. Oxidative stress occurs when the balance between the production of free oxygen radicals and the activity of the cellular antioxidant system is dysregulated. In this review, we describe some of the developmental neurotoxins that target the antioxidant system and the mechanisms by which they elicit stress, including oxidative phosphorylation in mitochondria and plasma membrane redox system in rodent models. We also discuss future directions for identifying adverse outcome pathways related to oxidative stress and developmental neurotoxicity, with the goal of improving our ability to quickly and accurately screen chemicals for their potential developmental neurotoxicity.
Collapse
|
21
|
Richards LA, Schonhoff CM. Nitric oxide and sex differences in dendritic branching and arborization. J Neurosci Res 2021; 99:1390-1400. [PMID: 33538046 DOI: 10.1002/jnr.24789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule with many functions in the nervous system. Derived from the enzymatic conversion of arginine by several nitric oxide synthases (NOS), NO plays significant roles in neuronal developmental events such as the establishment of dendritic branching or arbors. A brief summary of the discovery, molecular biology, and chemistry of NO, and a description of important NO-mediated signal transduction pathways with emphasis on the role for NO in the development of dendritic branching during neurodevelopment are presented. Important sex differences in neuronal nitric oxide synthase expression during neuronal development are considered. Finally, a survey of endogenous and exogenous substances that disrupt dendritic patterning is presented with particular emphasis on how these molecules may drive NO-mediated sex differences in dendritic branching.
Collapse
Affiliation(s)
- Laura A Richards
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| | - Christopher M Schonhoff
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA.,Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| |
Collapse
|
22
|
Jaenen V, Fraguas S, Bijnens K, Heleven M, Artois T, Romero R, Smeets K, Cebrià F. Reactive oxygen species rescue regeneration after silencing the MAPK-ERK signaling pathway in Schmidtea mediterranea. Sci Rep 2021; 11:881. [PMID: 33441641 PMCID: PMC7806912 DOI: 10.1038/s41598-020-79588-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Despite extensive research on molecular pathways controlling the process of regeneration in model organisms, little is known about the actual initiation signals necessary to induce regeneration. Recently, the activation of ERK signaling has been shown to be required to initiate regeneration in planarians. However, how ERK signaling is activated remains unknown. Reactive Oxygen Species (ROS) are well-known early signals necessary for regeneration in several models, including planarians. Still, the probable interplay between ROS and MAPK/ERK has not yet been described. Here, by interfering with major mediators (ROS, EGFR and MAPK/ERK), we were able to identify wound-induced ROS, and specifically H2O2, as upstream cues in the activation of regeneration. Our data demonstrate new relationships between regeneration-related ROS production and MAPK/ERK activation at the earliest regeneration stages, as well as the involvement of the EGFR-signaling pathway. Our results suggest that (1) ROS and/or H2O2 have the potential to rescue regeneration after MEK-inhibition, either by H2O2-treatment or light therapy, (2) ROS and/or H2O2 are required for the activation of MAPK/ERK signaling pathway, (3) the EGFR pathway can mediate ROS production and the activation of MAPK/ERK during planarian regeneration.
Collapse
Affiliation(s)
- V Jaenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - S Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - K Bijnens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - M Heleven
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - T Artois
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - R Romero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - K Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium. .,Department of Biology and Geology, Faculty of Sciences, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - F Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain. .,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
23
|
Assis‐de‐Lemos G, Ledur PF, Karmirian K, Rehen SK, Galina A. A Protocol to Study Mitochondrial Function in Human Neural Progenitors and iPSC‐Derived Astrocytes. ACTA ACUST UNITED AC 2020; 85:e97. [DOI: 10.1002/cptx.97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabriela Assis‐de‐Lemos
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health SciencesFederal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Karina Karmirian
- D'Or Institute for Research and Education (IDOR) Rio de Janeiro Brazil
- Institute of Biomedical Sciences, Center for Health SciencesFederal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Stevens Kastrup Rehen
- D'Or Institute for Research and Education (IDOR) Rio de Janeiro Brazil
- Institute of Biomedical Sciences, Center for Health SciencesFederal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health SciencesFederal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| |
Collapse
|
24
|
Siciliano G, Chico L, Lo Gerfo A, Simoncini C, Schirinzi E, Ricci G. Exercise-Related Oxidative Stress as Mechanism to Fight Physical Dysfunction in Neuromuscular Disorders. Front Physiol 2020; 11:451. [PMID: 32508674 PMCID: PMC7251329 DOI: 10.3389/fphys.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular diseases (NMDs) are a group of often severely disabling disorders characterized by dysfunction in one of the main constituents of the motor unit, the cardinal anatomic-functional structure behind force and movement production. Irrespective of the different pathogenic mechanisms specifically underlying these disease conditions genetically determined or acquired, and the related molecular pathways involved in doing that, oxidative stress has often been shown to play a relevant role within the chain of events that induce or at least modulate the clinical manifestations of these disorders. Due to such a putative relevance of the imbalance of redox status occurring in contractile machinery and/or its neural drive in NMDs, physical exercise appears as one of the most important conditions able to positively interfere along an ideal axis, going from a deranged metabolic cell homeostasis in motor unit components to the reduced motor performance profile exhibited by the patient in everyday life. If so, it comes out that it would be important to identify a proper training program, suitable for load and type of exercise that is able to improve motor performance in adaptation and response to such a homeostatic imbalance. This review therefore analyzes the role of different exercise trainings on oxidative stress mechanisms, both in healthy and in NMDs, also including preclinical studies, to elucidate at which extent these can be useful to counteract muscle impairment associated to the disease, with the final aim of improving physical functions and quality of life of NMD patients.
