1
|
Krantz M, Eklund D, Särndahl E, Hedbrant A. A detailed molecular network map and model of the NLRP3 inflammasome. Front Immunol 2023; 14:1233680. [PMID: 38077364 PMCID: PMC10699087 DOI: 10.3389/fimmu.2023.1233680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
The NLRP3 inflammasome is a key regulator of inflammation that responds to a broad range of stimuli. The exact mechanism of activation has not been determined, but there is a consensus on cellular potassium efflux as a major common denominator. Once NLRP3 is activated, it forms high-order complexes together with NEK7 that trigger aggregation of ASC into specks. Typically, there is only one speck per cell, consistent with the proposal that specks form - or end up at - the centrosome. ASC polymerisation in turn triggers caspase-1 activation, leading to maturation and release of IL-1β and pyroptosis, i.e., highly inflammatory cell death. Several gain-of-function mutations in the NLRP3 inflammasome have been suggested to induce spontaneous activation of NLRP3 and hence contribute to development and disease severity in numerous autoinflammatory and autoimmune diseases. Consequently, the NLRP3 inflammasome is of significant clinical interest, and recent attention has drastically improved our insight in the range of involved triggers and mechanisms of signal transduction. However, despite recent progress in knowledge, a clear and comprehensive overview of how these mechanisms interplay to shape the system level function is missing from the literature. Here, we provide such an overview as a resource to researchers working in or entering the field, as well as a computational model that allows for evaluating and explaining the function of the NLRP3 inflammasome system from the current molecular knowledge. We present a detailed reconstruction of the molecular network surrounding the NLRP3 inflammasome, which account for each specific reaction and the known regulatory constraints on each event as well as the mechanisms of drug action and impact of genetics when known. Furthermore, an executable model from this network reconstruction is generated with the aim to be used to explain NLRP3 activation from priming and activation to the maturation and release of IL-1β and IL-18. Finally, we test this detailed mechanistic model against data on the effect of different modes of inhibition of NLRP3 assembly. While the exact mechanisms of NLRP3 activation remains elusive, the literature indicates that the different stimuli converge on a single activation mechanism that is additionally controlled by distinct (positive or negative) priming and licensing events through covalent modifications of the NLRP3 molecule. Taken together, we present a compilation of the literature knowledge on the molecular mechanisms on NLRP3 activation, a detailed mechanistic model of NLRP3 activation, and explore the convergence of diverse NLRP3 activation stimuli into a single input mechanism.
Collapse
Affiliation(s)
- Marcus Krantz
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Femtosecond responses of hydrated DNA irradiated by ionizing rays focus on the sugar-phosphate part. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Vibhute MA, Schaap MH, Maas RJM, Nelissen FHT, Spruijt E, Heus HA, Hansen MMK, Huck WTS. Transcription and Translation in Cytomimetic Protocells Perform Most Efficiently at Distinct Macromolecular Crowding Conditions. ACS Synth Biol 2020; 9:2797-2807. [PMID: 32976714 PMCID: PMC7573978 DOI: 10.1021/acssynbio.0c00330] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The formation of
cytomimetic protocells that capture the physicochemical
aspects of living cells is an important goal in bottom-up synthetic
biology. Here, we recreated the crowded cytoplasm in liposome-based
protocells and studied the kinetics of cell-free gene expression in
these crowded containers. We found that diffusion of key components
is affected not only by macromolecular crowding but also by enzymatic
activity in the protocell. Surprisingly, size-dependent diffusion
in crowded conditions yielded two distinct maxima for protein synthesis,
reflecting the differential impact of crowding on transcription and
translation. Our experimental data show, for the first time, that
macromolecular crowding induces a switch from reaction to diffusion
control and that this switch depends on the sizes of the macromolecules
involved. These results highlight the need to control the physical
environment in the design of synthetic cells.
Collapse
Affiliation(s)
- Mahesh A. Vibhute
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mark H. Schaap
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Roel J. M. Maas
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Frank H. T. Nelissen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hans A. Heus
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Maike M. K. Hansen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
4
|
Pliss A, Prasad PN. High resolution mapping of subcellular refractive index by Fluorescence Lifetime Imaging: a next frontier in quantitative cell science? Methods Appl Fluoresc 2020; 8:032001. [PMID: 32235079 DOI: 10.1088/2050-6120/ab8571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular refractive index (RI) is an essential biophysical parameter, which best represents the mass and the distribution of proteins in the cell interior, including high-density accumulations in membraneless organelles. For RI measurements, a number of sophisticated techniques have been developed; however most of the new approaches are either insufficiently sensitive to intracellular variations of proteins distribution or are not compatible with live cell studies. Here, we outline the fluorescence lifetime imaging (FLIM) strategy for high resolution mapping of subcellular RI. We provide an example of our recent studies in which we utilize FLIM for measurements and monitoring of local RI in the major membraneless organelles within live cultured cells.
