1
|
Tagami S. Why we are made of proteins and nucleic acids: Structural biology views on extraterrestrial life. Biophys Physicobiol 2023; 20:e200026. [PMID: 38496239 PMCID: PMC10941967 DOI: 10.2142/biophysico.bppb-v20.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 03/19/2024] Open
Abstract
Is it a miracle that life exists on the Earth, or is it a common phenomenon in the universe? If extraterrestrial organisms exist, what are they like? To answer these questions, we must understand what kinds of molecules could evolve into life, or in other words, what properties are generally required to perform biological functions and store genetic information. This review summarizes recent findings on simple ancestral proteins, outlines the basic knowledge in textbooks, and discusses the generally required properties for biological molecules from structural biology viewpoints (e.g., restriction of shapes, and types of intra- and intermolecular interactions), leading to the conclusion that proteins and nucleic acids are at least one of the simplest (and perhaps very common) forms of catalytic and genetic biopolymers in the universe. This review article is an extended version of the Japanese article, On the Origin of Life: Coevolution between RNA and Peptide, published in SEIBUTSU BUTSURI Vol. 61, p. 232-235 (2021).
Collapse
Affiliation(s)
- Shunsuke Tagami
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Seal M, Weil-Ktorza O, Despotović D, Tawfik DS, Levy Y, Metanis N, Longo LM, Goldfarb D. Peptide-RNA Coacervates as a Cradle for the Evolution of Folded Domains. J Am Chem Soc 2022; 144:14150-14160. [PMID: 35904499 PMCID: PMC9376946 DOI: 10.1021/jacs.2c03819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide-RNA coacervates can result in the concentration and compartmentalization of simple biopolymers. Given their primordial relevance, peptide-RNA coacervates may have also been a key site of early protein evolution. However, the extent to which such coacervates might promote or suppress the exploration of novel peptide conformations is fundamentally unknown. To this end, we used electron paramagnetic resonance spectroscopy (EPR) to characterize the structure and dynamics of an ancient and ubiquitous nucleic acid binding element, the helix-hairpin-helix (HhH) motif, alone and in the presence of RNA, with which it forms coacervates. Double electron-electron resonance (DEER) spectroscopy applied to singly labeled peptides containing one HhH motif revealed the presence of dimers, even in the absence of RNA. Moreover, dimer formation is promoted upon RNA binding and was detectable within peptide-RNA coacervates. DEER measurements of spin-diluted, doubly labeled peptides in solution indicated transient α-helical character. The distance distributions between spin labels in the dimer and the signatures of α-helical folding are consistent with the symmetric (HhH)2-Fold, which is generated upon duplication and fusion of a single HhH motif and traditionally associated with dsDNA binding. These results support the hypothesis that coacervates are a unique testing ground for peptide oligomerization and that phase-separating peptides could have been a resource for the construction of complex protein structures via common evolutionary processes, such as duplication and fusion.
Collapse
Affiliation(s)
- Manas Seal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orit Weil-Ktorza
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dragana Despotović
- Department of Biomolecular Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dan S Tawfik
- Department of Biomolecular Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Liam M Longo
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, Seattle, Washington 98104, United States
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Abstract
Diverse bacterial lifestyle transitions are controlled by the nucleotide second messenger c-di-GMP, including virulence, motility, and biofilm formation. To control such fundamentally distinct processes, the set of genes under c-di-GMP control must have gone through several shifts during bacterial evolution. Here we show that the same σ–(c-di-GMP)–anti-σ switch has been co-opted during evolution to regulate distinct biological functions in unicellular and filamentous bacteria, controlling type IV pilus production in the genus Rubrobacter and the differentiation of reproductive hyphae into spores in Streptomyces. Moreover, we show that the anti-σ likely originated as a homodimer and evolved to become a monomer through an intragenic duplication event. This study thus describes the structural and functional evolution of a c-di-GMP regulatory switch. Filamentous actinobacteria of the genus Streptomyces have a complex lifecycle involving the differentiation of reproductive aerial hyphae into spores. We recently showed c-di-GMP controls this transition