Collapse
Affiliation(s)
- Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Costanza Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Region-specific effects of maternal separation on oxidative stress accumulation in parvalbumin neurons of male and female rats. Behav Brain Res 2020; 388:112658. [PMID: 32339550 DOI: 10.1016/j.bbr.2020.112658] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
Early life adversity in humans is linked to cognitive deficits and increased risk of mental illnesses, including depression, bipolar disorder, and schizophrenia, with evidence for different vulnerabilities in men versus women. Modeling early life adversity in rodents shows similar neuropsychological deficits that may partially be driven by sex-dependent dysfunction in parvalbumin (PV) interneurons in the prefrontal cortex (PFC), hippocampus (HPC), and basolateral amygdala (BLA). Research demonstrates that PV interneurons are particularly susceptible to oxidative stress; therefore, accumulation of oxidative damage may drive PV dysfunction following early life adversity. The goal of this study was to quantify oxidative stress accumulation in PV neurons in rats exposed to maternal separation (MS). Pups were separated from their dam and littermates for 4 h per day from postnatal day (P)2 to 20. Serial sections from the PFC, HPC, and BLA of juvenile (P20) rats of both sexes were immunohistochemically stained with antibodies against PV and 8-oxo-dG, a marker for oxidative DNA damage. PV cell counts, colocalization with 8-oxo-dG, and intensity of each signal were measured in each region to determine the effects of MS and establish whether MS-induced oxidative damage varies between sexes. A significant increase in colocalization of PV and 8-oxo-dG was found in the PFC and HPC, indicating increased oxidative stress in that cell population following MS. Region-specific sex differences were also revealed in the PFC, BLA, and HPC. These data identify oxidative stress during juvenility as a potential mechanism mediating PV dysfunction in individuals with a history of early life adversity.
Collapse
|
26
|
Schiavone S, Morgese MG, Bove M, Colia AL, Maffione AB, Tucci P, Trabace L, Cuomo V. Ketamine administration induces early and persistent neurochemical imbalance and altered NADPH oxidase in mice. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109750. [PMID: 31446158 DOI: 10.1016/j.pnpbp.2019.109750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Administration in adulthood of subanaesthetic doses of ketamine, an NMDA receptor (NMDA-R) antagonist, is commonly used to induce psychotic-like alterations in rodents. The NADPH oxidase (NOX) derived-oxidative stress has been shown to be implicated in ketamine-induced neurochemical dysfunctions and in the loss of parvalbumin (PV)-positive interneurons associated to the administration of this NMDA receptor antagonist in adult mice. However, very few data are available on the effects of early ketamine administration and its contribution to the development of long-term dysfunctions leading to psychosis. Here, by administering a subanaesthetic dose of ketamine (30 mg/kg i.p.) to mice at postnatal days (PNDs) 7, 9 and 11, we aimed at investigating early neurochemical and oxidative stress-related alterations induced by this NMDA-R antagonist in specific brain regions of mice pups, i.e. prefrontal cortex (PFC) and nucleus accumbens (NAcc) and to assess whether these alterations lasted until the adult period. To this purpose, we evaluated glutamatergic, glutamine and GABAergic tissue levels, as well as PV amount in the PFC, both two hours after the last ketamine injection (PND 11) and at 10 weeks of age. Dopamine (DA) tissue levels and DA turnover were also evaluated in the NAcc at the same time points. Levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a reliable biomarker of oxidative stress, as well as of the free radical producers NOX1 and NOX2 enzymes, were also assessed in both PFC and NAcc of ketamine-treated pups and adult mice. Ketamine-treated pups showed increased cortical levels of glutamate (GLU) and glutamine, as well as similar GABA amount compared to controls, together with an early reduction of cortical PV levels. In the adult period, the same was observed for GLU and PV, whereas GABA levels were increased and no changes in glutamine amount were detected. Ketamine administration in early life induced a decrease in DA tissue levels and an increase of DA turnover which were also detectable at 10 weeks of age. These alterations were accompanied by 8-OHdG elevations in both PFC and NAcc at the two considered life stages. The expression of NOX1 was significantly reduced in these brain regions following ketamine administration at early life stages, while, in the adult period, significant elevation of this enzyme was observed. Levels of NOX2 were found increased at both time points. Our results suggest that an early increase of NOX2-derived oxidative stress may contribute to the development of neurochemical imbalance in PFC and NAcc, induced by ketamine administration. Modifications of NOX1 expression might represent, instead, an early response of the developing brain to a neurotoxic insult, followed by a later attempt to counterbalance ketamine-related detrimental effects.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Anna Laura Colia
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Angela Bruna Maffione
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy.
