1
|
Liu X, Wang W. Gating mechanism of the human α1β GlyR by glycine. Structure 2024; 32:1621-1631.e3. [PMID: 39146932 PMCID: PMC11562016 DOI: 10.1016/j.str.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of mammalian neurotransmitter receptors. Recent resolution of heteromeric GlyR structures in multiple functional states raised fundamental questions regarding the gating mechanism of GlyR, and generally the Cys-loop family receptors. Here, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that, while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is sufficient for activation and necessary for high-efficacy gating. Differential glycine concentration dependence of desensitization rate, extent, and its recovery suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout the glycine gating cycle. This model likely applies generally to the Cys-loop receptors and informs on pharmaceutical endeavors.
Collapse
Affiliation(s)
- Xiaofen Liu
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiwei Wang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Yan J, Chen L, Warshel A, Bai C. Exploring the Activation Process of the Glycine Receptor. J Am Chem Soc 2024; 146:26297-26312. [PMID: 39279763 DOI: 10.1021/jacs.4c08489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Glycine receptors (GlyR) conduct inhibitory glycinergic neurotransmission in the spinal cord and the brainstem. They play an important role in muscle tone, motor coordination, respiration, and pain perception. However, the mechanism underlying GlyR activation remains unclear. There are five potential glycine binding sites in α1 GlyR, and different binding patterns may cause distinct activation or desensitization behaviors. In this study, we investigated the coupling of protein conformational changes and glycine binding events to elucidate the influence of binding patterns on the activation and desensitization processes of α1 GlyRs. Subsequently, we explored the energetic distinctions between the apical and lateral pathways during α1 GlyR conduction to identify the pivotal factors in the ion conduction pathway preference. Moreover, we predicted the mutational effects of the key residues and verified our predictions using electrophysiological experiments. For the mutants that can be activated by glycine, the predictions of the mutational directions were all correct. The strength of the mutational effects was assessed using Pearson's correlation coefficient, yielding a value of -0.77 between the calculated highest energy barriers and experimental maximum current amplitudes. These findings contribute to our understanding of GlyR activation, identify the key residues of GlyRs, and provide guidance for mechanistic studies on other pLGICs.
Collapse
Affiliation(s)
- Junfang Yan
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
3
|
Woof L, Cooper S, Kennedy CJ. The effects of SLICE®- and ivermectin-contaminated sediment on avoidance behaviour and oxygen consumption in marine benthic invertebrates. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106155. [PMID: 37690394 DOI: 10.1016/j.marenvres.2023.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Pest management strategies to reduce sea lice infestations in the salmon aquaculture industry include in-feed treatments with ivermectin (IVM) and SLICE® (active ingredient [AI] emamectin benzoate [EMB]), which can result in local contamination of the environment. These compounds partition to sediments, have moderate persistence, and may pose a risk to non-target benthic organisms. The sub-lethal effects of EMB, IVM and a combination of both (EMB/IVM) on the benthic amphipod Eohaustorius estuarius and polychaete Nereis virens at environmentally relevant sediment concentrations were examined in subchronic exposures (28-30-d). E. estuarius avoided sediment containing >50 μg/kg IVM alone and in combination with EMB. N. virens avoided sediment with >50 μg/kg IVM and >0.5 μg/kg EMB/IVM and exhibited impaired burrowing and locomotory behaviour with both treatments. Oxygen consumption was significantly decreased in E. estuarius (up to 50% compared to controls) and increased in N. virens (by ∼ 200%) when exposed to EMB, IVM and EMB/IVM at concentrations <5 μg/kg. IVM, SLICE® and combination exposures at environmentally relevant concentrations caused adverse effects in E. estuarius and N. virens which could significantly alter organism fitness near salmon aquaculture operations.
Collapse
Affiliation(s)
- Lindsay Woof
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephanie Cooper
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
4
|
Solntseva EI, Bukanova JV, Kondratenko R, Kudova E. Corticosteroids as Selective and Effective Modulators of Glycine Receptors. ACS Chem Neurosci 2023; 14:3132-3142. [PMID: 37584305 PMCID: PMC10485894 DOI: 10.1021/acschemneuro.3c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
The mechanism of the negative impact of corticosteroids on the induction and progress of mental illness remains unclear. In this work, we studied the effects of corticosteroids on the activity of neuronal glycine receptors (GlyR) and GABA-A receptors (GABAAR) by measuring the chloride current induced by the application of GABA (2 or 5 μM) to isolated cerebellar Purkinje cells (IGABA) and by the application of glycine (100 μM) to pyramidal neurons of the rat hippocampus (IGly). It was found that corticosterone, 5α-dihydrodeoxycorticosterone, allotetrahydrocorticosterone, cortisol, and 17α,21-dihydroxypregnenolone were able to accelerate the desensitization of the IGly at physiological concentrations (IC50 values varying from 0.39 to 0.72 μM). Next, cortisone, 11-deoxycortisol, 11-deoxycorticosterone, 5β-dihydrodeoxycorticosterone, and tetrahydrocorticosterone accelerated the desensitization of IGly with IC50 values varying from 10.3 to 15.2 μM. Allotetrahydrocorticosterone and tetrahydrocorticosterone potentiated the IGABA albeit with high EC50 values (18-23 μM). The rest of the steroids had no effect on IGABA in the range of concentrations of 1-100 μM. Finally, our study has suggested a structural relationship of the 3β-hydroxyl group/3-oxo group with the selective modulatory activity on GlyRs in contrast to the 3α-hydroxyl group that is pivotal for GABAARs. In summary, our results suggest that increased GlyR desensitization by corticosteroids may contribute to brain dysfunction under chronic stress and identify corticosteroids for further development as selective modulators of GlyRs.