by arming a unique anti-σ, RsiG, to bind the sporulation-specific σ, WhiG. The Streptomyces venezuelae RsiG–(c-di-GMP)2–WhiG structure revealed that a monomeric RsiG binds c-di-GMP via two E(X)3S(X)2R(X)3Q(X)3D repeat motifs, one on each helix of an antiparallel coiled-coil. Here we show that RsiG homologs are found scattered throughout the Actinobacteria. Strikingly, RsiGs from unicellular bacteria descending from the most basal branch of the Actinobacteria are small proteins containing only one c-di-GMP binding motif, yet still bind their WhiG partners. Our structure of a Rubrobacter radiotolerans (RsiG)2–(c-di-GMP)2–WhiG complex revealed that these single-motif RsiGs are able to form an antiparallel coiled-coil through homodimerization, thereby allowing them to bind c-di-GMP similar to the monomeric twin-motif RsiGs. Further data show that in the unicellular actinobacterium R. radiotolerans, the (RsiG)2–(c-di-GMP)2–WhiG regulatory switch controls type IV pilus expression. Phylogenetic analysis indicates the single-motif RsiGs likely represent the ancestral state and an internal gene-duplication event gave rise to the twin-motif RsiGs inherited elsewhere in the Actinobacteria. Thus, these studies show how the anti-σ RsiG has evolved through an intragenic duplication event from a small protein carrying a single c-di-GMP binding motif, which functions as a homodimer, to a larger protein carrying two c-di-GMP binding motifs, which functions as a monomer. Consistent with this, our structures reveal potential selective advantages of the monomeric twin-motif anti-σ factors.
Collapse
|
4
|
Tenorio CA, Longo LM, Parker JB, Lee J, Blaber M. Ab initio folding of a trefoil-fold motif reveals structural similarity with a β-propeller blade motif. Protein Sci 2020; 29:1172-1185. [PMID: 32142181 DOI: 10.1002/pro.3850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 01/05/2023]
Abstract
Many protein architectures exhibit evidence of internal rotational symmetry postulated to be the result of gene duplication/fusion events involving a primordial polypeptide motif. A common feature of such structures is a domain-swapped arrangement at the interface of the N- and C-termini motifs and postulated to provide cooperative interactions that promote folding and stability. De novo designed symmetric protein architectures have demonstrated an ability to accommodate circular permutation of the N- and C-termini in the overall architecture; however, the folding requirement of the primordial motif is poorly understood, and tolerance to circular permutation is essentially unknown. The β-trefoil protein fold is a threefold-symmetric architecture where the repeating ~42-mer "trefoil-fold" motif assembles via a domain-swapped arrangement. The trefoil-fold structure in isolation exposes considerable hydrophobic area that is otherwise buried in the intact β-trefoil trimeric assembly. The trefoil-fold sequence is not predicted to adopt the trefoil-fold architecture in ab initio folding studies; rather, the predicted fold is closely related to a compact "blade" motif from the β-propeller architecture. Expression of a trefoil-fold sequence and circular permutants shows that only the wild-type N-terminal motif definition yields an intact β-trefoil trimeric assembly, while permutants yield monomers. The results elucidate the folding requirements of the primordial trefoil-fold motif, and also suggest that this motif may sample a compact conformation that limits hydrophobic residue exposure, contains key trefoil-fold structural features, but is more structurally homologous to a β-propeller blade motif.
Collapse
Affiliation(s)
- Connie A Tenorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Liam M Longo
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Joseph B Parker
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Jihun Lee
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | | |
Collapse
|
5
|
Notova S, Bonnardel F, Lisacek F, Varrot A, Imberty A. Structure and engineering of tandem repeat lectins. Curr Opin Struct Biol 2019; 62:39-47. [PMID: 31841833 DOI: 10.1016/j.sbi.2019.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
Through their ability to bind complex glycoconjugates, lectins have unique specificity and potential for biomedical and biotechnological applications. In particular, lectins with short repeated peptides forming carbohydrate-binding domains are not only of high interest for understanding protein evolution but can also be used as scaffold for engineering novel receptors. Synthetic glycobiology now provides the tools for engineering the specificity of lectins as well as their structure, multivalency and topologies. This review focuses on the structure and diversity of two families of tandem-repeat lectins, that is, β-trefoils and β-propellers, demonstrated as the most promising scaffold for engineering novel lectins.