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
27
|
Kondo S, Matsuura S, Ariunbold J, Kinoshita Y, Urushihara M, Suga K, Ozaki N, Nagai T, Fujioka K, Kagami S. Expression of NADPH oxidase and production of reactive oxygen species contribute to ureteric bud branching and nephrogenesis. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:93-98. [PMID: 31064963 DOI: 10.2152/jmi.66.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Ureteric bud branching and nephrogenesis are performed through large-scale proliferation and apoptosis events during renal development. Reactive oxygen species (ROS), produced by NADPH oxidase, may contribute to cell behaviors, including proliferation and apoptosis. We investigated the role of NADPH oxidase expression and ROS production in developing kidneys. Immunohistochemistry revealed that NADPH oxidase componentswere expressed on epithelial cells in ureteric bud branches, as well as on immature glomerular cells and epithelial cells in nephrogenic zones. ROS production, detected by dihydroethidium assay, was strongly observed in ureteric bud branches and nephrogenic zones, corresponding with NADPH oxidase localization. Organ culture of E14 kidneys revealed that the inhibition of NADPH oxidase significantly reduced the number of ureteric bud branches and tips, consistent with reduced ROS production. This was associated with reduced expression of phosphorylated ERK1/2 and increased expression of cleaved caspase-3. Organ culture of E18 kidneys showed that the inhibition of NADPH oxidase reduced nephrogenic zone size, accompanied by reduced ROS production, fewer proliferating cell nuclear antigen-positive cells, lower p-ERK1/2 expression, and increased expression of cleaved caspase-3. These results demonstrate that ROS produced by NADPH oxidase might play an important role in ureteric bud branching and nephrogenesis by regulating proliferation and apoptosis. J.Med. Invest. 66 :93-98, February, 2019.
Collapse
Affiliation(s)
- Shuji Kondo
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Sato Matsuura
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jamba Ariunbold
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yukiko Kinoshita
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Maki Urushihara
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenichi Suga
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Natsuko Ozaki
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takashi Nagai
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Fujioka
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shoji Kagami
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
28
|
Song Q, Feng YB, Wang L, Shen J, Li Y, Fan C, Wang P, Yu SY. COX-2 inhibition rescues depression-like behaviors via suppressing glial activation, oxidative stress and neuronal apoptosis in rats. Neuropharmacology 2019; 160:107779. [DOI: 10.1016/j.neuropharm.2019.107779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/19/2022]
|
29
|
Dubey T, Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer's disease. Arch Biochem Biophys 2019; 676:108153. [PMID: 31622587 DOI: 10.1016/j.abb.2019.108153] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 01/16/2023]
Abstract
Ayurveda is the medicinal science, dealing with utilization of naturally available plant products for treatment. A wide variety of neuroprotective herbs have been reported in Ayurveda. Brahmi, Bacopa monnieri is a nootropic ayurvedic herb known to be effective in neurological disorders from ancient times. Numerous approaches including natural and synthetic compounds have been applied against Alzheimer's disease. Amyloid-β and Tau are the hallmarks proteins of several neuronal dysfunctions resulting in Alzheimer's disease. Tau is a microtubule-associated protein known to be involved in progression of Alzheimer's disease. The generation of reaction oxygen species, increased neuroinflammation and neurotoxicity are the major physiological dysfunctions associated with Tau aggregates, which leads to dementia and behavioural deficits. Bacoside A, Bacoside B, Bacosaponins, Betulinic acid, etc; are the bioactive component of Brahmi belonging to various chemical families. Each chemical component known have its significant role in neuroprotection. The neuroprotective properties of Brahmi and its bioactive components including reduction of ROS, neuroinflammation, aggregation inhibition of Amyloid-β and improvement of cognitive and learning behaviour. Here on basis of earlier studies we hypothesize the inhibitory role of Brahmi against Tau-mediated toxicity. The overall studies have concluded that Brahmi can be used as a lead formulation for treatment of Alzheimer's disease and other neurological disorders.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008, Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008, Pune, India.