Collapse
|
5
|
Tchelidze P, Kaplan H, Terryn C, Lalun N, Ploton D, Thiry M. Electron tomography reveals changes in spatial distribution of UBTF1 and UBTF2 isoforms within nucleolar components during rRNA synthesis inhibition. J Struct Biol 2019; 208:191-204. [PMID: 31479756 DOI: 10.1016/j.jsb.2019.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/01/2022]
Abstract
Upstream binding transcription factor (UBTF) is a co-regulator of RNA polymerase I by constituting an initiation complex on rRNA genes. UBTF plays a role in rDNA bending and its maintenance in "open" state. It exists as two splicing variants, UBTF1 and UBTF2, which cannot be discerned with antibodies raised against UBTF. We investigated the ultrastructural localization of each variant in cells synthesizing GFP-tagged UBTF1 or UBTF2 by using anti-GFP antibodies and pre-embedding nanogold strategy. Detailed 3D distribution of UBTF1 and 2 was also studied by electron tomography. In control cells, the two isoforms are very abundant within fibrillar centers, but their repartition strongly differs. Electron tomography shows that UBTF1 is disposed as fibrils that are folded in coils whereas UBTF2 is localized homogenously, preferentially at their cortical area. As UBTF is a useful marker to trace rDNA genes, we used these data to improve our previous model of 3D organization of active transcribing rDNA gene within fibrillar centers. Finally, when rRNA synthesis is inhibited during actinomycin D treatment or entry in mitosis, UBTF1 and UBTF2 show a similar distribution along extended 3D loop-like structures. Altogether these data suggest new roles for UBTF1 and UBTF2 isoforms in the organization of active and inactive rDNA genes.
Collapse
Affiliation(s)
- Pavel Tchelidze
- Faculty of Health, Eastern European University, Tbilisi, Georgia
| | - Hervé Kaplan
- Université de Reims Champagne Ardenne, Reims, France
| | - Christine Terryn
- Platform of Cellular and Tissular Imaging (PICT), Université de Reims Champagne Ardenne, Reims, France
| | - Nathalie Lalun
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne, France
| | - Dominique Ploton
- BioSpecT, EA 7506, Université de Reims Champagne Ardenne, France
| | - Marc Thiry
- Unit of Cell and Tissue Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium.
| |
Collapse
|
6
|
Michel J, Nolin F, Wortham L, Lalun N, Tchelidze P, Banchet V, Terryn C, Ploton D. Various Nucleolar Stress Inducers Result in Highly Distinct Changes in Water, Dry Mass and Elemental Content in Cancerous Cell Compartments: Investigation Using a Nano-Analytical Approach. Nanotheranostics 2019; 3:179-195. [PMID: 31183313 PMCID: PMC6536780 DOI: 10.7150/ntno.31878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/20/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Numerous chemotherapeutic drugs that affect ribosome biogenesis in the nucleolus induce nucleolar stress. Improving our understanding of the effects of these drugs will require uncovering and comparing their impact on several biophysical parameters of the major cell compartments. Here, we quantified the water content and dry mass of cancerous cells treated with CX-5461, DRB or DAM to calculate macromolecular crowding and the volume occupied by free water, as well as elemental content. Methods: HeLa-H2B-GFP cells were treated with CX-5461, DRB or DAM. Water content and dry mass were measured in numerous regions of interest of ultrathin cryo-sections by quantitative scanning transmission electron microscope dark-field imaging and the elements quantified by energy dispersive X-ray spectrometry. The data were used to calculate macromolecular crowding and the volume occupied by free water in all cell compartments of control and treated cells. Hydrophobic and unfolded proteins were revealed by 8-Anilinonaphtalene-1-sulfonic acid (ANS) staining and imaging by two-photon microscopy. Immunolabeling of UBF, pNBS1 and pNF-κB was carried out and the images acquired with a confocal microscope for 3D imaging to address whether the localization of these proteins changes in treated cells. Results: Treatment with CX-5461, DRB or DAM induced completely different changes in macromolecular crowding and elemental content. Macromolecular crowding and elemental content were much higher in CX-5461-treated, moderately higher in DRB-treated, and much lower in DAM-treated cells than control cells. None of the drugs alone induced nucleolar ANS staining but it was induced by heat-shock of control cells and cells previously treated with DAM. UBF and pNBS1 were systematically co-localized in the nucleolus of CX-5461- and DAM-treated cells. pNF-κB only localized to the nucleolar caps of pre-apoptotic DAM-treated cells. Conclusion: We directly quantified water and ion content in cell compartments using cryo-correlative electron microscopy. We show that different chemotherapeutic nucleolar stress inducers result in distinctive, thus far-unrecognized changes in macromolecular crowding and elemental content which are known to modify cell metabolism. Moreover we were able to correlate these changes to the sensitivity of treated cells to heat-shock and the behavior of nucleolar pNBS1 and pNF-κB.
