1
|
Kumar D, Kumar A. Molecular Determinants Involved in Candida albicans Biofilm Formation and Regulation. Mol Biotechnol 2024; 66:1640-1659. [PMID: 37410258 DOI: 10.1007/s12033-023-00796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Candida albicans is known for its pathogenicity, although it lives within the human body as a commensal member. The commensal nature of C. albicans is well controlled and regulated by the host's immune system as they live in the harmonized microenvironment. However, the development of certain unusual microhabitat conditions (change in pH, co-inhabiting microorganisms' population ratio, debilitated host-immune system) pokes this commensal fungus to transform into a pathogen in such a way that it starts to propagate very rapidly and tries to breach the epithelial barrier to enter the host's systemic circulations. In addition, Candida is infamous as a major nosocomial (hospital-acquired infection) agent because it enters the human body through venous catheters or medical prostheses. The hysterical mode of C. albicans growth builds its microcolony or biofilm, which is pathogenic for the host. Biofilms propose additional resistance mechanisms from host immunity or extracellular chemicals to aid their survival. Differential gene expressions and regulations within the biofilms cause altered morphology and metabolism. The genes associated with adhesiveness, hyphal/pseudo-hyphal growth, persister cell transformation, and biofilm formation by C. albicans are controlled by myriads of cell-signaling regulators. These genes' transcription is controlled by different molecular determinants like transcription factors and regulators. Therefore, this review has focused discussion on host-immune-sensing molecular determinants of Candida during biofilm formation, regulatory descriptors (secondary messengers, regulatory RNAs, transcription factors) of Candida involved in biofilm formation that could enable small-molecule drug discovery against these molecular determinants, and lead to disrupt the well-structured Candida biofilms effectively.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
2
|
The Role of Sfp1 in Candida albicans Cell Wall Maintenance. J Fungi (Basel) 2022; 8:jof8111196. [PMID: 36422017 PMCID: PMC9692975 DOI: 10.3390/jof8111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The cell wall is the first interface for Candida albicans interaction with the surrounding environment and the host cells. Therefore, maintenance of cell wall integrity (CWI) is crucial for C. albicans survival and host-pathogen interaction. In response to environmental stresses, C. albicans undergoes cell wall remodeling controlled by multiple signaling pathways and transcription regulators. Here, we explored the role of the transcription factor Sfp1 in CWI. A deletion of the SFP1 gene not only caused changes in cell wall properties, cell wall composition and structure but also modulated expression of cell wall biosynthesis and remodeling genes. In addition, Cas5 is a known transcription regulator for C. albicans CWI and cell wall stress response. Interestingly, our results indicated that Sfp1 negatively controls the CAS5 gene expression by binding to its promoter element. Together, this study provides new insights into the regulation of C. albicans CWI and stress response.
Collapse
|
3
|
Villa S, Hamideh M, Weinstock A, Qasim MN, Hazbun TR, Sellam A, Hernday AD, Thangamani S. Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Res 2021; 20:5715912. [PMID: 31981355 PMCID: PMC7000152 DOI: 10.1093/femsyr/foaa005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a multimorphic commensal organism and opportunistic fungal pathogen in humans. A morphological switch between unicellular budding yeast and multicellular filamentous hyphal growth forms plays a vital role in the virulence of C. albicans, and this transition is regulated in response to a range of environmental cues that are encountered in distinct host niches. Many unique transcription factors contribute to the transcriptional regulatory network that integrates these distinct environmental cues and determines which phenotypic state will be expressed. These hyphal morphogenesis regulators have been extensively investigated, and represent an increasingly important focus of study, due to their central role in controlling a key C. albicans virulence attribute. This review provides a succinct summary of the transcriptional regulatory factors and environmental signals that control hyphal morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Sonia Villa
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad Hamideh
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad N Qasim
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Adnane Sellam
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaron D Hernday
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA.,Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
4
|
Chen YW, Yeh YC, Chen HF, Chen RC, Lin GY, Chen YT, Lan CY. The small GTPase Rhb1 is involved in the cell response to fluconazole in Candida albicans. FEMS Yeast Res 2019; 19:5288341. [PMID: 30649293 DOI: 10.1093/femsyr/foz005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023] Open
Abstract