| |
Collapse
|
30
|
Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol 2019; 138:363-387. [PMID: 30976975 PMCID: PMC6708608 DOI: 10.1007/s00401-019-01978-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023]
Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many "legacy" compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Richard F Seegal
- Professor Emeritus, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
31
|
Guignet M, Lein PJ. Neuroinflammation in organophosphate-induced neurotoxicity. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Orientin and neuropathic pain in rats with spinal nerve ligation. Int Immunopharmacol 2018; 58:72-79. [DOI: 10.1016/j.intimp.2018.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/17/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
|
33
|
Attoff K, Gliga A, Lundqvist J, Norinder U, Forsby A. Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation and validation of 30 neural mRNA biomarkers for estimation of developmental neurotoxicity. PLoS One 2017; 12:e0190066. [PMID: 29261810 PMCID: PMC5738075 DOI: 10.1371/journal.pone.0190066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Despite its high relevance, developmental neurotoxicity (DNT) is one of the least studied forms of toxicity. Current guidelines for DNT testing are based on in vivo testing and they require extensive resources. Transcriptomic approaches using relevant in vitro models have been suggested as a useful tool for identifying possible DNT-generating compounds. In this study, we performed whole genome microarray analysis on the murine progenitor cell line C17.2 following 5 and 10 days of differentiation. We identified 30 genes that are strongly associated with neural differentiation. The C17.2 cell line can be differentiated into a co-culture of both neurons and neuroglial cells, giving a more relevant picture of the brain than using neuronal cells alone. Among the most highly upregulated genes were genes involved in neurogenesis (CHRDL1), axonal guidance (BMP4), neuronal connectivity (PLXDC2), axonogenesis (RTN4R) and astrocyte differentiation (S100B). The 30 biomarkers were further validated by exposure to non-cytotoxic concentrations of two DNT-inducing compounds (valproic acid and methylmercury) and one neurotoxic chemical possessing a possible DNT activity (acrylamide). Twenty-eight of the 30 biomarkers were altered by at least one of the neurotoxic substances, proving the importance of these biomarkers during differentiation. These results suggest that gene expression profiling using a predefined set of biomarkers could be used as a sensitive tool for initial DNT screening of chemicals. Using a predefined set of mRNA biomarkers, instead of the whole genome, makes this model affordable and high-throughput. The use of such models could help speed up the initial screening of substances, possibly indicating alerts that need to be further studied in more sophisticated models.
Collapse
Affiliation(s)
- Kristina Attoff
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Anda Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Lundqvist
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| | - Ulf Norinder
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| | - Anna Forsby
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| |
Collapse
|
34
|
Gliga AR, Edoff K, Caputo F, Källman T, Blom H, Karlsson HL, Ghibelli L, Traversa E, Ceccatelli S, Fadeel B. Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Sci Rep 2017; 7:9284. [PMID: 28839176 PMCID: PMC5570910 DOI: 10.1038/s41598-017-09430-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/26/2017] [Indexed: 12/02/2022] Open
Abstract
Cerium oxide nanoparticles (nanoceria) display antioxidant properties and have shown cytoprotective effects both in vitro and in vivo. Here, we explored the effects of nanoceria on neural progenitor cells using the C17.2 murine cell line as a model. First, we assessed the effects of nanoceria versus samarium (Sm) doped nanoceria on cell viability in the presence of the prooxidant, DMNQ. Both particles were taken up by cells and nanoceria, but not Sm-doped nanoceria, elicited a temporary cytoprotective effect upon exposure to DMNQ. Next, we employed RNA sequencing to explore the transcriptional responses induced by nanoceria or Sm-doped nanoceria during neuronal differentiation. Detailed computational analyses showed that nanoceria altered pathways and networks relevant for neuronal development, leading us to hypothesize that nanoceria inhibits neuronal differentiation, and that nanoceria and Sm-doped nanoceria both interfere with cytoskeletal organization. We confirmed that nanoceria reduced neuron specific β3-tubulin expression, a marker of neuronal differentiation, and GFAP, a neuroglial marker. Furthermore, using super-resolution microscopy approaches, we could show that both particles interfered with cytoskeletal organization and altered the structure of neural growth cones. Taken together, these results reveal that nanoceria may impact on neuronal differentiation, suggesting that nanoceria could pose a developmental neurotoxicity hazard.