Collapse
Affiliation(s)
- Simona Notova
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - François Bonnardel
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France; SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, UniGe, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, UniGe, CH-1227 Geneva, Switzerland; Section of Biology, UniGe, CH-1205 Geneva, Switzerland
| | | | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| |
Collapse
|
6
|
Youkharibache P. Protodomains: Symmetry-Related Supersecondary Structures in Proteins and Self-Complementarity. Methods Mol Biol 2019; 1958:187-219. [PMID: 30945220 PMCID: PMC8323591 DOI: 10.1007/978-1-4939-9161-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We will consider in this chapter supersecondary structures (SSS) as a set of secondary structure elements (SSEs) found in protein domains. Some SSS arrangements/topologies have been consistently observed within known tertiary structural domains. We use them in the context of repeating supersecondary structures that self-assemble in a symmetric arrangement to form a domain. We call them protodomains (or protofolds). Protodomains are some of the most interesting and insightful SSSs. Within a given 3D protein domain/fold, recognizing such sets may give insights into a possible evolutionary process of duplication, fusion, and coevolution of these protodomains, pointing to possible original protogenes. On protein folding itself, pseudosymmetric domains may point to a "directed" assembly of pseudosymmetric protodomains, directed by the only fact that they are tethered together in a protein chain. On function, tertiary functional sites often occur at protodomain interfaces, as they often occur at domain-domain interfaces in quaternary arrangements.First, we will briefly review some lessons learned from a previously published census of pseudosymmetry in protein domains (Myers-Turnbull, D. et al., J Mol Biol. 426:2255-2268, 2014) to introduce protodomains/protofolds. We will observe that the most abundant and diversified folds, or superfolds, in the currently known protein structure universe are indeed pseudosymmetric. Then, we will learn by example and select a few domain representatives of important pseudosymmetric folds and chief among them the immunoglobulin (Ig) fold and go over a pseudosymmetry supersecondary structure (protodomain) analysis in tertiary and quaternary structures. We will point to currently available software tools to help in identifying pseudosymmetry, delineating protodomains, and see how the study of pseudosymmetry and the underlying supersecondary structures can enrich a structural analysis. This should potentially help in protein engineering, especially in the development of biologics and immunoengineering.
Collapse
|
7
|
Wang Y, Feng Y, Cao X, Liu Y, Xue S. Insights into the molecular mechanism of dehalogenation catalyzed by D-2-haloacid dehalogenase from crystal structures. Sci Rep 2018; 8:1454. [PMID: 29362453 PMCID: PMC5780510 DOI: 10.1038/s41598-017-19050-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/17/2017] [Indexed: 11/09/2022] Open
Abstract
D-2-haloacid dehalogenases (D-DEXs) catalyse the hydrolytic dehalogenation of D-2-haloacids, releasing halide ions and producing the corresponding 2-hydroxyacids. A structure-guided elucidation of the catalytic mechanism of this dehalogenation reaction has not been reported yet. Here, we report the catalytic mechanism of a D-DEX, HadD AJ1 from Pseudomonas putida AJ1/23, which was elucidated by X-ray crystallographic analysis and the H218O incorporation experiment. HadD AJ1 is an α-helical hydrolase that forms a homotetramer with its monomer including two structurally axisymmetric repeats. The product-bound complex structure was trapped with L-lactic acid in the active site, which is framed by the structurally related helices between two repeats. Site-directed mutagenesis confirmed the importance of the residues lining the binding pocket in stabilizing the enzyme-substrate complex. Asp205 acts as a key catalytic residue and is responsible for activating a water molecule along with Asn131. Then, the hydroxyl group of the water molecule directly attacks the C2 atom of the substrate to release the halogen ion instead of forming an enzyme-substrate ester intermediate as observed in L-2-haloacid dehalogenases. The newly revealed structural and mechanistic information on D-DEX may inspire structure-based mutagenesis to engineer highly efficient haloacid dehalogenases.