Candida albicans is an important fungal pathogen in humans. Rhb1 is a small GTPase of the Ras superfamily and is conserved from yeasts to humans. In C. albicans, Rhb1 regulates the expression of secreted protease 2, low nitrogen-mediated morphogenesis, and biofilm formation. Moreover, our previous studies have indicated that Rhb1 is associated with the target of rapamycin (TOR) signaling pathway. In this study, we further explored the relationship between Rhb1 and drug susceptibility. The RHB1 deletion mutant exhibited reduced fluconazole susceptibility, and this phenotype occurred mainly through the increased gene expression and activity of efflux pumps. In addition, Mrr1 and Tac1 are transcription factors that can activate efflux pump gene expression. However, the RHB1 deletion, RHB1/MRR1 and RHB1/TAC1 double deletion mutants had no significant differences in efflux pump gene expression and fluconazole susceptibility, suggesting that Rhb1-regulated efflux pump genes do not act through Mrr1 and Tac1. We also showed that membrane localization is crucial for Rhb1 activity in response to fluconazole. Finally, Rhb1 was linked not only to the TOR but also to the Mkc1 mitogen-activated protein kinase signaling pathway in response to fluconazole. In sum, this study unveiled a new role of Rhb1 in the regulation of C. albicans drug susceptibility.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Chieh Yeh
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsueh-Fen Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruei-Ching Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Guan-Yu Lin
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ting Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
5
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Merhej J, Delaveau T, Guitard J, Palancade B, Hennequin C, Garcia M, Lelandais G, Devaux F. Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication. Mol Microbiol 2015; 96:951-72. [DOI: 10.1111/mmi.12983] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Jawad Merhej
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine UMR 7238; Laboratoire de biologie computationnelle et quantitative; F-75006 Paris France
- CNRS, UMR 7238; Laboratoire de biologie computationnelle et quantitative; F-75006 Paris France
| | - Thierry Delaveau
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine UMR 7238; Laboratoire de biologie computationnelle et quantitative; F-75006 Paris France
- CNRS, UMR 7238; Laboratoire de biologie computationnelle et quantitative; F-75006 Paris France
| | - Juliette Guitard
- Sorbonne Universités, UPMC Univ Paris 06, CR7; Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); 91 Bd de l'hôpital F-75013 Paris France
- Inserm; U1135; CIMI-Paris; 91 Bd de l'hôpital F-75013 Paris France
- Assistance Publique-Hôpitaux de Paris, Hôpital St Antoine; Service de Parasitologie-Mycologie; F-75012 Paris France
- CNRS; ERL 8255; CIMI-Paris; 91 Bd de l'hôpital F-75013 Paris France
| | - Benoit Palancade
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot; Sorbonne Paris Cité; F-75205 Paris France
| | - Christophe Hennequin
- Sorbonne Universités, UPMC Univ Paris 06, CR7; Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); 91 Bd de l'hôpital F-75013 Paris France
- Inserm; U1135; CIMI-Paris; 91 Bd de l'hôpital F-75013 Paris France
- Assistance Publique-Hôpitaux de Paris, Hôpital St Antoine; Service de Parasitologie-Mycologie; F-75012 Paris France
- CNRS; ERL 8255; CIMI-Paris; 91 Bd de l'hôpital F-75013 Paris France
| | - Mathilde Garcia
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine UMR 7238; Laboratoire de biologie computationnelle et quantitative; F-75006 Paris France
- CNRS, UMR 7238; Laboratoire de biologie computationnelle et quantitative; F-75006 Paris France
| | - Gaëlle Lelandais
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot; Sorbonne Paris Cité; F-75205 Paris France
| | - Frédéric Devaux
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine UMR 7238; Laboratoire de biologie computationnelle et quantitative; F-75006 Paris France
- CNRS, UMR 7238; Laboratoire de biologie computationnelle et quantitative; F-75006 Paris France
| |
Collapse
|
7
|
Lo HJ, Tseng KY, Kao YY, Tsao MY, Lo HL, Yang YL. Cph1p negatively regulates MDR1 involved in drug resistance in Candida albicans. Int J Antimicrob Agents 2015; 45:617-21. [PMID: 25802233 DOI: 10.1016/j.ijantimicag.2015.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/11/2014] [Accepted: 01/22/2015] [Indexed: 10/23/2022]
Abstract
The cph1/cph1 efg1/efg1 double mutant in Candida albicans is defective in filamentous growth and is avirulent in a mouse model. We previously reported that Efg1p but not Cph1p is involved in drug resistance by negatively regulating ERG3 in C. albicans. In the current study, we have found that overexpression of CPH1 in Saccharomyces cerevisiae increases susceptibility to the antifungal drug fluconazole. Furthermore, in C. albicans, null mutation of CPH1 increased the expression of MDR1 as well as decreased susceptibility to fluconazole and voriconazole but not to amphotericin B. These findings indicate that although Efg1p and Cph1p may have the same effects on virulence, they have opposite effects on drug resistance in C. albicans.