Collapse
Affiliation(s)
- Anda R Gliga
- Division of Molecular Toxicology, Karolinska Institutet, Stockholm, Sweden
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Edoff
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fanny Caputo
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Department of Chemical Science and Technology, University of Rome 'Tor Vergata', Rome, Italy
| | - Thomas Källman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Bioinformatics Infrastructure for Life Sciences, Uppsala University, Uppsala, Sweden
| | - Hans Blom
- Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - Hanna L Karlsson
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lina Ghibelli
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Enrico Traversa
- Department of Chemical Science and Technology, University of Rome 'Tor Vergata', Rome, Italy
- International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an, China
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol 2017; 37:MCB.00470-16. [PMID: 28069738 DOI: 10.1128/mcb.00470-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023] Open
Abstract
FBXL5 is the substrate recognition subunit of an SCF-type ubiquitin ligase that serves as a master regulator of iron metabolism in mammalian cells. We previously showed that mice with systemic deficiency of FBXL5 fail to sense intracellular iron levels and die in utero at embryonic day 8.5 (E8.5) as a result of iron overload and subsequent oxidative stress. This early embryonic mortality has thus impeded study of the role of FBXL5 in brain development. We have now generated mice lacking FBXL5 specifically in nestin-expressing neural stem progenitor cells (NSPCs) in the brain. Unexpectedly, the mutant embryos manifested a progressive increase in the number of NSPCs and astroglia in the cerebral cortex. Stabilization of iron regulatory protein 2 (IRP2) as a result of FBXL5 deficiency led to accumulation of ferrous and ferric iron as well as to generation of reactive oxygen species. Pharmacological manipulation suggested that the phenotypes of FBXL5 deficiency are attributable to aberrant activation of mammalian target of rapamycin (mTOR) signaling. Our results thus show that FBXL5 contributes to regulation of NSPC proliferation during mammalian brain development.
Collapse
|
36
|
Almeida AS, Vieira HLA. Role of Cell Metabolism and Mitochondrial Function During Adult Neurogenesis. Neurochem Res 2016; 42:1787-1794. [DOI: 10.1007/s11064-016-2150-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 12/15/2022]
|
37
|
Baxter PS, Hardingham GE. Adaptive regulation of the brain's antioxidant defences by neurons and astrocytes. Free Radic Biol Med 2016; 100:147-152. [PMID: 27365123 PMCID: PMC5145800 DOI: 10.1016/j.freeradbiomed.2016.06.027] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022]
Abstract
The human brain generally remains structurally and functionally sound for many decades, despite the post-mitotic and non-regenerative nature of neurons. This is testament to the brain's profound capacity for homeostasis: both neurons and glia have in-built mechanisms that enable them to mount adaptive or protective responses to potentially challenging situations, ensuring that cellular viability and functionality is maintained. The high and variable metabolic and mitochondrial activity of neurons places several demands on the brain, including the task of neutralizing the associated reactive oxygen species (ROS) produced, to limit the accumulation of oxidative damage. Astrocytes play a key role in providing antioxidant support to nearby neurons, and redox regulation of the astrocytic Nrf2 pathway represents a powerful homeostatic regulator of the large cohort of Nrf2-regulated antioxidant genes that they express. In contrast, the Nrf2 pathway is weak in neurons, robbing them of this particular homeostatic device. However, many neuronal antioxidant genes are controlled by synaptic activity, enabling activity-dependent increases in ROS production to be offset by enhanced antioxidant capacity of both glutathione and thioredoxin-peroxiredoxin systems. These distinct homeostatic mechanisms in neurons and astrocytes together combine to promote neuronal resistance to oxidative insults. Future investigations into signaling between distinct cell types within the neuro-glial unit are likely to uncover further mechanisms underlying redox homeostasis in the brain.