Collapse
Affiliation(s)
- Jean Michel
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | | | - Laurence Wortham
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | - Nathalie Lalun
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | - Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | | | - Christine Terryn
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | | |
Collapse
|
7
|
BCAbox Algorithm Expands Capabilities of Raman Microscope for Single Organelles Assessment. BIOSENSORS-BASEL 2018; 8:bios8040106. [PMID: 30423849 PMCID: PMC6316203 DOI: 10.3390/bios8040106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Raman microspectroscopy is a rapidly developing technique, which has an unparalleled potential for in situ proteomics, lipidomics, and metabolomics, due to its remarkable capability to analyze the molecular composition of live cells and single cellular organelles. However, the scope of Raman spectroscopy for bio-applications is limited by a lack of software tools for express-analysis of biomolecular composition based on Raman spectra. In this study, we have developed the first software toolbox for immediate analysis of intracellular Raman spectra using a powerful biomolecular component analysis (BCA) algorithm. Our software could be easily integrated with commercial Raman spectroscopy instrumentation, and serve for precise analysis of molecular content in major cellular organelles, including nucleoli, endoplasmic reticulum, Golgi apparatus, and mitochondria of either live or fixed cells. The proposed software may be applied in broad directions of cell science, and serve for further advancement and standardization of Raman spectroscopy.
Collapse
|
8
|
Wang H, Zheng J, Sun Y, Li T. Cellular environment-responsive intelligent DNA logic circuits for controllable molecular sensing. Biosens Bioelectron 2018; 117:729-735. [DOI: 10.1016/j.bios.2018.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/12/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
|
9
|
Nave C. A comparison of absorption and phase contrast for X-ray imaging of biological cells. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1490-1504. [PMID: 30179189 PMCID: PMC6140389 DOI: 10.1107/s1600577518009566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/04/2018] [Indexed: 05/04/2023]
Abstract
X-ray imaging allows biological cells to be examined at a higher resolution than possible with visible light and without some of the preparation difficulties associated with electron microscopy of thick samples. The most used and developed technique is absorption contrast imaging in the water window which exploits the contrast between carbon and oxygen at an energy of around 500 eV. A variety of phase contrast techniques are also being developed. In general these operate at a higher energy, enabling thicker cells to be examined and, in some cases, can be combined with X-ray fluorescence imaging to locate specific metals. The various methods are based on the differences between the complex refractive indices of the cellular components and the surrounding cytosol or nucleosol, the fluids present in the cellular cytoplasm and nucleus. The refractive indices can be calculated from the atomic composition and density of the components. These in turn can be obtained from published measurements using techniques such as chemical analysis, scanning electron microscopy and X-ray imaging at selected energies. As examples, the refractive indices of heterochromatin, inner mitochondrial membranes, the neutral core of lipid droplets, starch granules, cytosol and nucleosol are calculated. The refractive index calculations enable the required doses and fluences to be obtained to provide images with sufficient statistical significance, for X-ray energies between 200 and 4000 eV. The statistical significance (e.g. the Rose criterion) for various requirements is discussed. The calculations reveal why some cellular components are more visible by absorption contrast and why much greater exposure times are required to see some cellular components. A comparison of phase contrast as a function of photon energy with absorption contrast in the water window is provided and it is shown that much higher doses are generally required for the phase contrast measurements. This particularly applies to those components with a high carbon content but with a mass density similar to the surrounding cytosol or nucleosol. The results provide guidance for the most appropriate conditions for X-ray imaging of individual cellular components within cells of various thicknesses.
Collapse
Affiliation(s)
- Colin Nave
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Correspondence e-mail:
| |
Collapse
|
10
|
Yang Y, Huang J, Yang X, Quan K, Xie N, Ou M, Tang J, Wang K. Aptamer-based FRET nanoflares for imaging potassium ions in living cells. Chem Commun (Camb) 2018; 52:11386-11389. [PMID: 27709181 DOI: 10.1039/c6cc05379c] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to the effective properties of the FRET signal and K+-sensitive recognition of G-quadruplex, aptamer-based FRET nanoflares were developed to sense intracellular potassium ions.