Collapse
Affiliation(s)
- Elena I. Solntseva
- Functional
Synaptology Laboratory, Brain Research Institute,
Research Center of Neurology, Moscow 125367, Russia
| | - Julia V. Bukanova
- Functional
Synaptology Laboratory, Brain Research Institute,
Research Center of Neurology, Moscow 125367, Russia
| | - Rodion Kondratenko
- Functional
Synaptology Laboratory, Brain Research Institute,
Research Center of Neurology, Moscow 125367, Russia
| | - Eva Kudova
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
5
|
Solntseva EI, Bukanova JV, Skrebitsky VG, Kudova E. Pregnane neurosteroids exert opposite effects on GABA and glycine-induced chloride current in isolated rat neurons. Hippocampus 2022; 32:552-563. [PMID: 35703084 DOI: 10.1002/hipo.23449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
The ability of endogenous neurosteroids (NSs) with pregnane skeleton modified at positions C-3 and C-5 to modulate the functional activity of inhibitory glycine receptors (GlyR) and ionotropic ɣ-aminobutyric acid receptors (GABAA R) was estimated. The glycine and GABA-induced chloride current (IGly and IGABA ) were measured in isolated pyramidal neurons of the rat hippocampus and in isolated rat cerebellar Purkinje cells, respectively. Our experiments demonstrated that pregnane NSs affected IGABA and IGly in a different manner. At low concentrations (up to 5 μM), tested pregnane NSs increased or did not change the peak amplitude of the IGABA , but reduced the IGly by decreasing the peak amplitude and/or accelerating desensitization. Namely, allopregnanolone (ALLO), epipregnanolone (EPI), pregnanolone (PA), pregnanolone sulfate (PAS) and 5β-dihydroprogesterone (5β-DHP) enhanced the IGABA in Purkinje cells. Dose-response curves plotted in the concentration range from 1 nM to 100 μM were smooth for EPI and 5β-DHP, but bell-shaped for ALLO, PA and PAS. The peak amplitude of the IGly was reduced by PA, PAS, and 5α- and 5β-DHP. In contrast, ALLO, ISO and EPI did not modulate it. Dose-response curves for the inhibition of the IGly peak amplitude were smooth for all active compounds. All NSs accelerated desensitization of the IGly . The dose-response relationship for this effect was smooth for ALLO, PA, PAS and 5β-DHP, but it was U-shaped for EPI, 5α-DHP and ISO. These results, together with our previous results on NSs with androstane skeleton, offer comprehensive overview for understanding the mechanisms of effects of NSs on IGly and IGABA .
Collapse
Affiliation(s)
- Elena I Solntseva
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Julia V Bukanova
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Vladimir G Skrebitsky
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Progress in nicotinic receptor structural biology. Neuropharmacology 2020; 171:108086. [PMID: 32272141 DOI: 10.1016/j.neuropharm.2020.108086] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Here we begin by briefly reviewing landmark structural studies on the nicotinic acetylcholine receptor. We highlight challenges that had to be overcome to push through resolution barriers, then focus on what has been gleaned in the past few years from crystallographic and single particle cryo-EM studies of different nicotinic receptor subunit assemblies and ligand complexes. We discuss insights into ligand recognition, ion permeation, and allosteric gating. We then highlight some foundational aspects of nicotinic receptor structural biology that remain unresolved and are areas ripe for future exploration. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
|
7
|
Brodzki M, Michałowski MA, Gos M, Mozrzymas JW. Mutations of α 1F45 residue of GABA A receptor loop G reveal its involvement in agonist binding and channel opening/closing transitions. Biochem Pharmacol 2020; 177:113917. [PMID: 32194055 DOI: 10.1016/j.bcp.2020.113917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
GABAA receptors (GABAARs) mediate inhibitory neurotransmission in the mammalian brain. Recently, numerous GABAAR static structures have been published, but the molecular mechanisms of receptor activation remain elusive. Loop G is a rigid β-strand belonging to an extensive β-sheet that spans the regions involved in GABA binding and the interdomain interface which is important in receptor gating. It has been reported that loop G participates in ligand binding and gating of GABAARs, however, it remains unclear which specific gating transitions are controlled by this loop. Analysis of macroscopic responses revealed that mutation at the α1F45 residue (loop G midpoint) resulted in slower macroscopic desensitization and accelerated deactivation. Single-channel analysis revealed that these mutations also affected open and closed times distributions and reduced open probability. Kinetic modeling demonstrated that mutations affected primarily channel opening/closing and ligand binding with a minor effect on preactivation. Thus, α1F45 residue, in spite of its localization close to binding site, affects late gating transitions. In silico structural analysis suggested an important role of α1F45 residue in loop G stability and rigidity as well as in general structure of the binding site. We propose that the rigid β-sheet comprising loop G is well suited for long range communication within GABAAR but this mechanism becomes impaired when α1F45 is mutated. In conclusion, we demonstrate that loop G is crucial in controlling both binding and gating of GABAARs. These data shed new light on GABAAR activation mechanism and may also be helpful in designing clinically relevant modulators.