Collapse
Affiliation(s)
- Paul S Baxter
- School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Giles E Hardingham
- School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
38
|
Fan C, Zhao Y, Yu Q, Yin W, Liu H, Lin J, Yang T, Fan M, Gesang L, Zhang J. Reversible Brain Abnormalities in People Without Signs of Mountain Sickness During High-Altitude Exposure. Sci Rep 2016; 6:33596. [PMID: 27633944 PMCID: PMC5025655 DOI: 10.1038/srep33596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/30/2016] [Indexed: 01/23/2023] Open
Abstract
A large proportion of lowlanders ascending to high-altitude (HA) show no signs of mountain sickness. Whether their brains have indeed suffered from HA environment and the persistent sequelae after return to lowland remain unknown. Thirty-one sea-level college students, who had a 30-day teaching on Qinghai-Tibet plateau underwent MRI scans before, during, and two months after HA exposure. Brain volume, cortical structures, and white matter microstructure were measured. Besides, serum neuron-specific enolase (NSE), C-reactive protein, and interleukin-6 and neuropsychiatric behaviors were tested. After 30-day HA exposure, the gray and white matter volumes and cortical surface areas significantly increased, with cortical thicknesses and curvatures changed in a wide spread regions; Anisotropy decreased with diffusivities increased in multiple sites of white matter tracts. Two months after HA exposure, cortical measurements returned to basal level. However, increased anisotropy with decreased diffusivities was observed. Behaviors and serum inflammatory factor did not significant changed during three time-point tests. NSE significantly decreased during HA but increased after HA exposure. Results suggest brain swelling occurred in people without neurological signs at HA, but no negative sequelae in cortical structures and neuropsychiatric functions were left after the return to lowlands. Reoxygenation changed white matter microstructure.
Collapse
Affiliation(s)
- Cunxiu Fan
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| | - Yuhua Zhao
- Institute of high altitude medicine, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Qian Yu
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Haipeng Liu
- Department of Radiology, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Tianhe Yang
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Luobu Gesang
- Institute of high altitude medicine, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Jiaxing Zhang
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
39
|
Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. J Exp Neurosci 2016; 10:23-48. [PMID: 27625575 PMCID: PMC5012454 DOI: 10.4137/jen.s39887] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated.
Collapse
Affiliation(s)
- Thiago Fernando Beckhauser
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - José Francis-Oliveira
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - Roberto De Pasquale
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| |
Collapse
|
40
|
Accetta R, Damiano S, Morano A, Mondola P, Paternò R, Avvedimento EV, Santillo M. Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes. Front Cell Neurosci 2016; 10:146. [PMID: 27313511 PMCID: PMC4889614 DOI: 10.3389/fncel.2016.00146] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/18/2016] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1-4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation.
Collapse
Affiliation(s)
- Roberta Accetta
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Annalisa Morano
- Laboratori di Ricerca Preclinica e Traslazionale, Istituto di Ricovero e Cura a Carattere Scientifico - Centro di Riferimento Oncologico della Basilicata Rionero in Vulture, Italy
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Roberto Paternò
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Enrico V Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| |
Collapse
|
41
|
Atkinson-Leadbeater K, Hehr CL, Johnston J, Bertolesi G, McFarlane S. EGCG stabilizes growth cone filopodia and impairs retinal ganglion cell axon guidance. Dev Dyn 2016; 245:667-77. [DOI: 10.1002/dvdy.24406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/05/2016] [Accepted: 03/12/2016] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Carrie L. Hehr
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| | - Jill Johnston
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| | - Gabriel Bertolesi
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| | - Sarah McFarlane
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| |
Collapse
|
42
|
Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci 2016; 17:125-34. [PMID: 26763624 DOI: 10.1038/nrn.2015.19] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology.