Collapse
Affiliation(s)
- Yayue Wang
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanbin Feng
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xupeng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yinghui Liu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
8
|
Benedek A, Horváth A, Hirmondó R, Ozohanics O, Békési A, Módos K, Révész Á, Vékey K, Nagy GN, Vértessy BG. Potential steps in the evolution of a fused trimeric all-β dUTPase involve a catalytically competent fused dimeric intermediate. FEBS J 2016; 283:3268-86. [PMID: 27380921 DOI: 10.1111/febs.13800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 06/08/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022]
Abstract
Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is essential for genome integrity. Interestingly, this enzyme from Drosophila virilis has an unusual form, as three monomer repeats are merged with short linker sequences, yielding a fused trimer-like dUTPase fold. Unlike homotrimeric dUTPases that are encoded by a single repeat dut gene copy, the three repeats of the D. virilis dut gene are not identical due to several point mutations. We investigated the potential evolutionary pathway that led to the emergence of this extant fused trimeric dUTPase in D. virilis. The herein proposed scenario involves two sequential gene duplications followed by sequence divergence amongst the dut repeats. This pathway thus requires the existence of a transient two-repeat-containing fused dimeric dUTPase intermediate. We identified the corresponding ancestral dUTPase single repeat enzyme together with its tandem repeat evolutionary intermediate and characterized their enzymatic function and structural stability. We additionally engineered and characterized artificial single or tandem repeat constructs from the extant enzyme form to investigate the influence of the emergent residue alterations on the formation of a functional assembly. The observed severely impaired stability and catalytic activity of these latter constructs provide a plausible explanation for evolutionary persistence of the extant fused trimeric D. virilis dUTPase form. For the ancestral homotrimeric and the fused dimeric intermediate forms, we observed strong catalytic and structural competence, verifying viability of the proposed evolutionary pathway. We conclude that the progression along the herein described evolutionary trajectory is determined by the retained potential of the enzyme for its conserved three-fold structural symmetry.
Collapse
Affiliation(s)
- András Benedek
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary.
| | - András Horváth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rita Hirmondó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Olivér Ozohanics
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Angéla Békési
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Módos
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Ágnes Révész
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Vékey
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely N Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary.
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary.
| |
Collapse
|
9
|
Shen X, Huang T, Wang G, Li G. How the Sequence of a Gene Specifies Structural Symmetry in Proteins. PLoS One 2015; 10:e0144473. [PMID: 26641668 PMCID: PMC4671585 DOI: 10.1371/journal.pone.0144473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 11/29/2022] Open
Abstract
Internal symmetry is commonly observed in the majority of fundamental protein folds. Meanwhile, sufficient evidence suggests that nascent polypeptide chains of proteins have the potential to start the co-translational folding process and this process allows mRNA to contain additional information on protein structure. In this paper, we study the relationship between gene sequences and protein structures from the viewpoint of symmetry to explore how gene sequences code for structural symmetry in proteins. We found that, for a set of two-fold symmetric proteins from left-handed beta-helix fold, intragenic symmetry always exists in their corresponding gene sequences. Meanwhile, codon usage bias and local mRNA structure might be involved in modulating translation speed for the formation of structural symmetry: a major decrease of local codon usage bias in the middle of the codon sequence can be identified as a common feature; and major or consecutive decreases in local mRNA folding energy near the boundaries of the symmetric substructures can also be observed. The results suggest that gene duplication and fusion may be an evolutionarily conserved process for this protein fold. In addition, the usage of rare codons and the formation of higher order of secondary structure near the boundaries of symmetric substructures might have coevolved as conserved mechanisms to slow down translation elongation and to facilitate effective folding of symmetric substructures. These findings provide valuable insights into our understanding of the mechanisms of translation and its evolution, as well as the design of proteins via symmetric modules.
Collapse
Affiliation(s)
- Xiaojuan Shen
- Department of Information Engineering, Shaoyang University, Shaoyang, Hunan, China
- Key Laboratory of Human-Machine Intelligence-Synergy Systems of Chinese Academy of Sciences (CAS), Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, China
- Department of Biology, South University of Science and Technology of China, Shenzhen, China
| | - Tongcheng Huang
- Department of Information Engineering, Shaoyang University, Shaoyang, Hunan, China
| | - Guanyu Wang
- Department of Biology, South University of Science and Technology of China, Shenzhen, China
| | - Guanglin Li
- Key Laboratory of Human-Machine Intelligence-Synergy Systems of Chinese Academy of Sciences (CAS), Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, China
| |
Collapse
|
10
|
|
11
|
Voet ARD, Noguchi H, Addy C, Simoncini D, Terada D, Unzai S, Park SY, Zhang KYJ, Tame JRH. Computational design of a self-assembling symmetrical β-propeller protein. Proc Natl Acad Sci U S A 2014; 111:15102-7. [PMID: 25288768 PMCID: PMC4210308 DOI: 10.1073/pnas.1412768111] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The modular structure of many protein families, such as β-propeller proteins, strongly implies that duplication played an important role in their evolution, leading to highly symmetrical intermediate forms. Previous attempts to create perfectly symmetrical propeller proteins have failed, however. We have therefore developed a new and rapid computational approach to design such proteins. As a test case, we have created a sixfold symmetrical β-propeller protein and experimentally validated the structure using X-ray crystallography. Each blade consists of 42 residues. Proteins carrying 2-10 identical blades were also expressed and purified. Two or three tandem blades assemble to recreate the highly stable sixfold symmetrical architecture, consistent with the duplication and fusion theory. The other proteins produce different monodisperse complexes, up to 42 blades (180 kDa) in size, which self-assemble according to simple symmetry rules. Our procedure is suitable for creating nano-building blocks from different protein templates of desired symmetry.
