1
|
Cannabinoid Receptor 1 Agonist ACEA and Cannabinoid Receptor 2 Agonist GW833972A Attenuates Cell-Mediated Immunity by Different Biological Mechanisms. Cells 2023; 12:cells12060848. [PMID: 36980189 PMCID: PMC10047765 DOI: 10.3390/cells12060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) are components in the endocannabinoid system that play significant roles in regulating immune responses. There are many agonists for the cannabinoid receptors; however, their effects on T cell regulation have not been elucidated. In the present study, we determined the effects of the CB1 selective agonist ACEA and the CB2 selective agonist GW833972A on T cell responses. It was found that both agonists impaired anti-CD3 monoclonal antibody induced T cell proliferation. However, ACEA and GW833972A agonists down-regulated the expression of activation markers on CD4+ and CD8+ T cells and co-stimulatory molecules on B cells and monocytes in different manners. Moreover, only GW833972A suppressed the cytotoxic activities of CD8+ T cells without interfering in the cytotoxic activities of CD4+ T cells and NK cells. In addition, the CB2 agonist, but not CB1 agonist, caused the reduction of Th1 cytokine production. Our results demonstrated that the CB1 agonist ACEA and CB2 agonist GW833972A attenuated cell-mediated immunity in different mechanisms. These agonists may be able to be used as therapeutic agents for inducing T cell hypofunction in inflammatory and autoimmune diseases.
Collapse
|
2
|
Estrada JA, Contreras I. Endocannabinoid Receptors in the CNS: Potential Drug Targets for the Prevention and Treatment of Neurologic and Psychiatric Disorders. Curr Neuropharmacol 2021; 18:769-787. [PMID: 32065105 PMCID: PMC7536826 DOI: 10.2174/1570159x18666200217140255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system participates in the regulation of CNS homeostasis and functions, including neurotransmission, cell signaling, inflammation and oxidative stress, as well as neuronal and glial cell proliferation, differentiation, migration and survival. Endocannabinoids are produced by multiple cell types within the CNS and their main receptors, CB1 and CB2, are expressed in both neurons and glia. Signaling through these receptors is implicated in the modulation of neuronal and glial alterations in neuroinflammatory, neurodegenerative and psychiatric conditions, including Alzheimer’s, Parkinson’s and Huntington’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke, epilepsy, anxiety and depression. The therapeutic potential of endocannabinoid receptors in neurological disease has been hindered by unwelcome side effects of current drugs used to target them; however, due to their extensive expression within the CNS and their involvement in physiological and pathological process in nervous tissue, they are attractive targets for drug development. The present review highlights the potential applications of the endocannabinoid system for the prevention and treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- José Antonio Estrada
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Irazú Contreras
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
3
|
Bisicchia E, Sasso V, Molinari M, Viscomi MT. Plasticity of microglia in remote regions after focal brain injury. Semin Cell Dev Biol 2019; 94:104-111. [PMID: 30703556 DOI: 10.1016/j.semcdb.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
The CNS is endowed with an intrinsic ability to recover from and adapt secondary compensatory mechanisms to injury. The basis of recovery stems from brain plasticity, defined as the brain's ability to make adaptive changes on structural and functional levels, ranging from molecular, synaptic, and cellular changes in response to alterations in their environment. In this multitude of responses, microglia have an active role and contribute to brain plasticity through their dynamic responses. This review will provide an overview of microglial responses in the context of acute CNS injury and their function in post-traumatic repair and assess the changes that are induced by damage in remote areas from, but functionally connected to, the primary site of injury. In the second section, we highlight the effects of several therapeutic approaches, with particular interest paid to specialized pro-resolving lipid mediators, in modulating microglial responses in remote regions and enhancing long-term functional recovery via suppression of neurodegenerative cascades that are induced by damage, which may contribute to a translational bridge from bench to bedside.