Collapse
Affiliation(s)
- Giles E Hardingham
- School of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Kim Q Do
- Department of Psychiatry, Center of Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1008, Prilly-Lausanne, Switzerland
| |
Collapse
|
43
|
Petro M, Jaffer H, Yang J, Kabu S, Morris VB, Labhasetwar V. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain. Biomaterials 2015; 81:169-180. [PMID: 26735970 DOI: 10.1016/j.biomaterials.2015.12.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/07/2015] [Accepted: 12/13/2015] [Indexed: 12/19/2022]
Abstract
Inherent neuronal and circulating progenitor cells play important roles in facilitating neuronal and functional recovery post stroke. However, this endogenous repair process is rather limited, primarily due to unfavorable conditions in the infarcted brain involving reactive oxygen species (ROS)-mediated oxidative stress and inflammation following ischemia/reperfusion injury. We hypothesized that during reperfusion, effective delivery of antioxidants to ischemic brain would create an environment without such oxidative stress and inflammation, thus promoting activation and mobilization of progenitor cells in the infarcted brain. We administered recombinant human tissue-type plasminogen activator (tPA) via carotid artery at 3 h post stroke in a thromboembolic rat model, followed by sequential administration of the antioxidants catalase (CAT) and superoxide dismutase (SOD), encapsulated in biodegradable nanoparticles (nano-CAT/SOD). Brains were harvested at 48 h post stroke for immunohistochemical analysis. Ipsilateral brain slices from animals that had received tPA + nano-CAT/SOD showed a widespread distribution of glial fibrillary acidic protein-positive cells (with morphology resembling radial glia-like neural precursor cells) and nestin-positive cells (indicating the presence of immature neurons); such cells were considerably fewer in untreated animals or those treated with tPA alone. Brain sections from animals receiving tPA + nano-CAT/SOD also showed much greater numbers of SOX2- and nestin-positive progenitor cells migrating from subventricular zone of the lateral ventricle and entering the rostral migratory stream than in t-PA alone treated group or untreated control. Further, animals treated with tPA + nano-CAT/SOD showed far fewer caspase-positive cells and fewer neutrophils than did other groups, as well as an inhibition of hippocampal swelling. These results suggest that the antioxidants mitigated the inflammatory response, protected neuronal cells from undergoing apoptosis, and inhibited edema formation by protecting the blood-brain barrier from ROS-mediated reperfusion injury. A longer-term study would enable us to determine if our approach would assist progenitor cells to undergo neurogenesis and to facilitate neurological and functional recovery following stroke and reperfusion injury.
Collapse
Affiliation(s)
- Marianne Petro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hayder Jaffer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jun Yang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shushi Kabu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Viola B Morris
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
44
|
Pirotte N, Leynen N, Artois T, Smeets K. Do you have the nerves to regenerate? The importance of neural signalling in the regeneration process. Dev Biol 2015; 409:4-15. [PMID: 26586202 DOI: 10.1016/j.ydbio.2015.09.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/26/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023]
Abstract
The importance of nerve-derived signalling for correct regeneration has been the topic of research for more than a hundred years, but we are just beginning to identify the underlying molecular pathways of this process. Within the current review, we attempt to provide an extensive overview of the neural influences during early and late phases of both vertebrate and invertebrate regeneration. In general, denervation impairs limb regeneration, but the presence of nerves is not essential for the regeneration of aneurogenic extremities. This observation led to the "neurotrophic factor(s) hypothesis", which states that certain trophic factors produced by the nerves are necessary for proper regeneration. Possible neuron-derived factors which regulate regeneration as well as the denervation-affected processes are discussed.
Collapse
Affiliation(s)
- Nicky Pirotte
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium
| | - Nathalie Leynen
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium
| | - Tom Artois
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium
| | - Karen Smeets
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium.
| |
Collapse
|
45
|
Gusdon AM, Fernandez-Bueno GA, Wohlgemuth S, Fernandez J, Chen J, Mathews CE. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver. BMC BIOCHEMISTRY 2015; 16:22. [PMID: 26358560 PMCID: PMC4564979 DOI: 10.1186/s12858-015-0051-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 09/02/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. RESULTS We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. CONCLUSIONS We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology, Weill Cornell Medical Center/NewYork-Presbyterian Hospital, New York, NY, 10065, USA.
| | - Gabriel A Fernandez-Bueno
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Stephanie Wohlgemuth
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, The University of Florida, Gainesville, FL, 32610, USA.
| | - Jenelle Fernandez
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL, 32610, USA.
- , Present address: 1275 Center Dr, Room J597, P.O. Box 100275, Gainesville, FL, 32610-0275, USA.
| |
Collapse
|
46
|
Chandrasekaran V, Lea C, Sosa JC, Higgins D, Lein PJ. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons. Mol Cell Neurosci 2015; 67:116-25. [PMID: 26079955 PMCID: PMC4550485 DOI: 10.1016/j.mcn.2015.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 05/26/2015] [Accepted: 06/12/2015] [Indexed: 12/28/2022] Open
Abstract
Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of the three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguaiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons.
Collapse
Affiliation(s)
| | - Charlotte Lea
- Department of Biology, Saint Mary's College of California, Moraga, CA, USA
| | - Jose Carlo Sosa
- Department of Biology, Saint Mary's College of California, Moraga, CA, USA
| | - Dennis Higgins
- Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| |
Collapse
|
47
|
Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:392476. [PMID: 26180588 PMCID: PMC4477255 DOI: 10.1155/2015/392476] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.