Collapse
Affiliation(s)
- Yanjing Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Ke Quan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Nuli Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Min Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| |
Collapse
|
11
|
Huang W, Liu W, Jin J, Xiao Q, Lu R, Chen W, Xiong S, Zhang G. Steady-state structural fluctuation is a predictor of the necessity of pausing-mediated co-translational folding for small proteins. Biochem Biophys Res Commun 2017; 498:186-192. [PMID: 29274783 DOI: 10.1016/j.bbrc.2017.12.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022]
Abstract
Translational pausing coordinates protein synthesis and co-translational folding. It is a common factor that facilitates the correct folding of large, multi-domain proteins. For small proteins, pausing sites rarely occurs in the gene body, and the 3'-end pausing sites are only essential for the folding of a fraction of proteins. The determinant of the necessity of the pausings remains obscure. In this study, we demonstrated that the steady-state structural fluctuation is a predictor of the necessity of pausing-mediated co-translational folding for small proteins. Validated by experiments with 5 model proteins, we found that the rigid protein structures do not, while the flexible structures do need 3'-end pausings to fold correctly. Therefore, rational optimization of translational pausing can improve soluble expression of small proteins with flexible structures, but not the rigid ones. The rigidity of the structure can be quantitatively estimated in silico using molecular dynamic simulation. Nevertheless, we also found that the translational pausing optimization increases the fitness of the expression host, and thus benefits the recombinant protein production, independent from the soluble expression. These results shed light on the structural basis of the translational pausing and provided a practical tool for industrial protein fermentation.
Collapse
Affiliation(s)
- Wenxi Huang
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wanting Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Jingjie Jin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Qilan Xiao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Ruibin Lu
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei Chen
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Sheng Xiong
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Tchelidze P, Benassarou A, Kaplan H, O’Donohue MF, Lucas L, Terryn C, Rusishvili L, Mosidze G, Lalun N, Ploton D. Nucleolar sub-compartments in motion during rRNA synthesis inhibition: Contraction of nucleolar condensed chromatin and gathering of fibrillar centers are concomitant. PLoS One 2017; 12:e0187977. [PMID: 29190286 PMCID: PMC5708645 DOI: 10.1371/journal.pone.0187977] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
The nucleolus produces the large polycistronic transcript (47S precursor) containing the 18S, 5.8S and 28S rRNA sequences and hosts most of the nuclear steps of pre-rRNA processing. Among numerous components it contains condensed chromatin and active rRNA genes which adopt a more accessible conformation. For this reason, it is a paradigm of chromosome territory organization. Active rRNA genes are clustered within several fibrillar centers (FCs), in which they are maintained in an open configuration by Upstream Binding Factor (UBF) molecules. Here, we used the reproducible reorganization of nucleolar components induced by the inhibition of rRNA synthesis by Actinomycin D (AMD) to address the steps of the spatiotemporal reorganization of FCs and nucleolar condensed chromatin. To reach that goal, we used two complementary approaches: i) time-lapse confocal imaging of cells expressing one or several GFP-tagged proteins (fibrillarin, UBF, histone H2B) and ii) ultrastructural identification of nucleolar components involved in the reorganization. Data obtained by time lapse confocal microscopy were analyzed through detailed 3D imaging. This allowed us to demonstrate that AMD treatment induces no fusion and no change in the relative position of the different nucleoli contained in one nucleus. In contrast, for each nucleolus, we observed step by step gathering and fusion of both FCs and nucleolar condensed chromatin. To analyze the reorganization of FCs and condensed chromatin at a higher resolution, we performed correlative light and electron microscopy electron microscopy (CLEM) imaging of the same cells. We demonstrated that threads of intranucleolar condensed chromatin are localized in a complex 3D network of vacuoles. Upon AMD treatment, these structures coalesce before migrating toward the perinucleolar condensed chromatin, to which they finally fuse. During their migration, FCs, which are all linked to ICC, are pulled by the latter to gather as caps disposed at the periphery of nucleoli.