Collapse
Affiliation(s)
- Arnout R D Voet
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroki Noguchi
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Christine Addy
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - David Simoncini
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; and
| | - Daiki Terada
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Satoru Unzai
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; and
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
12
|
Tóth-Petróczy A, Tawfik DS. The robustness and innovability of protein folds. Curr Opin Struct Biol 2014; 26:131-8. [PMID: 25038399 DOI: 10.1016/j.sbi.2014.06.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 11/30/2022]
Abstract
Assignment of protein folds to functions indicates that >60% of folds carry out one or two enzymatic functions, while few folds, for example, the TIM-barrel and Rossmann folds, exhibit hundreds. Are there structural features that make a fold amenable to functional innovation (innovability)? Do these features relate to robustness--the ability to readily accumulate sequence changes? We discuss several hypotheses regarding the relationship between the architecture of a protein and its evolutionary potential. We describe how, in a seemingly paradoxical manner, opposite properties, such as high stability and rigidity versus conformational plasticity and structural order versus disorder, promote robustness and/or innovability. We hypothesize that polarity--differentiation and low connectivity between a protein's scaffold and its active-site--is a key prerequisite for innovability.
Collapse
Affiliation(s)
- Agnes Tóth-Petróczy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
13
|
Žurga S, Pohleven J, Renko M, Bleuler-Martinez S, Sosnowski P, Turk D, Künzler M, Kos J, Sabotič J. A novel β-trefoil lectin from the parasol mushroom (Macrolepiota procera) is nematotoxic. FEBS J 2014; 281:3489-506. [PMID: 24930858 DOI: 10.1111/febs.12875] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED Lectins are carbohydrate-binding proteins present in all organisms. Some cytoplasmic lectins from fruiting bodies of dikaryotic fungi are toxic against a variety of parasites and predators. We have isolated, cloned and expressed a novel, single domain lectin from Macrolepiota procera, designated MpL. Determination of the crystal structure revealed that MpL is a ricin B-like lectin with a β-trefoil fold. Biochemical characterization, site-directed mutagenesis, co-crystallization with carbohydrates, isothermal titration calorimetry and glycan microarray analyses show that MpL forms dimers with the carbohydrate-binding site at the α-repeat, with the highest specificity for terminal N-acetyllactosamine and other β-galactosides. A second putative carbohydrate-binding site with a low affinity for galactose is present at the γ-repeat. In addition, a novel hydrophobic binding site was detected in MpL with specificity for molecules other than carbohydrates. The tissue specific distribution of MpL in the stipe and cap tissue of fruiting bodies and its toxicity towards the nematode Caenorhabditis elegans indicate a function of MpL in protecting fruiting bodies against predators and parasites. DATABASE Nucleotide sequence data have been deposited in the DDBJ/EMBL/GenBank databases under accession numbers HQ449738 and HQ449739. Structural data have been deposited in the Protein Data Bank under accession codes 4ION, 4IYB, 4IZX and 4J2S.