Collapse
|
48
|
Bell KFS, Al-Mubarak B, Martel MA, McKay S, Wheelan N, Hasel P, Márkus NM, Baxter P, Deighton RF, Serio A, Bilican B, Chowdhry S, Meakin PJ, Ashford MLJ, Wyllie DJA, Scannevin RH, Chandran S, Hayes JD, Hardingham GE. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat Commun 2015; 6:7066. [PMID: 25967870 PMCID: PMC4441249 DOI: 10.1038/ncomms8066] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/30/2015] [Indexed: 12/13/2022] Open
Abstract
Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2's inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development.
Collapse
Affiliation(s)
- Karen F S Bell
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Bashayer Al-Mubarak
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Marc-André Martel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sean McKay
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nicola Wheelan
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Philip Hasel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nóra M Márkus
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Paul Baxter
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Ruth F Deighton
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Andrea Serio
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Bilada Bilican
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Sudhir Chowdhry
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Paul J Meakin
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Michael L J Ashford
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - David J A Wyllie
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | - Siddharthan Chandran
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - John D Hayes
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
49
|
Zhang Y, Zheng S, Geng Y, Xue J, Wang Z, Xie X, Wang J, Zhang S, Hou Y. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1. PLoS One 2015; 10:e0122674. [PMID: 25816284 PMCID: PMC4376950 DOI: 10.1371/journal.pone.0122674] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 02/24/2015] [Indexed: 11/19/2022] Open
Abstract
Background A critical mechanism in atrial fibrillation (AF) is cardiac autonomic nerve remodeling (ANR). MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Numerous miRNAs are involved in diseases of the nervous and cardiovascular systems. Objective We aimed to assess the underlying role of miRNAs in regulating cardiac ANR in AF by right atrial tachypacing (A-TP) in canines. Methods and Results Following 4-week A-TP, the superior left ganglionated plexuses (SLGPs), which are embedded in the fat pads of the left atrium, were subjected to miRNA expression profiling to screen preferentially expressed miRNAs. Sixteen miRNAs showed significantly differential expression between the control and A-TP groups, including miR-206, miR-203, miR-224 and miR-137. In particular, we focused on miR-206, which was elevated ~10-fold in A-TP dogs. Forced expression of miR-206 through lentiviral infection based on A-TP in vivo significantly shortened the atrial effective refractory period (AERP) (81 ± 7 vs. 98 ± 7 ms, P < 0.05). Immunohistochemical analysis showed that the regeneration of nerves increased more than 2-fold by miR-206 overexpression (P < 0.01). The expression of superoxide dismutase 1 (SOD1) was repressed by miR-206 overexpression by Western blot and luciferase assay, indicative of SOD1 as a direct target of miR-206. Overexpression of miR-206 increased reactive oxygen species (ROS) levels in vitro and in vivo, whereas miR-206 silencing attenuated irradiation- or A-TP-induced ROS. Knockdown of SOD1 effectively abolished ROS reduction caused by miR-206 silencing. Conclusions Our results found the differential expression of miRNAs in response to ANR in AF and elucidated the important role of miR-206 by targeting SOD1. The study illustrated the novel molecular mechanism of ANR and indicated a potential therapeutic target for AF.
Collapse
Affiliation(s)
- Yujiao Zhang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, China
- School of Medicine, Shandong University, No. 44, Wenhua Xi Road, Jinan, 250012, China
| | - Shaohua Zheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, China
- School of Medicine, Shandong University, No. 44, Wenhua Xi Road, Jinan, 250012, China
| | - Yangyang Geng
- School of Radiation Medicine and Protection, Soochow University, No. 199, Renai Road, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, No. 199, Renai Road, Suzhou, 215123, China
| | - Jiao Xue
- School of Radiation Medicine and Protection, Soochow University, No. 199, Renai Road, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, No. 199, Renai Road, Suzhou, 215123, China
| | - Zhongsu Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Xinxing Xie
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Jiangrong Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection, Soochow University, No. 199, Renai Road, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, No. 199, Renai Road, Suzhou, 215123, China
- * E-mail: (YLH); (SYZ)
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, China
- * E-mail: (YLH); (SYZ)
| |
Collapse
|
50
|
Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1607-21. [PMID: 25445706 DOI: 10.1016/j.bbagen.2014.11.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. SCOPE OF REVIEW We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. PRIMARY CONCLUSIONS Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. GENERAL SIGNIFICANCE The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, SC 29425-1410, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA.
| |
Collapse
|