Collapse
Affiliation(s)
- Marek Brodzki
- University of Wrocław, Department of Molecular Physiology and Neurobiology, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland.
| | - Michał A Michałowski
- University of Wrocław, Department of Molecular Physiology and Neurobiology, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland.
| | - Michalina Gos
- University of Wrocław, Department of Molecular Physiology and Neurobiology, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Jerzy W Mozrzymas
- Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland.
| |
Collapse
|
8
|
Kang Y, Saito M, Toyoda H. Molecular and Regulatory Mechanisms of Desensitization and Resensitization of GABA A Receptors with a Special Reference to Propofol/Barbiturate. Int J Mol Sci 2020; 21:ijms21020563. [PMID: 31952324 PMCID: PMC7014398 DOI: 10.3390/ijms21020563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
It is known that desensitization of GABAA receptor (GABAAR)-mediated currents is paradoxically correlated with the slowdown of their deactivation, i.e., resensitization. It has been shown that an upregulation of calcineurin enhances the desensitization of GABAAR-mediated currents but paradoxically prolongs the decay phase of inhibitory postsynaptic currents/potentials without appreciable diminution of their amplitudes. The paradoxical correlation between desensitization and resensitization of GABAAR-mediated currents can be more clearly seen in response to a prolonged application of GABA to allow more desensitization, instead of brief pulse used in previous studies. Indeed, hump-like GABAAR currents were produced after a strong desensitization at the offset of a prolonged puff application of GABA in pyramidal cells of the barrel cortex, in which calcineurin activity was enhanced by deleting phospholipase C-related catalytically inactive proteins to enhance the desensitization/resensitization of GABAAR-mediated currents. Hump-like GABAAR currents were also evoked at the offset of propofol or barbiturate applications in hippocampal or sensory neurons, but not GABA applications. Propofol and barbiturate are useful to treat benzodiazepine/alcohol withdrawal syndrome, suggesting that regulatory mechanisms of desensitization/resensitization of GABAAR-mediated currents are important in understanding benzodiazepine/alcohol withdrawal syndrome. In this review, we will discuss the molecular and regulatory mechanisms underlying the desensitization and resensitization of GABAAR-mediated currents and their functional significances.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Behavioral Physiology, Graduate School of Human Sciences, Osaka University, Osaka 565-0871, Japan
- Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul 110-749, Korea
- Correspondence: (Y.K.); (H.T.)
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima 890-8544, Japan;
| | - Hiroki Toyoda
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
- Correspondence: (Y.K.); (H.T.)
| |
Collapse
|
9
|
Munro L, Ladefoged LK, Padmanathan V, Andersen S, Schiøtt B, Kristensen AS. Conformational Changes in the 5-HT 3A Receptor Extracellular Domain Measured by Voltage-Clamp Fluorometry. Mol Pharmacol 2019; 96:720-734. [PMID: 31582575 DOI: 10.1124/mol.119.116657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/28/2019] [Indexed: 01/13/2023] Open
Abstract
The 5-hydroxytryptamine (5-HT) type 3 receptor is a member of the cysteine (Cys)-loop receptor super family of ligand-gated ion channels in the nervous system and is a clinical target in a range of diseases. The 5-HT3 receptor mediates fast serotonergic neurotransmission by undergoing a series of conformational changes initiated by ligand binding that lead to the rapid opening of an intrinsic cation-selective channel. However, despite the availability of high-resolution structures of a mouse 5-HT3 receptor, many important aspects of the mechanistic basis of 5-HT3 receptor function and modulation by drugs remain poorly understood. In particular, there is little direct evidence for the specific conformational changes predicted to occur during ligand-gated channel activation and desensitization. In the present study, we used voltage-clamp fluorometry (VCF) to measure conformational changes in regions surrounding the orthosteric binding site of the human 5-HT3A (h5-HT3A) receptor during binding of 5-HT and different classes of 5-HT3 receptor ligands. VCF utilizes parallel measurements of receptor currents with photon emission from fluorescent reporter groups covalently attached to specific positions in the receptor structure. Reporter groups that are highly sensitive to the local molecular environment can, in real time, report conformational changes as changes in fluorescence that can be correlated with changes in receptor currents reporting the functional states of the channel. Within the loop C, D, and E regions that surround the orthosteric binding site in the h5-HT3A receptor, we identify positions that are amenable to tagging with an environmentally sensitive reporter group that reports robust fluorescence changes upon 5-HT binding and receptor activation. We use these reporter positions to characterize the effect of ligand binding on the local structure of the orthosteric binding site by agonists, competitive antagonists, and allosterically acting channel activators. We observed that loop C appears to show distinct fluorescence changes for ligands of the same class, while loop D reports similar fluorescence changes for all ligands binding at the orthosteric site. In contrast, the loop E reporter position shows distinct changes for agonists, antagonists, and allosteric compounds, suggesting the conformational changes in this region are specific to ligand function. Interpretation of these results within the framework of current models of 5-HT3 and Cys-loop mechanisms are used to expand the understanding of how ligand binding in Cys-loop receptors relates to channel gating. SIGNIFICANCE STATEMENT: The 5-HT3 receptor is an important ligand-gated ion channel and drug target in the central and peripheral nervous system. Determining how ligand binding induced conformational changes in the receptor is central for understanding the structural mechanisms underlying 5-HT3 receptor function. Here, we employ voltage-gated fluorometry to characterize conformational changes in the extracellular domain of the human 5-HT3 receptor to identify intrareceptor motions during binding of a range of 5-HT3 receptor agonists and antagonists.
Collapse
Affiliation(s)
- Lachlan Munro
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Lucy Kate Ladefoged
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Vithushan Padmanathan
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Signe Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Birgit Schiøtt
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Atif M, Lynch JW, Keramidas A. The effects of insecticides on two splice variants of the glutamate-gated chloride channel receptor of the major malaria vector, Anopheles gambiae. Br J Pharmacol 2019; 177:175-187. [PMID: 31479507 DOI: 10.1111/bph.14855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Between half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately, resistance has emerged to the agents currently used to control A. gambiae, creating a demand for novel control measures. The pentameric glutamate-gated chloride channel (GluCl) expressed in the muscle and nerve cells of these organisms are a potentially important biological target for malaria control. The pharmacological properties of Anophiline GluCl receptors are, however, largely unknown. Accordingly, we compared the efficacy of four insecticides (lindane, fipronil, picrotoxin, and ivermectin) on two A. gambiae GluCl receptor splice variants with the aim of providing a molecular basis for designing novel anti-malaria treatments. EXPERIMENTAL APPROACH The A. gambiae GluCl receptor b1 and c splice variants were expressed homomerically in Xenopus laevis oocytes and studied with electrophysiological techniques, using two-electrode voltage-clamp. KEY RESULTS The b1 and c GluCl receptors were activated with similar potencies by glutamate and ivermectin. Fipronil was more potent than picrotoxin and lindane at inhibiting glutamate- and ivermectin-gated currents. Importantly, b1 GluCl receptors exhibited reduced sensitivity to picrotoxin and lindane. They also recovered from these effects to a greater extent than c GluCl receptors CONCLUSIONS AND IMPLICATIONS: The two splice variant subunits exhibited differential sensitivities to multiple, structurally divergent insecticides, without accompanying changes in the sensitivity to the endogenous neurotransmitter, glutamate, implying that drug resistance may be caused by alterations in relative subunit expression levels, without affecting physiological function. Our results strongly suggest that it should be feasible to develop novel subunit-specific pharmacological agents.