Collapse
Affiliation(s)
- Simon Žurga
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Myers-Turnbull D, Bliven SE, Rose PW, Aziz ZK, Youkharibache P, Bourne PE, Prlić A. Systematic detection of internal symmetry in proteins using CE-Symm. J Mol Biol 2014; 426:2255-68. [PMID: 24681267 DOI: 10.1016/j.jmb.2014.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/26/2022]
Abstract
Symmetry is an important feature of protein tertiary and quaternary structures that has been associated with protein folding, function, evolution, and stability. Its emergence and ensuing prevalence has been attributed to gene duplications, fusion events, and subsequent evolutionary drift in sequence. This process maintains structural similarity and is further supported by this study. To further investigate the question of how internal symmetry evolved, how symmetry and function are related, and the overall frequency of internal symmetry, we developed an algorithm, CE-Symm, to detect pseudo-symmetry within the tertiary structure of protein chains. Using a large manually curated benchmark of 1007 protein domains, we show that CE-Symm performs significantly better than previous approaches. We use CE-Symm to build a census of symmetry among domain superfamilies in SCOP and note that 18% of all superfamilies are pseudo-symmetric. Our results indicate that more domains are pseudo-symmetric than previously estimated. We establish a number of recurring types of symmetry-function relationships and describe several characteristic cases in detail. With the use of the Enzyme Commission classification, symmetry was found to be enriched in some enzyme classes but depleted in others. CE-Symm thus provides a methodology for a more complete and detailed study of the role of symmetry in tertiary protein structure [availability: CE-Symm can be run from the Web at http://source.rcsb.org/jfatcatserver/symmetry.jsp. Source code and software binaries are also available under the GNU Lesser General Public License (version 2.1) at https://github.com/rcsb/symmetry. An interactive census of domains identified as symmetric by CE-Symm is available from http://source.rcsb.org/jfatcatserver/scopResults.jsp].
Collapse
Affiliation(s)
- Douglas Myers-Turnbull
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Spencer E Bliven
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter W Rose
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zaid K Aziz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Philip E Bourne
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Andreas Prlić
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Duran AM, Meiler J. Inverted topologies in membrane proteins: a mini-review. Comput Struct Biotechnol J 2013; 8:e201308004. [PMID: 24688744 PMCID: PMC3962082 DOI: 10.5936/csbj.201308004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/24/2013] [Accepted: 11/15/2013] [Indexed: 12/04/2022] Open
Abstract
Helical membrane proteins such as transporters, receptors, or channels often exhibit structural symmetry. Symmetry is perfect in homo-oligomers consisting of two or more copies of the same protein chain. Intriguingly, in single chain membrane proteins, often internal pseudo-symmetry is observed, in particular in transporters and channels. In several cases single chain proteins with pseudo-symmetry exist, that share the fold with homo-oligomers suggesting evolutionary pathways that involve gene duplication and fusion. It has been hypothesized that such evolutionary pathways allow for the rapid development of large proteins with novel functionality. At the same time symmetry can be leveraged to recognize highly symmetric substrates such as ions. Here we review helical transporter proteins with an inverted two-fold pseudo-symmetry. In this special scenario the symmetry axis lies in the membrane plane. As a result, the putative ancestral monomeric protein would insert in both directions into the membrane and its open-to-the-inside and open-to-the-outside conformations would be structurally identical and iso-energetic, giving a possible evolutionary pathway to create a transporter protein that needs to flip between the two states.
Collapse
Affiliation(s)
- Amanda M Duran
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA
| | - Jens Meiler
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
16
|
Shen X, Chen S, Li G. Role for gene sequence, codon bias and mRNA folding energy in modulating structural symmetry of proteins. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:596-9. [PMID: 24109757 DOI: 10.1109/embc.2013.6609570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Structural symmetry in proteins is commonly observed in the majority of fundamental protein folds. Meanwhile, nascent polypeptide chains of proteins have the potential to start the co-translational folding process and this process can have drastic effects on protein structure. Thus we are interested in understanding mechanisms that gene adopts in specifying structural symmetry in proteins. In the present paper, we reveal that for two representative symmetric proteins from (aβ)8-barrel fold and beta-trefoil fold, intragenic symmetry is detected in the corresponding gene sequences. Codon bias and mRNA folding energy might be involved in mediating translation speed for the formation of structural symmetry: at least one major decrease in both codon bias and mRNA folding energy can be observed in the connecting region of the symmetric substructures along the codon sequence. Results suggest that gene duplication and fusion is responsible for structural symmetry in these proteins, and the usage of rare codons or higher order of secondary structure near the boundaries of symmetric substructures might be selected in order to slow down translation speed for effectively co-translational folding process of symmetric proteins.
Collapse
|