Collapse
Affiliation(s)
- Elisa Bisicchia
- Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valeria Sasso
- Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marco Molinari
- Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Maria Teresa Viscomi
- Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del S. Cuore, Rome, Italy.
| |
Collapse
|
4
|
Bisicchia E, Sasso V, Catanzaro G, Leuti A, Besharat ZM, Chiacchiarini M, Molinari M, Ferretti E, Viscomi MT, Chiurchiù V. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs. Mol Neurobiol 2018; 55:6894-6905. [PMID: 29357041 DOI: 10.1007/s12035-018-0889-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.
Collapse
Affiliation(s)
- Elisa Bisicchia
- IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Valeria Sasso
- IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | | | - Alessandro Leuti
- IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | | | | | - Marco Molinari
- IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | | | - Valerio Chiurchiù
- IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143, Rome, Italy. .,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Likar R, Nahler G. The use of cannabis in supportive care and treatment of brain tumor. Neurooncol Pract 2017; 4:151-160. [PMID: 31385997 DOI: 10.1093/nop/npw027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cannabinoids are multitarget substances. Currently available are dronabinol (synthetic delta-9-tetrahydrocannabinol, THC), synthetic cannabidiol (CBD) the respective substances isolated and purified from cannabis, a refined extract, nabiximols (THC:CBD = 1.08:1.00); and nabilone, which is also synthetic and has properties that are very similar to those of THC. Cannabinoids have a role in the treatment of cancer as palliative interventions against nausea, vomiting, pain, anxiety, and sleep disturbances. THC and nabilone are also used for anorexia and weight loss, whereas CBD has no orexigenic effect. The psychotropic effects of THC and nabilone, although often undesirable, can improve mood when administered in low doses. CBD has no psychotropic effects; it is anxiolytic and antidepressive. Of particular interest are glioma studies in animals where relatively high doses of CBD and THC demonstrated significant regression of tumor volumes (approximately 50% to 95% and even complete eradication in rare cases). Concomitant treatment with X-rays or temozolomide enhanced activity further. Similarly, a combination of THC with CBD showed synergistic effects. Although many questions, such as on optimized treatment schedules, are still unresolved, today's scientific results suggest that cannabinoids could play an important role in palliative care of brain tumor patients.
Collapse
Affiliation(s)
- Rudolf Likar
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Feschnigstrasse 11, 9020 Klagenfurt am Wörthersee (R.L.); CIS Clinical Investigation Support GmbH, Kaiserstrasse 43, 1070 Wien (G.N.)
| | - Gerhard Nahler
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Feschnigstrasse 11, 9020 Klagenfurt am Wörthersee (R.L.); CIS Clinical Investigation Support GmbH, Kaiserstrasse 43, 1070 Wien (G.N.)
| |
Collapse
|
6
|
Ke P, Shao BZ, Xu ZQ, Chen XW, Liu C. Intestinal Autophagy and Its Pharmacological Control in Inflammatory Bowel Disease. Front Immunol 2017; 7:695. [PMID: 28119697 PMCID: PMC5220102 DOI: 10.3389/fimmu.2016.00695] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022] Open
Abstract
Intestinal mucosal barrier, mainly composed of the intestinal mucus layer and the epithelium, plays a critical role in nutrient absorption as well as protection from pathogenic microorganisms. It is widely acknowledged that the damage of intestinal mucosal barrier or the disturbance of microorganism balance in the intestinal tract contributes greatly to the pathogenesis and progression of inflammatory bowel disease (IBD), which mainly includes Crohn’s disease and ulcerative colitis. Autophagy is an evolutionarily conserved catabolic process that involves degradation of protein aggregates and damaged organelles for recycling. The roles of autophagy in the pathogenesis and progression of IBD have been increasingly studied. This present review mainly describes the roles of autophagy of Paneth cells, macrophages, and goblet cells in IBD, and finally, several potential therapeutic strategies for IBD taking advantage of autophagy.
