1
|
Paz E, Jain S, Gottfried I, Staretz-Chacham O, Mahajnah M, Bagchi P, Seyfried NT, Ashery U, Azem A. Biochemical and neurophysiological effects of deficiency of the mitochondrial import protein TIMM50. eLife 2024; 13:RP99914. [PMID: 39680434 DOI: 10.7554/elife.99914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients' epileptic phenotype.
Collapse
Affiliation(s)
- Eyal Paz
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sahil Jain
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Orna Staretz-Chacham
- Metabolic Disease Unit, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Muhammad Mahajnah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Child Neurology and Development Center, Hillel Yaffe Medical Center, Hadera, Israel
| | - Pritha Bagchi
- Center for Neurodegenerative Diseases, Emory University, Atlanta, United States
- Department of Biochemistry, Emory University, Atlanta, United States
- Emory Integrated Proteomics Core, Emory University, Atlanta, United States
| | - Nicholas T Seyfried
- Center for Neurodegenerative Diseases, Emory University, Atlanta, United States
- Department of Biochemistry, Emory University, Atlanta, United States
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Abdussalam Azem
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Paz E, Jain S, Gottfried I, Staretz-Chacham O, Mahajnah M, Bagchi P, Seyfried NT, Ashery U, Azem A. Biochemical and neurophysiological effects of deficiency of the mitochondrial import protein TIMM50. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594480. [PMID: 38826427 PMCID: PMC11142075 DOI: 10.1101/2024.05.20.594480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ∼60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients' epileptic phenotype.
Collapse
|
3
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling. Int J Cell Biol 2024; 2024:5524487. [PMID: 38439918 PMCID: PMC10911912 DOI: 10.1155/2024/5524487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
4
|
Lindenboim L, Zohar H, Gundersen GG, Worman HJ, Stein R. LINC complex protein nesprin-2 has pro-apoptotic activity via Bcl-2 family proteins. Cell Death Discov 2024; 10:29. [PMID: 38225256 PMCID: PMC10789774 DOI: 10.1038/s41420-023-01763-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
The apoptotic intrinsic pathway is initiated by perforation of the mitochondrial outer membrane by the effector pro-apoptotic proteins of the Bcl-2 family, Bax and Bak. Bax and Bak need to be activated, a process facilitated by the action of BH3-only pro-apoptotic members of the Bcl-2 family. The latter either directly activates the effector proteins or antagonizes the action of pro-survival Bcl-2 family members such as Bcl-xL. The nuclear envelope is a known target of the apoptotic machinery; however, it may also act as mediator of apoptosis. We showed previously that the nuclear envelope protein nesprin-2, a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex, can bind to Bax in close proximity to the mitochondria and that the binding increases in apoptotic cells. We now show that depleting nesprin-2 inhibits the apoptotic mitochondrial pathway as measured by Bax and Bak activation and cytochrome c release. This survival effect was Bcl-xL-dependent. Nesprin-2 depletion also inhibited spontaneous exposure of the N-terminus of Bak in cells lacking Bcl-xL and increased the presence of Bcl-xL and Bax in the mitochondria. These results indicate that nesprin-2 promotes Bak activation and regulates mitochondrial translocation/retrotranslocation of Bcl-2 family proteins. Our findings demonstrate a new apoptotic pathway whereby the nuclear envelope, via nesprin-2, regulates apoptosis.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hila Zohar
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Howard J Worman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Reuven Stein
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
5
|
Yang S, Wang L, Wu Y, Wu A, Huang F, Tang X, Kantawong F, Anuchapreeda S, Qin D, Mei Q, Chen J, Huang X, Zhang C, Wu J. Apoptosis in megakaryocytes: Safeguard and threat for thrombopoiesis. Front Immunol 2023; 13:1025945. [PMID: 36685543 PMCID: PMC9845629 DOI: 10.3389/fimmu.2022.1025945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Platelets, generated from precursor megakaryocytes (MKs), are central mediators of hemostasis and thrombosis. The process of thrombopoiesis is extremely complex, regulated by multiple factors, and related to many cellular events including apoptosis. However, the role of apoptosis in thrombopoiesis has been controversial for many years. Some researchers believe that apoptosis is an ally of thrombopoiesis and platelets production is apoptosis-dependent, while others have suggested that apoptosis is dispensable for thrombopoiesis, and is even inhibited during this process. In this review, we will focus on this conflict, discuss the relationship between megakaryocytopoiesis, thrombopoiesis and apoptosis. In addition, we also consider why such a vast number of studies draw opposite conclusions of the role of apoptosis in thrombopoiesis, and try to figure out the truth behind the mystery. This review provides more comprehensive insights into the relationship between megakaryocytopoiesis, thrombopoiesis, and apoptosis and finds some clues for the possible pathological mechanisms of platelet disorders caused by abnormal apoptosis.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qibing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Lindenboim L, Grozki D, Amsalem-Zafran AR, Peña-Blanco A, Gundersen GG, Borner C, Hodzic D, Garcia-Sáez AJ, Worman HJ, Stein R. Apoptotic stress induces Bax-dependent, caspase-independent redistribution of LINC complex nesprins. Cell Death Discov 2020; 6:90. [PMID: 33024575 PMCID: PMC7501853 DOI: 10.1038/s41420-020-00327-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