Collapse
Affiliation(s)
- Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | - Aassif Benassarou
- EA 3804 (CRESTIC), Université de Reims Champagne Ardenne, Reims, France
| | - Hervé Kaplan
- Université de Reims Champagne Ardenne, Reims, France
| | - Marie-Françoise O’Donohue
- Laboratoire de Biologie Moléculaire Eukaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Lucas
- EA 3804 (CRESTIC), Université de Reims Champagne Ardenne, Reims, France
| | - Christine Terryn
- Platform of Cellular and Tissular Imaging (PICT), Université de Reims Champagne Ardenne, Reims, France
| | - Levan Rusishvili
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | - Giorgi Mosidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | - Nathalie Lalun
- CNRS UMR 7369, Université de Reims Champagne Ardenne, Reims, France
| | - Dominique Ploton
- CNRS UMR 7369, Université de Reims Champagne Ardenne, Reims, France
| |
Collapse
|
13
|
Volume measurements and fluorescent staining indicate an increase in permeability for organic cation transporter substrates during apoptosis. Exp Cell Res 2016; 344:112-119. [DOI: 10.1016/j.yexcr.2016.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/15/2022]
|
14
|
Gradov OV, Gradova MA. Methods of electron microscopy of biological and abiogenic structures in artificial gas atmospheres. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2016. [DOI: 10.3103/s1068375516010063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Stage-Specific Changes in the Water, Na+, Cl- and K+ Contents of Organelles during Apoptosis, Demonstrated by a Targeted Cryo Correlative Analytical Approach. PLoS One 2016; 11:e0148727. [PMID: 26866363 PMCID: PMC4807926 DOI: 10.1371/journal.pone.0148727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/21/2015] [Indexed: 01/05/2023] Open
Abstract
Many studies have demonstrated changes in the levels of several ions during apoptosis, but a few recent studies have reported conflicting results concerning the changes in water content in apoptotic cells. We used a correlative light and cryo-scanning transmission electron microscopy method to quantify water and ion/element contents simultaneously at a nanoscale resolution in the various compartments of cells, from the onset to the end of apoptosis. We used stably transfected HeLa cells producing H2B-GFP to identify the stages of apoptosis in cells and for a targeted elemental analysis within condensed chromatin, nucleoplasm, mitochondria and the cytosol. We found that the compartments of apoptotic cells contained, on average, 10% more water than control cells. During mitochondrial outer membrane permeabilization, we observed a strong increase in the Na+ and Cl- contents of the mitochondria and a strong decrease in mitochondrial K+ content. During the first step in apoptotic volume decrease (AVD), Na+ and Cl- levels decreased in all cell compartments, but remained higher than those in control cells. Conversely, during the second step of AVD, Na+ and Cl- levels increased considerably in the nucleus and mitochondria. During these two steps of AVD, K+ content decreased steadily in all cell compartments. We also determined in vivo ion status during caspase-3 activity and chromatin condensation. Finally, we found that actinomycin D-tolerant cells had water and K+ contents similar to those of cells entering apoptosis but lower Na+ and Cl- contents than both cells entering apoptosis and control cells.
Collapse
|
16
|
Maeso I, Tena JJ. Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework. Semin Cell Dev Biol 2015; 57:2-10. [PMID: 26673387 DOI: 10.1016/j.semcdb.2015.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 12/22/2022]
Abstract
Cis-regulatory changes are arguably the primary evolutionary source of animal morphological diversity. With the recent explosion of genome-wide comparisons of the cis-regulatory content in different animal species is now possible to infer general principles underlying enhancer evolution. However, these studies have also revealed numerous discrepancies and paradoxes, suggesting that the mechanistic causes and modes of cis-regulatory evolution are still not well understood and are probably much more complex than generally appreciated. Here, we argue that the mutational mechanisms and genomic regions generating new regulatory activities must comply with the constraints imposed by the molecular properties of cis-regulatory elements (CREs) and the organizational features of long-range chromatin interactions. Accordingly, we propose a new integrative evolutionary framework for cis-regulatory evolution based on two major premises for the origin of novel enhancer activity: (i) an accessible chromatin environment and (ii) compatibility with the 3D structure and interactions of pre-existing CREs. Mechanisms and DNA sequences not fulfilling these premises, will be less likely to have a measurable impact on gene expression and as such, will have a minor contribution to the evolution of gene regulation. Finally, we discuss current comparative cis-regulatory data under the light of this new evolutionary model, and propose that the two most prominent mechanisms for the evolution of cis-regulatory changes are the overprinting of ancestral CREs and the exaptation of transposable elements.