Collapse
Affiliation(s)
- Mohammed Atif
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Cobo R, Nikolaeva-Koleva M, Alberola-Die A, Fernández-Ballester G, González-Ros JM, Ivorra I, Morales A. Mechanisms of Blockade of the Muscle-Type Nicotinic Receptor by Benzocaine, a Permanently Uncharged Local Anesthetic. Neuroscience 2019; 439:62-79. [PMID: 31158437 DOI: 10.1016/j.neuroscience.2019.05.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Accepted: 05/22/2019] [Indexed: 11/25/2022]
Abstract
Most local anesthetics (LAs) are amine compounds bearing one or several phenolic rings. Many of them are protonated at physiological pH, but benzocaine (Bzc) is permanently uncharged, which is relevant because the effects of LAs on nicotinic acetylcholine (ACh) receptors (nAChRs) depend on their presence as uncharged or protonated species. The aims of this study were to assess the effects of Bzc on nAChRs and to correlate them with its binding to putative interacting sites on this receptor. nAChRs from Torpedo electroplaques were microtransplanted to Xenopus oocytes and currents elicited by ACh (IAChs), either alone or together with Bzc, were recorded at different potentials. Co-application of ACh with increasing concentrations of Bzc showed that Bzc reversibly blocked nAChRs. IACh inhibition by Bzc was voltage-independent, but the IACh rebound elicited when rinsing Bzc suggests an open-channel blockade. Besides, ACh and Bzc co-application enhanced nAChR desensitization. When Bzc was just pre-applied it also inhibited IACh, by blocking closed (resting) nAChRs. This blockade slowed down the kinetics of both the IACh activation and the recovery from blockade. The electrophysiological results indicate that Bzc effects on nAChRs are similar to those of 2,6-dimethylaniline, an analogue of the hydrophobic moiety of lidocaine. Furthermore, docking assays on models of the nAChR revealed that Bzc and DMA binding sites on nAChRs overlap fairly well. These results demonstrate that Bzc inhibits nAChRs by multiple mechanisms and contribute to better understanding both the modulation of nAChRs and how LAs elicit some of their clinical side effects. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Raúl Cobo
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - Armando Alberola-Die
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - José Manuel González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - Isabel Ivorra
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Andrés Morales
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| |
Collapse
|
12
|
Structural basis of neurosteroid anesthetic action on GABA A receptors. Nat Commun 2018; 9:3972. [PMID: 30266951 PMCID: PMC6162318 DOI: 10.1038/s41467-018-06361-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/28/2018] [Indexed: 12/05/2022] Open
Abstract
Type A γ-aminobutyric acid receptors (GABAARs) are inhibitory pentameric ligand-gated ion channels in the brain. Many anesthetics and neurosteroids act through binding to the GABAAR transmembrane domain (TMD), but the structural basis of their actions is not well understood and no resting-state GABAAR structure has been determined. Here, we report crystal structures of apo and the neurosteroid anesthetic alphaxalone-bound desensitized chimeric α1GABAAR (ELIC-α1GABAAR). The chimera retains the functional and pharmacological properties of GABAARs, including potentiation, activation and desensitization by alphaxalone. The apo-state structure reveals an unconventional activation gate at the intracellular end of the pore. The desensitized structure illustrates molecular determinants for alphaxalone binding to an inter-subunit TMD site. These structures suggest a plausible signaling pathway from alphaxalone binding at the bottom of the TMD to the channel gate in the pore-lining TM2 through the TM1–TM2 linker. The study provides a framework to discover new GABAAR modulators with therapeutic potential. The anesthetic alphaxalone binds γ-aminobutyric acid type A receptors (GABAARs) that play an important role in regulating sensory processes. Here the authors present the structures of a α1GABAAR chimera in the resting state and in an alphaxalone-bound desensitized state, which might facilitate the development of new GABAAR modulators.
Collapse
|
13
|
Bukanova JV, Solntseva EI, Kolbaev SN, Kudova E. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3α5β-pregnanolone derivatives. Neurochem Int 2018; 118:145-151. [PMID: 29886074 DOI: 10.1016/j.neuint.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
The ability of pregnanolone glutamate (PA-Glu), pregnanolone hemisuccinate (PA-hSuc) and pregnanolone hemipimelate (PA-hPim), neuroactive steroids with a negative modulatory effect on excitatory N-methyl-d-aspartate receptors, to influence the functional activity of inhibitory γ-aminobutyric acid and glycine receptors was estimated. The GABA- and glycine-induced chloride currents (IGABA and IGly) were measured in isolated pyramidal neurons of the rat hippocampus using the patch-clamp technique. Compound PA-Glu was found to potentiate IGABA and to inhibit IGly, while PA-hSuc and PA-hPim inhibited both IGABA and IGly. Moreover, PA-Glu, PA-hSuc, and PA-hPim had a greater effect on desensitization than on the peak amplitude of IGly. At a high concentration of glycine (500 μM), the effect of neurosteroids on the peak amplitude of IGly disappeared, and the acceleration of desensitization remained. The conversion of PA-Glu into androstane glutamate (AND-Glu), an analogue that lacks the C-17 acetyl moiety, completely eliminated the effects on these receptors. Our results indicate that the C-17 acetyl moiety is crucial for the action on IGABA and IGly. Our results indicate that the pregnanolone derivatives, in contrast to the androstane analogues, modulate IGABA and IGly at low micromolar concentrations and this family of neurosteroids can be useful for future structure-activity relationship studies of the steroid modulation of other receptor types.