The canonical function of Bcl-2 family proteins is to regulate mitochondrial membrane integrity. In response to apoptotic signals the multi-domain pro-apoptotic proteins Bax and Bak are activated and perforate the mitochondrial outer membrane by a mechanism which is inhibited by their interaction with pro-survival members of the family. However, other studies have shown that Bax and Bak may have additional, non-canonical functions, which include stress-induced nuclear envelope rupture and discharge of nuclear proteins into the cytosol. We show here that the apoptotic stimuli cisplatin and staurosporine induce a Bax/Bak-dependent degradation and subcellular redistribution of nesprin-1 and nesprin-2 but not nesprin-3, of the linker of nucleoskeleton and cytoskeleton (LINC) complex. The degradation and redistribution were caspase-independent and did not occur in Bax/Bak double knockout (DKO) mouse embryo fibroblasts (MEFs). Re-expression of Bax in Bax/Bak DKO MEFs restored stress-induced redistribution of nesprin-2 by a mechanism which requires Bax membrane localization and integrity of the α helices 5/6, and the Bcl-2 homology 3 (BH3) domain. We found that nesprin-2 interacts with Bax in close proximity to perinuclear mitochondria in mouse and human cells. This interaction requires the mitochondrial targeting and N-terminal region but not the BH3 domain of Bax. Our results identify nesprin-2 as a Bax binding partner and also a new function of Bax in impairing the integrity of the LINC complex.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Israel
| | - Dan Grozki
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Israel
| | - Ayelet R. Amsalem-Zafran
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Israel
| | - Aida Peña-Blanco
- Interfaculty Institute of Biochemistry, University of Tübingen, 72074 Tübingen, Germany
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, D-79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University of Freiburg, Albertstrasse 19a, D-79104 Freiburg, Germany
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Avenue, St Louis, MO 63110 USA
| | - Ana J. Garcia-Sáez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Howard J. Worman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA
| | - Reuven Stein
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Israel
| |
Collapse
|
7
|
Lindenboim L, Zohar H, Worman HJ, Stein R. The nuclear envelope: target and mediator of the apoptotic process. Cell Death Discov 2020; 6:29. [PMID: 32351716 PMCID: PMC7184752 DOI: 10.1038/s41420-020-0256-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is characterized by the destruction of essential cell organelles, including the cell nucleus. The nuclear envelope (NE) separates the nuclear interior from the cytosol. During apoptosis, the apoptotic machinery, in particular caspases, increases NE permeability by cleaving its proteins, such as those of the nuclear pore complex (NPC) and the nuclear lamina. This in turns leads to passive diffusion of cytosolic apoptogenic proteins, such as caspases and nucleases, through NPCs into the nucleus and the subsequent breakdown of the NE and destruction of the nucleus. However, NE leakiness at early stages of the apoptotic process can also occur in a caspase-independent manner, where Bax, by a non-canonical action, promotes transient and repetitive localized generation and subsequent rupture of nuclear protein-filled nuclear bubbles. This NE rupture leads to discharge of apoptogenic nuclear proteins from the nucleus to the cytosol, a process that can contribute to the death process. Therefore, the NE may play a role as mediator of cell death at early stages of apoptosis. The NE can also serve as a platform for assembly of complexes that regulate the death process. Thus, the NE should be viewed as both a mediator of the cell death process and a target.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Hila Zohar
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Howard J. Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA
| | - Reuven Stein
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| |
Collapse
|
8
|
BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 2020; 11:260. [PMID: 32317622 PMCID: PMC7174325 DOI: 10.1038/s41419-020-2417-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
The BCL-2 family of proteins integrates signals that trigger either cell survival or apoptosis. The balance between pro-survival and pro-apoptotic proteins is important for tissue development and homeostasis, while impaired apoptosis contributes to several pathologies and can be a barrier against effective treatment. BCL-w is an anti-apoptotic protein that shares a sequence similarity with BCL-XL, and exhibits a high conformational flexibility. BCL-w level is controlled by a number of signaling pathways, and the repertoire of transcriptional regulators largely depends on the cellular and developmental context. As only a few disease-relevant genetic alterations of BCL2L2 have been identified, increased levels of BCL-w might be a consequence of abnormal activation of signaling cascades involved in the regulation of BCL-w expression. In addition, BCL-w transcript is a target of a plethora of miRNAs. Besides its originally recognized pro-survival function during spermatogenesis, BCL-w has been envisaged in different types of normal and diseased cells as an anti-apoptotic protein. BCL-w contributes to survival of senescent and drug-resistant cells. Its non-apoptotic role in the promotion of cell migration and invasion has also been elucidated. Growing evidence indicates that a high BCL-w level can be therapeutically relevant in neurodegenerative disorders, neuron dysfunctions and after small intestinal resection, whereas BCL-w inhibition can be beneficial for cancer patients. Although several drugs and natural compounds can bi-directionally affect BCL-w level, agents that selectively target BCL-w are not yet available. This review discusses current knowledge on the role of BCL-w in health, non-cancerous diseases and cancer.