Collapse
Affiliation(s)
- Hsiu-Jung Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; School of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Yun Tseng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yeong-Yi Kao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Yang Tsao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Han-Lun Lo
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yun-Liang Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
8
|
Niones JT, Takemoto D. VibA, a homologue of a transcription factor for fungal heterokaryon incompatibility, is involved in antifungal compound production in the plant-symbiotic fungus Epichloë festucae. EUKARYOTIC CELL 2015; 14:13-24. [PMID: 24906411 PMCID: PMC4279024 DOI: 10.1128/ec.00034-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/30/2014] [Indexed: 01/12/2023]
Abstract
Symbiotic association of epichloae endophytes (Epichloë/Neotyphodium species) with cool-season grasses of the subfamily Pooideae confers bioprotective benefits to the host plants against abiotic and biotic stresses. While the production of fungal bioprotective metabolites is a well-studied mechanism of host protection from insect herbivory, little is known about the antibiosis mechanism against grass pathogens by the mutualistic endophyte. In this study, an Epichloë festucae mutant defective in antimicrobial substance production was isolated by a mutagenesis approach. In an isolated mutant that had lost antifungal activity, the exogenous DNA fragment was integrated into the promoter region of the vibA gene, encoding a homologue of the transcription factor VIB-1. VIB-1 in Neurospora crassa is a regulator of genes essential in vegetative incompatibility and promotion of cell death. Here we show that deletion of the vibA gene severely affected the antifungal activity of the mutant against the test pathogen Drechslera erythrospila. Further analyses showed that overexpressing vibA enhanced the antifungal activity of the wild-type isolate against test pathogens. Transformants overexpressing vibA showed an inhibitory activity on test pathogens that the wild-type isolate could not. Moreover, overexpressing vibA in a nonantifungal E. festucae wild-type Fl1 isolate enabled the transformant to inhibit the mycelial and spore germination of D. erythrospila. These results demonstrate that enhanced expression of vibA is sufficient for a nonantifungal isolate to obtain antifungal activity, implicating the critical role of VibA in antifungal compound production by epichloae endophytes.
Collapse
Affiliation(s)
- Jennifer T Niones
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Lo HJ, Chu WL, Liou CH, Huang SH, Khoo KH, Yang YL. Ndt80p is involved in L-sorbose utilization through regulating SOU1 in Candida albicans. Int J Med Microbiol 2014; 305:170-3. [PMID: 25497969 DOI: 10.1016/j.ijmm.2014.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/21/2023] Open
Abstract
Ndt80p, a known transcriptional factor, regulates various targets involved in stress responses, filamentous growth, and virulence in Candida albicans. Potential targets of Ndt80p have been identified at the transcriptional level. The present study was conducted to identify genes regulated by Ndt80p from the protein level. We found that the levels of Ahp1p, Fma1p, Hsp21p, Rfa2p, Snz1p, Sod1p, Sou1p, Trp99p, orf19.251, orf19.1862, and orf19.5620, were affected by the null mutation of NDT80 by two-dimensional polyacrylamide gel-electrophoresis analysis. Among the 11 proteins, all but Sou1p and Rfa2p are suggested to be involved in known functions of Ndt80p. Here, we demonstrate that Ndt80p plays a role in l-sorbose utilization through regulating SOU1 in C. albicans.
Collapse
Affiliation(s)
- Hsiu-Jung Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; School of Dentistry, China Medical University, Taichung, Taiwan
| | - Wen-Li Chu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ci-Hong Liou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Szu-Hsuan Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yun-Liang Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|