Collapse
Affiliation(s)
- Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Universidad Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
17
|
Yaron JR, Gangaraju S, Rao MY, Kong X, Zhang L, Su F, Tian Y, Glenn HL, Meldrum DR. K(+) regulates Ca(2+) to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis 2015; 6:e1954. [PMID: 26512962 PMCID: PMC5399176 DOI: 10.1038/cddis.2015.277] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023]
Abstract
P2X7 purinergic receptor engagement with extracellular ATP induces transmembrane potassium and calcium flux resulting in assembly of the NLRP3 inflammasome in LPS-primed macrophages. The role of potassium and calcium in inflammasome regulation is not well understood, largely due to limitations in existing methods for interrogating potassium in real time. The use of KS6, a novel sensor for selective and sensitive dynamic visualization of intracellular potassium flux in live cells, multiplexed with the intracellular calcium sensor Fluo-4, revealed a coordinated relationship between potassium and calcium. Interestingly, the mitochondrial potassium pool was mobilized in a P2X7 signaling, and ATP dose-dependent manner, suggesting a role for mitochondrial sensing of cytosolic ion perturbation. Through treatment with extracellular potassium we found that potassium efflux was necessary to permit sustained calcium entry, but not transient calcium flux from intracellular stores. Further, intracellular calcium chelation with BAPTA-AM indicated that P2X7-induced potassium depletion was independent of calcium mobilization. This evidence suggests that both potassium efflux and calcium influx are necessary for mitochondrial reactive oxygen generation upstream of NLRP3 inflammasome assembly and pyroptotic cell death. We propose a model wherein potassium efflux is necessary for calcium influx, resulting in mitochondrial reactive oxygen generation to trigger the NLRP3 inflammasome.
Collapse
Affiliation(s)
- J R Yaron
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, 85287 AZ, USA.,Biological Design Graduate Program, School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, 85287 AZ, USA
| | - S Gangaraju
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, 85287 AZ, USA
| | - M Y Rao
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, 85287 AZ, USA
| | - X Kong
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, 85287 AZ, USA
| | - L Zhang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, 85287 AZ, USA
| | - F Su
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, 85287 AZ, USA
| | - Y Tian
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, 85287 AZ, USA
| | - H L Glenn
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, 85287 AZ, USA
| | - D R Meldrum
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, 85287 AZ, USA
| |
Collapse
|
18
|
Kong X, Su F, Zhang L, Yaron J, Lee F, Shi Z, Tian Y, Meldrum DR. A highly selective mitochondria-targeting fluorescent K(+) sensor. Angew Chem Int Ed Engl 2015; 54:12053-7. [PMID: 26302172 PMCID: PMC4815426 DOI: 10.1002/anie.201506038] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 11/08/2022]
Abstract
Regulation of intracellular potassium (K(+) ) concentration plays a key role in metabolic processes. So far, only a few intracellular K(+) sensors have been developed. The highly selective fluorescent K(+) sensor KS6 for monitoring K(+) ion dynamics in mitochondria was produced by coupling triphenylphosphonium, borondipyrromethene (BODIPY), and triazacryptand (TAC). KS6 shows a good response to K(+) in the range 30-500 mM, a large dynamic range (Fmax /F0 ≈130), high brightness (ϕf =14.4 % at 150 mM of K(+) ), and insensitivity to both pH in the range 5.5-9.0 and other metal ions under physiological conditions. Colocalization tests of KS6 with MitoTracker Green confirmed its predominant localization in the mitochondria of HeLa and U87MG cells. K(+) efflux/influx in the mitochondria was observed upon stimulation with ionophores, nigericin, or ionomycin. KS6 is thus a highly selective semiquantitative K(+) sensor suitable for the study of mitochondrial potassium flux in live cells.
Collapse
Affiliation(s)
- Xiangxing Kong
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Fengyu Su
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Liqiang Zhang
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Jordan Yaron
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Fred Lee
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Zhengwei Shi
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Yanqing Tian
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA).
- Department of Materials Science and Engineering, South University of Science and Technology of China, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055 (China).
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA).