Collapse
|
9
|
Yuan Y, Wang Y, Liu X, Luo B, Zhang L, Zheng F, Li X, Guo L, Wang L, Jiang M, Pan Y, Yan Y, Yang J, Chen S, Wang J, Tang J. KPC1 alleviates hypoxia/reoxygenation-induced apoptosis in rat cardiomyocyte cells though BAX degradation. J Cell Physiol 2019; 234:22921-22934. [PMID: 31148189 PMCID: PMC6771896 DOI: 10.1002/jcp.28854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
Bax triggers cell apoptosis by permeabilizing the outer mitochondrial membrane, leading to membrane potential loss and cytochrome c release. However, it is unclear if proteasomal degradation of Bax is involved in the apoptotic process, especially in heart ischemia-reperfusion (I/R)-induced injury. In the present study, KPC1 expression was heightened in left ventricular cardiomyocytes of patients with coronary heart disease (CHD), in I/R-myocardium in vivo and in hypoxia and reoxygenation (H/R)-induced cardiomyocytes in vitro. Overexpression of KPC1 reduced infarction size and cell apoptosis in I/R rat hearts. Similarly, the forced expression of KPC1 restored mitochondrial membrane potential (MMP) and cytochrome c release driven by H/R in H9c2 cells, whereas reducing cell apoptosis, and knockdown of KPC1 by short-hairpin RNA (shRNA) deteriorated cell apoptosis induced by H/R. Mechanistically, forced expression of KPC1 promoted Bax protein degradation, which was abolished by proteasome inhibitor MG132, suggesting that KPC1 promoted proteasomal degradation of Bax. Furthermore, KPC1 prevented basal and apoptotic stress-induced Bax translocation to mitochondria. Bax can be a novel target for the antiapoptotic effects of KPC1 on I/R-induced cardiomyocyte apoptosis and render mechanistic penetration into at least a subset of the mitochondrial effects of KPC1.
Collapse
Affiliation(s)
- Ye Yuan
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
- Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei ProvinceHubei University of MedicineHubeiChina
| | - Yong‐yi Wang
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Liu
- Laboratory Animal CenterHubeiChina
| | - Bin Luo
- Department of Physiology, School of Basic Medicine ScienceHubei University of MedicineHubeiChina
| | - Lei Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
- Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei ProvinceHubei University of MedicineHubeiChina
| | - Fei Zheng
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
| | - Xing‐Yuan Li
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
| | - Ling‐Yun Guo
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
| | - Lu Wang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
| | - Miao Jiang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
| | - Ya‐mu Pan
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
| | - Yu‐wen Yan
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
| | - Jian‐ye Yang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
| | - Shi‐You Chen
- Department of Physiology & PharmacologyThe University of GeorgiaAthensUSA
| | - Jia‐Ning Wang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
- Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei ProvinceHubei University of MedicineHubeiChina
| | - Jun‐Ming Tang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of MedicineShiyanHubeiChina
- Department of Physiology, School of Basic Medicine ScienceHubei University of MedicineHubeiChina
- Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei ProvinceHubei University of MedicineHubeiChina
| |
Collapse
|
10
|
Bonfiglio T, Biggi F, Bassi AM, Ferrando S, Gallus L, Loiacono F, Ravera S, Rottigni M, Scarfì S, Strollo F, Vernazza S, Sabbatini M, Masini MA. Simulated microgravity induces nuclear translocation of Bax and BCL-2 in glial cultured C6 cells. Heliyon 2019; 5:e01798. [PMID: 31338440 PMCID: PMC6580195 DOI: 10.1016/j.heliyon.2019.e01798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/21/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Alterations in the control of apoptotic processes were observed in cells during space flight or under simulated microgravity, the latter obtained with the 3D-Random Positioning Machine (3D-RPM). Usually the proteins Bax and Bcl-2, act as pro- or anti-apoptotic regulators. Here we investigated the effects of simulated microgravity obtained by the 3D-RPM on cell viability, localization and expression of Bax and Bcl-2 in cultures of glial cancerous cells. We observed for the first time a transient cytoplasmic/nuclear translocation of Bax and Bcl-2 triggered by changing gravity vector. Bax translocates into the nucleus after 1 h, is present simultaneously in the cytoplasm after 6 h and comes back to the cytoplasm after 24 h. Bcl-2 translocate into the nucleus only after 6 h and comes back to the cytoplasm after 24 h. Physiological meaning, on the regulation of apoptotic event and possible applicative outcomes of such finding are discussed.