Collapse
Affiliation(s)
| | | | | | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
14
|
A Missense Mutation A384P Associated with Human Hyperekplexia Reveals a Desensitization Site of Glycine Receptors. J Neurosci 2018; 38:2818-2831. [PMID: 29440552 DOI: 10.1523/jneurosci.0674-16.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 11/21/2022] Open
Abstract
Hyperekplexia, an inherited neuronal disorder characterized by exaggerated startle responses with unexpected sensory stimuli, is caused by dysfunction of glycinergic inhibitory transmission. From analysis of newly identified human hyperekplexia mutations in the glycine receptor (GlyR) α1 subunit, we found that an alanine-to-proline missense mutation (A384P) resulted in substantially higher desensitization level and lower agonist sensitivity of homomeric α1 GlyRs when expressed in HEK cells. The incorporation of the β subunit fully reversed the reduction in agonist sensitivity and partially reversed the desensitization of α1A384P The heteromeric α1A384Pβ GlyRs showed enhanced desensitization but unchanged agonist-induced maximum responses, surface expression, main channel conductance, and voltage dependence compared with that of the wild-type α1β (α1WTβ) GlyRs. Coexpression of the R392H and A384P mutant α1 subunits, which mimic the expression of the compound heterozygous mutation in a hyperekplexia patient, resulted in channel properties similar to those with α1A384P subunit expression alone. In comparison, another human hyperekplexia mutation α1P250T, which was previously reported to enhance desensitization, caused a strong reduction in maximum currents in addition to the altered desensitization. These results were further confirmed by overexpression of α1P250T or α1A384P subunits in cultured neurons isolated from SD rats of either sex. Moreover, the IPSC-like responses of cells expressing α1A384Pβ induced by repeated glycine pulses showed a stronger frequency-dependent reduction than those expressing α1WTβ. Together, our findings demonstrate that A384 is associated with the desensitization site of the α1 subunit and its proline mutation produced enhanced desensitization of GlyRs, which contributes to the pathogenesis of human hyperekplexia.SIGNIFICANCE STATEMENT Human startle disease is caused by impaired synaptic inhibition in the brainstem and spinal cord, which is due to either direct loss of GlyR channel function or reduced number of synaptic GlyRs. Considering that fast decay kinetics of GlyR-mediated inhibitory synaptic responses, the question was raised whether altered desensitization of GlyRs will cause dysfunction of glycine transmission and disease phenotypes. Here, we found that the α1 subunit mutation A384P, identified from startle disease patients, results in enhanced desensitization and leads to rapidly decreasing responses in the mutant GlyRs when they are activated repeatedly by the synaptic-like simulation. These observations suggest that the enhanced desensitization of postsynaptic GlyRs could be the primary pathogenic mechanism of human startle disease.
Collapse
|
15
|
Atif M, Estrada-Mondragon A, Nguyen B, Lynch JW, Keramidas A. Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. PLoS Pathog 2017; 13:e1006663. [PMID: 28968469 PMCID: PMC5638611 DOI: 10.1371/journal.ppat.1006663] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/12/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Ivermectin (IVM) is a widely-used anthelmintic that works by binding to and activating glutamate-gated chloride channel receptors (GluClRs) in nematodes. The resulting chloride flux inhibits the pharyngeal muscle cells and motor neurons of nematodes, causing death by paralysis or starvation. IVM resistance is an emerging problem in many pest species, necessitating the development of novel drugs. However, drug optimisation requires a quantitative understanding of GluClR activation and modulation mechanisms. Here we investigated the biophysical properties of homomeric α (avr-14b) GluClRs from the parasitic nematode, H. contortus, in the presence of glutamate and IVM. The receptor proved to be highly responsive to low nanomolar concentrations of both compounds. Analysis of single receptor activations demonstrated that the GluClR oscillates between multiple functional states upon the binding of either ligand. The G36’A mutation in the third transmembrane domain, which was previously thought to hinder access of IVM to its binding site, was found to decrease the duration of active periods and increase receptor desensitisation. On an ensemble macropatch level the mutation gave rise to enhanced current decay and desensitisation rates. Because these responses were common to both glutamate and IVM, and were observed under conditions where agonist binding sites were likely saturated, we infer that G36’A affects the intrinsic properties of the receptor with no specific effect on IVM binding mechanisms. These unexpected results provide new insights into the activation and modulatory mechanisms of the H. contortus GluClRs and provide a mechanistic framework upon which the actions of drugs can be reliably interpreted. IVM is a gold standard anti-parasitic drug that is used extensively to control invertebrate parasites pest species. The drug targets the glutamate-gated chloride channel receptor (GluClR) found on neurons and muscle cells of these organisms, causing paralysis and death. However, IVM resistance is becoming a serious problem in human and animal health, as well as human food production. We provide the first comprehensive investigation of the functional properties of the GluClR of H. contortus, which is a major parasite in grazing animals, such as sheep and goats. We compared glutamate and IVM induced activity of the wild-type and a mutant GluClR, G36’A, that markedly reduces IVM sensitivity in wild populations of pests. Our data demonstrate that the mutation reduces IVM sensitivity by altering the functional properties of the GluClR rather than specifically affecting the binding of IVM, even though the mutation occurs at the IVM binding site. This study provides a mechanistic framework upon which the actions of new candidate anthelmintic drugs can be interpreted.