Collapse
Affiliation(s)
- Ping Ke
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Xiong-Wen Chen
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| |
Collapse
|
7
|
Abstract
When CNS lesions develop, neuronal degeneration occurs locally but in regions that are remote, yet functionally connected, to the primary lesion site. This process, known as "remote damage," significantly affects long-term outcomes in many CNS pathologies, such as stroke, multiple sclerosis, and traumatic brain and spinal cord injuries. Remote damage can last several days or months after the primary lesion, providing a window during which therapeutic approaches can be implemented to effect neuroprotection. The recognition of the importance of remote damage in determining disease outcomes has prompted considerable interest in examining remote damage-associated mechanisms, most of which is derived from the potential of this research to develop innovative pharmacological approaches for preserving neurons and improving functional outcomes. To this end, the hemicerebellectomy (HCb) experimental paradigm has been instrumental in highlighting the complexity and variety of the systems that are involved, identifying mechanisms of life/death decisions, and providing a testing ground for novel neuroprotective approaches. Inflammation, oxidative stress, apoptosis, autophagy, and neuronal changes in receptor mosaics are several remote damage mechanisms that have been identified and examined using the HCb model. In this review, we discuss our current understanding of remote degeneration mechanisms and their potential for exploitation with regard to neuroprotective approaches, focusing on HCb studies.
Collapse
|
8
|
Cui H, Yang R, Liu S, Fu G, Lu Y. N-stearoyltyrosine protects primary cortical neurons against Aβ(1–40)-induced injury through inhibiting endocannabinoid degradation. Life Sci 2015; 124:91-100. [DOI: 10.1016/j.lfs.2015.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/28/2014] [Accepted: 01/17/2015] [Indexed: 12/23/2022]
|
9
|
Gasperi V, Ceci R, Tantimonaco M, Talamonti E, Battista N, Parisi A, Florio R, Sabatini S, Rossi A, Maccarrone M. The fatty acid amide hydrolase in lymphocytes from sedentary and active subjects. Med Sci Sports Exerc 2014; 46:24-32. [PMID: 23793235 DOI: 10.1249/mss.0b013e3182a10ce6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Endocannabinoids (eCB) and interleukin 6 (IL-6) levels change during physical activity, thus suggesting their involvement in the modulation of exercise-related processes like inflammation and energy homeostasis. To investigate whether lifestyle might affect the activity of the eCB-degrading enzyme fatty acid amide hydrolase (FAAH), active and sedentary subjects were enrolled. METHODS Plasma IL-6 levels and lymphocyte FAAH activity of eight physically active male subjects (mean ± SEM; age = 39.3 ± 2.9 yr, body mass index = 21.1 ± 0.4 kg·m), usually practicing aerobic exercise (8.1 ± 1.2 h·wk), and eight sedentary subjects (38.8 ± 3.7 yr, body mass index = 23.1 ± 0.8 kg·m) were measured. Also, in vitro effect of IL-6 was tested on FAAH expression and activity and on FAAH promoter activity in lymphocytes from sedentary subjects. RESULTS Under resting conditions (at least 12 h from the last exercise), the active group showed plasma IL-6 levels (2.74 ± 0.73 pg·mL) and lymphocyte FAAH activity (215.7 ± 38.5 pmol·min·mg protein) significantly higher than those measured in the sedentary group (0.20 ± 0.02 pg·mL, and 42.0 ± 4.2 pmol·min·mg protein). Increased IL-6 levels paralleled increased FAAH activity, and consistently, the in vitro treatment of lymphocytes from sedentary individuals with 10 ng·mL IL-6 for 48 h significantly increased FAAH expression and activity. Transient transfection experiments showed that IL-6 induced the expression of a reporter gene under the control of a cAMP response element-like region in the human FAAH promoter. A mutation in the same element abolished IL-6 up-regulation, demonstrating that this cytokine regulates FAAH activity at the transcriptional level. CONCLUSION IL-6 leads to activation of the FAAH promoter, thus enhancing FAAH activity that modulates the eCB tone in physically active people.