| |
Collapse
|
19
|
Kong X, Su F, Zhang L, Yaron J, Lee F, Shi Z, Tian Y, Meldrum DR. A Highly Selective Mitochondria-Targeting Fluorescent K+Sensor. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Nolin F, Ploton D, Wortham L, Tchelidze P, Bobichon H, Banchet V, Lalun N, Terryn C, Michel J. Targeted nano analysis of water and ions in the nucleus using cryo-correlative microscopy. Methods Mol Biol 2015; 1228:145-58. [PMID: 25311128 DOI: 10.1007/978-1-4939-1680-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The cell nucleus is a crowded volume in which the concentration of macromolecules is high. These macromolecules sequester most of the water molecules and ions which, together, are very important for stabilization and folding of proteins and nucleic acids. To better understand how the localization and quantity of water and ions vary with nuclear activity, it is necessary to study them simultaneously by using newly developed cell imaging approaches. Some years ago, we showed that dark-field cryo-Scanning Transmission Electron Microscopy (cryo-STEM) allows quantification of the mass percentages of water, dry matter, and elements (among which are ions) in freeze-dried ultrathin sections. To overcome the difficulty of clearly identifying nuclear subcompartments imaged by STEM in ultrathin cryo-sections, we developed a new cryo correlative light and STEM imaging procedure. This combines fluorescence imaging of nuclear GFP-tagged proteins to identify, within cryo ultrathin sections, regions of interest which are then analyzed by STEM for quantification of water and identification and quantification of ions. In this chapter we describe the new setup we have developed to perform this cryo-correlative light and STEM imaging approach, which allows a targeted nano analysis of water and ions in nuclear compartments.
Collapse
Affiliation(s)
- Frédérique Nolin
- Laboratoire de Recherche en Nanosciences EA 4682, UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Reims, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pliss A, Peng X, Liu L, Kuzmin A, Wang Y, Qu J, Li Y, Prasad PN. Single Cell Assay for Molecular Diagnostics and Medicine: Monitoring Intracellular Concentrations of Macromolecules by Two-photon Fluorescence Lifetime Imaging. Theranostics 2015; 5:919-30. [PMID: 26155309 PMCID: PMC4493531 DOI: 10.7150/thno.11863] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/03/2015] [Indexed: 02/01/2023] Open
Abstract
Molecular organization of a cell is dynamically transformed along the course of cellular physiological processes, pathologic developments or derived from interactions with drugs. The capability to measure and monitor concentrations of macromolecules in a single cell would greatly enhance studies of cellular processes in heterogeneous populations. In this communication, we introduce and experimentally validate a bio-analytical single-cell assay, wherein the overall concentration of macromolecules is estimated in specific subcellular domains, such as structure-function compartments of the cell nucleus as well as in nucleoplasm. We describe quantitative mapping of local biomolecular concentrations, either intrinsic relating to the functional and physiological state of a cell, or altered by a therapeutic drug action, using two-photon excited fluorescence lifetime imaging (FLIM). The proposed assay utilizes a correlation between the fluorescence lifetime of fluorophore and the refractive index of its microenvironment varying due to changes in the concentrations of macromolecules, mainly proteins. Two-photon excitation in Near-Infra Red biological transparency window reduced the photo-toxicity in live cells, as compared with a conventional single-photon approach. Using this new assay, we estimated average concentrations of proteins in the compartments of nuclear speckles and in the nucleoplasm at ~150 mg/ml, and in the nucleolus at ~284 mg/ml. Furthermore, we show a profound influence of pharmaceutical inhibitors of RNA synthesis on intracellular protein density. The approach proposed here will significantly advance theranostics, and studies of drug-cell interactions at the single-cell level, aiding development of personal molecular medicine.
Collapse
|
22
|
Ligeon LA, Barois N, Werkmeister E, Bongiovanni A, Lafont F. Structured illumination microscopy and correlative microscopy to study autophagy. Methods 2015; 75:61-8. [PMID: 25667106 DOI: 10.1016/j.ymeth.2015.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022] Open
Abstract
Autophagy is a predominant eukaryotic mechanism for the engulfment of "portions" of cytoplasm allowing their degradation to recycle metabolites. The autophagy is ubiquitous among the life kingdom revealing the importance of this pathway that appears more complex than previously thought. Several reviews have already addressed how to monitor this pathway and have highlighted the existence of new routes such as the LC3-associated phagocytosis (LAP) and the non-canonical autophagy. The principal difference between autophagosomes and LAP vacuoles is that the former has two limiting membranes positives for LC3 whereas the latter has one. Herein, we propose to emphasize the use of correlative light electron microscopy (CLEM) to answer some autophagy's related questions. The structured illumination microscopy (SIM) relatively easy to implement allows to better observe the Atg proteins recruitment and localization during the autophagy process. While LC3 recruitment is performed using light microscopy the ultrastructural morphological analysis of LC3-vacuoles is ascertained by electron microscopy. Hence, these combined and correlated approaches allow to tackle the LAP vs. autophagosome issue.