Collapse
Affiliation(s)
- Mohammed Atif
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Bindi Nguyen
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Joseph W. Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JL)
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JL)
| |
Collapse
|
16
|
A possible desensitized state conformation of the human α 7 nicotinic receptor: A molecular dynamics study. Biophys Chem 2017; 229:99-109. [DOI: 10.1016/j.bpc.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 11/18/2022]
|
17
|
Nemecz Á, Prevost MS, Menny A, Corringer PJ. Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels. Neuron 2017; 90:452-70. [PMID: 27151638 DOI: 10.1016/j.neuron.2016.03.032] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 10/21/2022]
Abstract
Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.
Collapse
Affiliation(s)
- Ákos Nemecz
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France
| | - Marie S Prevost
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Anaïs Menny
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France; Université Pierre et Marie Curie (UPMC), Cellule Pasteur, 75005 Paris, France
| | - Pierre-Jean Corringer
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France.
| |
Collapse
|
18
|
Principalli MA, Lemel L, Rongier A, Godet AC, Langer K, Revilloud J, Darré L, Domene C, Vivaudou M, Moreau CJ. Functional mapping of the N-terminal arginine cluster and C-terminal acidic residues of Kir6.2 channel fused to a G protein-coupled receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2144-2153. [PMID: 28757124 DOI: 10.1016/j.bbamem.2017.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/06/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
Ion channel-coupled receptors (ICCRs) are original man-made ligand-gated ion channels created by fusion of G protein-coupled receptors (GPCRs) to the inward-rectifier potassium channel Kir6.2. GPCR conformational changes induced by ligand binding are transduced into electrical current by the ion channel. This functional coupling is closely related to the length of the linker region formed by the GPCR C-terminus (C-ter) and Kir6.2N-terminus (N-ter). Manipulating the GPCR C-ter length allows to finely tune the channel regulation, both in amplitude and sign (opening or closing Kir6.2). In this work, we demonstrate that the primary sequence of the channel N-terminal domain is an additional parameter for the functional coupling with GPCRs. As for all Kir channels, a cluster of basic residues is present in the N-terminal domain of Kir6.2 and is composed of 5 arginines which are proximal to the GPCR C-ter in the fusion proteins. Using a functional mapping approach, we demonstrate the role of specific arginines (R27 and R32) for the function of ICCRs, indicating that the position and not the cluster of positively-charged arginines is critical for the channel regulation by the GPCR. Following observations provided by molecular dynamics simulation, we explore the hypothesis of interaction of these arginines with acidic residues, and using site-directed mutagenesis, we identified aspartate D307 and glutamate E308 residues as critical for the function of ICCRs. These results demonstrate the critical role of the N-terminal and C-terminal charged residues of Kir6.2 for its allosteric regulation by the fused GPCR.
Collapse
Affiliation(s)
- Maria A Principalli
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, LabEx ICST, 71, avenue des Martyrs, CS10090, F-38044 Grenoble, France
| | - Laura Lemel
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, LabEx ICST, 71, avenue des Martyrs, CS10090, F-38044 Grenoble, France
| | - Anaëlle Rongier
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, LabEx ICST, 71, avenue des Martyrs, CS10090, F-38044 Grenoble, France
| | - Anne-Claire Godet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, LabEx ICST, 71, avenue des Martyrs, CS10090, F-38044 Grenoble, France
| | - Karla Langer
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, LabEx ICST, 71, avenue des Martyrs, CS10090, F-38044 Grenoble, France
| | - Jean Revilloud
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, LabEx ICST, 71, avenue des Martyrs, CS10090, F-38044 Grenoble, France
| | - Leonardo Darré
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Carmen Domene
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK; Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Michel Vivaudou
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, LabEx ICST, 71, avenue des Martyrs, CS10090, F-38044 Grenoble, France
| | - Christophe J Moreau
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, LabEx ICST, 71, avenue des Martyrs, CS10090, F-38044 Grenoble, France.
| |
Collapse
|
19
|
Basak S, Schmandt N, Gicheru Y, Chakrapani S. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel. eLife 2017; 6:23886. [PMID: 28262093 PMCID: PMC5378477 DOI: 10.7554/elife.23886] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/04/2017] [Indexed: 12/14/2022] Open
Abstract
Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω−3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels. DOI:http://dx.doi.org/10.7554/eLife.23886.001 The nerve cells (or neurons) in the brain communicate with each other by releasing chemicals called neurotransmitters that bind to ion channels on neighboring neurons. This ultimately causes ions to flow in or out of the receiving neuron through these ion channels; this ion flow determines how the neuron responds. One family of ion channels that is found at the junction between neurons, and between neurons and muscle fibers, is known as the pentameric ligand-gated ion channels (or pLGICs). These channels act as ‘gates’ that open to allow ions through them when a neurotransmitter binds to the channel. In addition to the open ‘active’ state, the channels can take on two different ‘inactive’ states that do not allow ions to pass through the channel: a closed (resting) state and a desensitized state (that is still bound to the neurotransmitter). Understanding how channels switch between these states is important for designing drugs that correct problems that cause the channels to work incorrectly. Problems that affect the desensitized state have been linked to neurological disorders such as epilepsy. Medically important molecules such as anesthetics and alcohols are thought to affect desensitization, and drugs that target desensitized ion channels may present ways of treating neurological disorders with fewer side effects. Docosahexaenoic acid (DHA) is an abundant lipid molecule that is present in the membranes of neurons. It is one of the key ingredients in fish oil supplements and is thought to enhance learning and memory. DHA affects the desensitization of pLGICs but it is not clear exactly how it does so. Basak et al. now show that DHA affects a bacterial pLGIC in the same way as it affects human channels – by enhancing desensitization. Using a technique called X-ray crystallography to analyze the channel while bound to DHA revealed a previously unobserved channel structure. The DHA molecule binds to a site at the edge of the channel and causes a change in its structure that leaves the upper part of the channel open while the lower part is constricted. Basak et al. predict that molecules such as anesthetics target this desensitized state. The next step will be to obtain the structures of bacterial and human pLGIC channels in a natural membrane environment. This will allow us to better understand the changes in structure that the channels go through as they transmit signals between neurons, and so help in the development of new treatments for neurological disorders. DOI:http://dx.doi.org/10.7554/eLife.23886.002
Collapse
Affiliation(s)
- Sandip Basak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Nicolaus Schmandt
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Yvonne Gicheru
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
20
|
Di Maio D, Chandramouli B, Brancato G. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel. PLoS One 2015; 10:e0140258. [PMID: 26465896 PMCID: PMC4605793 DOI: 10.1371/journal.pone.0140258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/12/2015] [Indexed: 11/29/2022] Open
Abstract
Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested.