Collapse
Affiliation(s)
- Valeria Gasperi
- 1Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, ITALY; 2Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Rome, ITALY; 3Department of Biomedical Sciences, University of Teramo, Teramo, ITALY; 4Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, ITALY; and 5European Center for Brain Research/Santa Lucia Foundation, Rome, ITALY
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tantimonaco M, Ceci R, Sabatini S, Catani MV, Rossi A, Gasperi V, Maccarrone M. Physical activity and the endocannabinoid system: an overview. Cell Mol Life Sci 2014; 71:2681-98. [PMID: 24526057 PMCID: PMC11113821 DOI: 10.1007/s00018-014-1575-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 02/06/2023]
Abstract
Recognized as a "disease modifier", physical activity (PA) is increasingly viewed as a more holistic, cost-saving method for prevention, treatment and management of human disease conditions. The traditional view that PA engages the monoaminergic and endorphinergic systems has been challenged by the discovery of the endocannabinoid system (ECS), composed of endogenous lipids, their target receptors, and metabolic enzymes. Indeed, direct and indirect evidence suggests that the ECS might mediate some of the PA-triggered effects throughout the body. Moreover, it is now emerging that PA itself is able to modulate ECS in different ways. Against this background, in the present review we shall discuss evidence of the cross-talk between PA and the ECS, ranging from brain to peripheral districts and highlighting how ECS must be tightly regulated during PA, in order to maintain its beneficial effects on cognition, mood, and nociception, while avoiding impaired energy metabolism, oxidative stress, and inflammatory processes.
Collapse
Affiliation(s)
- Mirko Tantimonaco
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Roberta Ceci
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Antonello Rossi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
11
|
Viscomi MT, Molinari M. Remote neurodegeneration: multiple actors for one play. Mol Neurobiol 2014; 50:368-89. [PMID: 24442481 DOI: 10.1007/s12035-013-8629-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Remote neurodegeneration significantly influences the clinical outcome in many central nervous system (CNS) pathologies, such as stroke, multiple sclerosis, and traumatic brain and spinal cord injuries. Because these processes develop days or months after injury, they are accompanied by a therapeutic window of opportunity. The complexity and clinical significance of remote damage is prompting many groups to examine the factors of remote degeneration. This research is providing insights into key unanswered questions, opening new avenues for innovative neuroprotective therapies. In this review, we evaluate data from various remote degeneration models to describe the complexity of the systems that are involved and the importance of their interactions in reducing damage and promoting recovery after brain lesions. Specifically, we recapitulate the current data on remote neuronal degeneration, focusing on molecular and cellular events, as studied in stroke and brain and spinal cord injury models. Remote damage is a multifactorial phenomenon in which many components become active in specific time frames. Days, weeks, or months after injury onset, the interplay between key effectors differentially affects neuronal survival and functional outcomes. In particular, we discuss apoptosis, inflammation, oxidative damage, and autophagy-all of which mediate remote degeneration at specific times. We also review current findings on the pharmacological manipulation of remote degeneration mechanisms in reducing damage and sustaining outcomes. These novel treatments differ from those that have been proposed to limit primary lesion site damage, representing new perspectives on neuroprotection.
Collapse
Affiliation(s)
- Maria Teresa Viscomi
- Experimental Neurorehabilitation Laboratory, Santa Lucia Foundation I.R.C.C.S., Via del Fosso di Fiorano 65, 00143, Rome, Italy,
| | | |
Collapse
|
12
|
Galve-Roperh I, Chiurchiù V, Díaz-Alonso J, Bari M, Guzmán M, Maccarrone M. Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog Lipid Res 2013; 52:633-50. [PMID: 24076098 DOI: 10.1016/j.plipres.2013.05.004] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
Abstract
Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease.
Collapse
Affiliation(s)
- Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, IUIN, CIBERNED and IRYCIS, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|