Collapse
Affiliation(s)
- Laure-Anne Ligeon
- Cellular Microbiology and Physics of Infection, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, F-59021 Lille, France; CNRS UMR8204, F-59021 Lille, France; University of Lille-Nord de France, F-59021 Lille, France.
| | - Nicolas Barois
- INSERM U1019, F-59021 Lille, France; BioImaging Center Lille-Nord de France, IFR142, Institut Pasteur de Lille, F-59021 Lille, France
| | | | - Antonino Bongiovanni
- Cellular Microbiology and Physics of Infection, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, F-59021 Lille, France; BioImaging Center Lille-Nord de France, IFR142, Institut Pasteur de Lille, F-59021 Lille, France
| | - Frank Lafont
- Cellular Microbiology and Physics of Infection, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, F-59021 Lille, France; CNRS UMR8204, F-59021 Lille, France; University of Lille-Nord de France, F-59021 Lille, France; INSERM U1019, F-59021 Lille, France; BioImaging Center Lille-Nord de France, IFR142, Institut Pasteur de Lille, F-59021 Lille, France
| |
Collapse
|
23
|
Hall JP, Sanchez-Weatherby J, Alberti C, Quimper CH, O'Sullivan K, Brazier JA, Winter G, Sorensen T, Kelly JM, Cardin DJ, Cardin CJ. Controlled dehydration of a ruthenium complex-DNA crystal induces reversible DNA kinking. J Am Chem Soc 2014; 136:17505-12. [PMID: 25393319 DOI: 10.1021/ja508745x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydration-dependent DNA deformation has been known since Rosalind Franklin recognized that the relative humidity of the sample had to be maintained to observe a single conformation in DNA fiber diffraction. We now report for the first time the crystal structure, at the atomic level, of a dehydrated form of a DNA duplex and demonstrate the reversible interconversion to the hydrated form at room temperature. This system, containing d(TCGGCGCCGA) in the presence of Λ-[Ru(TAP)2(dppz)](2+) (TAP = 1,4,5,8-tetraazaphenanthrene, dppz = dipyrido[3,2-a:2',3'-c]phenazine), undergoes a partial transition from an A/B hybrid to the A-DNA conformation, at 84-79% relative humidity. This is accompanied by an increase in kink at the central step from 22° to 51°, with a large movement of the terminal bases forming the intercalation site. This transition is reversible on rehydration. Seven data sets, collected from one crystal at room temperature, show the consequences of dehydration at near-atomic resolution. This result highlights that crystals, traditionally thought of as static systems, are still dynamic and therefore can be the subject of further experimentation.
Collapse
Affiliation(s)
- James P Hall
- Chemistry Department, University of Reading , Whiteknights, Reading, Berkshire RG6 6AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R, Rohs R. Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci 2014; 39:381-99. [PMID: 25129887 DOI: 10.1016/j.tibs.2014.07.002] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
Transcription factors (TFs) influence cell fate by interpreting the regulatory DNA within a genome. TFs recognize DNA in a specific manner; the mechanisms underlying this specificity have been identified for many TFs based on 3D structures of protein-DNA complexes. More recently, structural views have been complemented with data from high-throughput in vitro and in vivo explorations of the DNA-binding preferences of many TFs. Together, these approaches have greatly expanded our understanding of TF-DNA interactions. However, the mechanisms by which TFs select in vivo binding sites and alter gene expression remain unclear. Recent work has highlighted the many variables that influence TF-DNA binding, while demonstrating that a biophysical understanding of these many factors will be central to understanding TF function.
Collapse
Affiliation(s)
- Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Tianyin Zhou
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Lin Yang
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Ana Carolina Dantas Machado
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Departments of Biostatistics and Bioinformatics, Computer Science, and Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA.
| | - Remo Rohs
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
25
|
Abstract
The principles that determine the organization of the nucleus have become clearer in recent years, largely because of new insights into polymer, colloid, and soft-matter science. Macromolecules, together with the giant linear polymers that form the chromosomes, are confined at high concentrations within the nuclear envelope and their interactions are influenced strongly by short-range depletion or entropic forces which are negligible in dilute systems, in addition to the more familiar van der Waals, electrostatic, steric, hydrogen bonding, and hydrophobic forces. The studies described in this volume are consistent with the model that this complex and concentrated mixture of macromolecules is maintained in a delicate equilibrium by quite simple although unsuspected physicochemical principles. The sensitivity of this equilibrium to perturbation may underlie the controversies about the existence of a nuclear matrix or scaffold. In this volume, we underline the importance for cell biologists of being familiar with current work in colloid, polymer, soft matter, and nanoscience. This chapter presents a brief background to the aspects of the nucleus that are considered in detail in subsequent chapters.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, CRCHUQ-Oncology, Québec, Canada; Biosystems Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|