Collapse
Affiliation(s)
- Danilo Di Maio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | | | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- * E-mail:
| |
Collapse
|
21
|
Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance. Proc Natl Acad Sci U S A 2015; 112:E5796-804. [PMID: 26460012 DOI: 10.1073/pnas.1511462112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.
Collapse
|
22
|
Langlhofer G, Janzen D, Meiselbach H, Villmann C. Length of the TM3-4 loop of the glycine receptor modulates receptor desensitization. Neurosci Lett 2015; 600:176-81. [DOI: 10.1016/j.neulet.2015.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/11/2015] [Accepted: 06/07/2015] [Indexed: 01/17/2023]
|
23
|
Kinde MN, Chen Q, Lawless MJ, Mowrey DD, Xu J, Saxena S, Xu Y, Tang P. Conformational Changes Underlying Desensitization of the Pentameric Ligand-Gated Ion Channel ELIC. Structure 2015; 23:995-1004. [PMID: 25960405 DOI: 10.1016/j.str.2015.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/18/2022]
Abstract
Structural rearrangements underlying functional transitions of pentameric ligand-gated ion channels (pLGICs) are not fully understood. Using (19)F nuclear magnetic resonance and electron spin resonance spectroscopy, we found that ELIC, a pLGIC from Erwinia chrysanthemi, expanded the extracellular end and contracted the intracellular end of its pore during transition from the resting to an apparent desensitized state. Importantly, the contraction at the intracellular end of the pore likely forms a gate to restrict ion transport in the desensitized state. This gate differs from the hydrophobic gate present in the resting state. Conformational changes of the TM2-TM3 loop were limited to the N-terminal end. The TM4 helices and the TM3-TM4 loop appeared relatively insensitive to agonist-mediated structural rearrangement. These results indicate that conformational changes accompanying functional transitions are not uniform among different ELIC regions. This work also revealed the co-existence of multiple conformations for a given state and suggested asymmetric conformational arrangements in a homomeric pLGIC.
Collapse
Affiliation(s)
- Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Qiang Chen
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David D Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jiawei Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
24
|
Talwar S, Lynch JW. Investigating ion channel conformational changes using voltage clamp fluorometry. Neuropharmacology 2015; 98:3-12. [PMID: 25839896 DOI: 10.1016/j.neuropharm.2015.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022]
Abstract
Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Sahil Talwar
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
25
|
Fryatt AG, Evans RJ. Kinetics of conformational changes revealed by voltage-clamp fluorometry give insight to desensitization at ATP-gated human P2X1 receptors. Mol Pharmacol 2014; 86:707-15. [PMID: 25296688 DOI: 10.1124/mol.114.095307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP acts as an extracellular signaling molecule at cell-surface P2X receptors, mediating a variety of important physiologic and pathophysiologic roles. Homomeric P2X1 receptors open on binding ATP and then transition to an ATP-bound closed, desensitized state that requires an agonist-free washout period to recover. Voltage-clamp fluorometry was used to record ion channel activity and conformational changes simultaneously at defined positions in the extracellular loop of the human P2X1 receptor during not only agonist binding and desensitization but also during recovery. ATP evoked distinct conformational changes adjacent to the agonist binding pocket in response to channel activation and desensitization. The speed of recovery of the conformational change on agonist washout was state-dependent, with a faster time constant from the open (5 seconds) compared with the desensitized (75 seconds) form of the channel. The ability of ATP to evoke channel activity on washout after desensitization was not dependent on the degree of conformational rearrangement in the extracellular loop, and desensitization was faster from the partially recovered state. An intracellular mutation in the carboxyl terminus that slowed recovery of P2X1 receptor currents (7-fold less recovery at 30 seconds) had no effect on the time course of the extracellular conformational rearrangements. This study highlights that the intracellular portion of the receptor can regulate recovery and shows for the first time that this is by a mechanism independent of changes in the extracellular domain, suggesting the existence of a distinct desensitization gate in this novel class of ligand gated ion channels.
Collapse
Affiliation(s)
- Alistair G Fryatt
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | - Richard J Evans
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
26
|
Tillman TS, Seyoum E, Mowrey DD, Xu Y, Tang P. ELIC-α7 Nicotinic acetylcholine receptor (α7nAChR) chimeras reveal a prominent role of the extracellular-transmembrane domain interface in allosteric modulation. J Biol Chem 2014; 289:13851-7. [PMID: 24695730 PMCID: PMC4022858 DOI: 10.1074/jbc.m113.524611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 03/10/2014] [Indexed: 01/08/2023] Open
Abstract
The native α7 nicotinic acetylcholine receptor (α7nAChR) is a homopentameric ligand-gated ion channel mediating fast synaptic transmission and is of pharmaceutical interest for treatment of numerous disorders. The transmembrane domain (TMD) of α7nAChR has been identified as a target for positive allosteric modulators (PAMs), but it is unclear whether modulation occurs through changes entirely within the TMD or changes involving both the TMD and the extracellular domain (ECD)-TMD interface. In this study, we constructed multiple chimeras using the TMD of human α7nAChR and the ECD of a prokaryotic homolog, ELIC, which is not sensitive to these modulators, and for which a high resolution structure has been solved. Functional ELIC-α7nAChR (EA) chimeras were obtained when their ECD-TMD interfaces were modified to resemble either the ELIC interface (EAELIC) or α7nAChR interface (EAα7). Both EAα7 and EAELIC show similar activation response and desensitization characteristics, but only EAα7 retained the unique pharmacology of α7nAChR evoked by PAMs, including potentiation by ivermectin, PNU-120596, and TQS, as well as activation by 4BP-TQS. This study suggests that PAM modulation through the TMD has a more stringent requirement at the ECD-TMD interface than agonist activation.
Collapse
Affiliation(s)
| | | | - David D Mowrey
- From the Departments of Anesthesiology, Computational and Systems Biology, and
| | - Yan Xu
- From the Departments of Anesthesiology, Pharmacology and Chemical Biology, Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Pei Tang
- From the Departments of Anesthesiology, Computational and Systems Biology, and Pharmacology and Chemical Biology,
| |
Collapse
|
27
|
α1F64 Residue at GABA(A) receptor binding site is involved in gating by influencing the receptor flipping transitions. J Neurosci 2014; 34:3193-209. [PMID: 24573278 DOI: 10.1523/jneurosci.2533-13.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA receptors (GABAARs) mediate inhibition in the adult brain. These channels are heteropentamers and their ligand binding sites are localized at the β+ / α- interfaces. As expected, mutations of binding-site residues affect binding kinetics but accumulating evidence indicates that gating is also altered, although the underlying mechanisms are unclear. We investigated the impact of the hydrophobic box residue localized at α1(-), F64 (α1F64), on the binding and gating of rat recombinant α1β1γ2 receptors. The analysis of current responses to rapid agonist applications confirmed a marked effect of α1F64 mutations on agonist binding and revealed surprisingly strong effects on gating, including the disappearance of rapid desensitization, the slowing of current onset, and accelerated deactivation. Moreover, nonstationary variance analysis revealed that the α1F64C mutation dramatically reduced the maximum open probability without altering channel conductance. Interestingly, for wild-type receptors, responses to saturating concentration of a partial agonist, P4S, showed no rapid desensitization, similar to GABA-evoked responses mediated by α1F64C mutants. For the α1F64L mutation, the application of the high-affinity agonist muscimol partially rescued rapid desensitization compared with responses evoked by GABA. These findings suggest that α1F64 mutations do not disrupt desensitization mechanisms but rather affect other gating features that obscure it. Model simulations indicated that all of our observations related to α1F64 mutations could be properly reproduced by altering the flipped state transitions that occurred after agonist binding but preceded opening. In conclusion, we propose that the α1F64 residue may participate in linking binding and gating by influencing flipping kinetics.
Collapse
|
28
|
Abstract
Neuronal α7 nicotinic receptors elicit rapid cation influx in response to acetylcholine (ACh) or its hydrolysis product choline. They contribute to cognition, synaptic plasticity, and neuroprotection and have been implicated in neurodegenerative and neuropsychiatric disorders. α7, however, often localizes distal to sites of nerve-released ACh and binds ACh with low affinity, and thus elicits its biological response with low agonist occupancy. To assess the function of α7 when ACh occupies fewer than five of its identical binding sites, we measured the open-channel lifetime of individual receptors in which four of the five ACh binding sites were disabled. To improve the time resolution of the inherently brief α7 channel openings, background mutations or a potentiator was used to increase open duration. We find that, in receptors with only one intact binding site, the open-channel lifetime is indistinguishable from receptors with five intact binding sites, counter to expectations from prototypical neurotransmitter-gated ion channels where the open-channel lifetime increases with the number of binding sites occupied by agonist. Replacing the membrane-embedded domain of α7 by that of the related 5-HT3A receptor increases the number of sites that need to be occupied to achieve the maximal open-channel lifetime, thus revealing a unique interdependence between the detector and actuator domains of these receptors. The distinctive ability of a single occupancy to elicit a full biological response adapts α7 to volume transmission, a prevalent mechanism of ACh-mediated signaling in the nervous system and nonneuronal cells.
Collapse
|
29
|
Intermediate closed state for glycine receptor function revealed by cysteine cross-linking. Proc Natl Acad Sci U S A 2013; 110:17113-8. [PMID: 24085847 DOI: 10.1073/pnas.1317009110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate signal transmission by coupling the binding of extracellular ligands to the opening of their ion channel. Agonist binding elicits activation and desensitization of pLGICs, through several conformational states, that are, thus far, incompletely characterized at the structural level. We previously reported for GLIC, a prokaryotic pLGIC, that cross-linking of a pair of cysteines at both sides of the extracellular and transmembrane domain interface stabilizes a locally closed (LC) X-ray structure. Here, we introduced the homologous pair of cysteines on the human α1 glycine receptor. We show by electrophysiology that cysteine cross-linking produces a gain-of-function phenotype characterized by concomitant constitutive openings, increased agonist potency, and equalization of efficacies of full and partial agonists. However, it also produces a reduction of maximal currents at saturating agonist concentrations without change of the unitary channel conductance, an effect reversed by the positive allosteric modulator propofol. The cross-linking thus favors a unique closed state distinct from the resting and longest-lived desensitized states. Fitting the data according to a three-state allosteric model suggests that it could correspond to a LC conformation. Its plausible assignment to a gating intermediate or a fast-desensitized state is discussed. Overall, our data show that relative movement of two loops at the extracellular-transmembrane interface accompanies orthosteric agonist-mediated gating.
Collapse
|