Collapse
Affiliation(s)
- Tommaso Bonfiglio
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | | | - Anna Maria Bassi
- DIMES, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - Sara Ferrando
- DISTAV, University of Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Lorenzo Gallus
- DISTAV, University of Genova, Corso Europa 26, 16132 Genoa, Italy
| | | | - Silvia Ravera
- DIMES, Biochemistry Lab., University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Marino Rottigni
- DISTAV, University of Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Sonia Scarfì
- DISTAV, University of Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Felice Strollo
- Endocrinology and Diabetes Unit, St. Peter's FBF Hospital, Via Cassia 600, 00189 Rome, Italy
| | | | - Maurizio Sabbatini
- DISIT, University of Piemonte Orientale, Via Teresa Michel 11, Alessandria, Italy
| | - Maria A. Masini
- DISIT, University of Piemonte Orientale, Via Teresa Michel 11, Alessandria, Italy
| |
Collapse
|
11
|
Jin LB, Zhu J, Liang CZ, Tao LJ, Liu B, Yu W, Zou HH, Wang JJ, Tao H. Paeoniflorin induces G2/M cell cycle arrest and caspase-dependent apoptosis through the upregulation of Bcl-2 X-associated protein and downregulation of B-cell lymphoma 2 in human osteosarcoma cells. Mol Med Rep 2018; 17:5095-5101. [PMID: 29363721 PMCID: PMC5865973 DOI: 10.3892/mmr.2018.8464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Abstract
Paeoniflorin (PF), extracted from the peony root, has been proved to possess antineoplastic activity in different cancer cell lines. However, it remains unclear whether PF has an antineoplastic effect against osteosarcoma cells. The present study investigated the effects and the specific mechanism of PF on various human osteosarcoma cell lines. Using the multiple methods to detect the activity of PF on HOS and Saos-2 human osteosarcoma cell lines, including an MTS assay, flow cytometry, transmission electron microscopy and western blotting, it was demonstrated that PF induces inhibition of proliferation, G2/M phase cell cycle arrest and apoptosis in the osteosarcoma cell lines in vitro, and activation of cleaved-caspase-3 and cleaved-poly (ADPribose) polymerase in a dose-dependent manner. Furthermore, the pro-apoptotic factors Bcl-2 X-associated protein and BH3 interacting domain death agonist were uregulated, while the anti-apoptotic factors B-cell lymphoma 2 (Bcl-2) and Bcl-2-extra large were downregulated. In conclusion, these results demonstrated that PF has a promising therapeutic potential in for osteosarcoma.
Collapse
Affiliation(s)
- Li-Bin Jin
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Cheng-Zhen Liang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Jiang Tao
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Han Hui Zou
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jun-Jie Wang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
12
|
Hypericin in the Dark: Foe or Ally in Photodynamic Therapy? Cancers (Basel) 2016; 8:cancers8100093. [PMID: 27754424 PMCID: PMC5082383 DOI: 10.3390/cancers8100093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
Photosensitizers (PSs) in photodynamic therapy (PDT) are, in most cases, administered systemically with preferential accumulation in malignant tissues; however, exposure of non-malignant tissues to PS may also be clinically relevant, when PS molecules affect the pro-apoptotic cascade without illumination. Hypericin (Hyp) as PS and its derivatives have long been studied, regarding their photodynamic and photocytotoxic characteristics. Hyp and its derivatives have displayed light-activated antiproliferative and cytotoxic effects in many tumor cell lines without cytotoxicity in the dark. However, light-independent effects of Hyp have emerged. Contrary to the acclaimed Hyp minimal dark cytotoxicity and preferential accumulation in tumor cells, it was recently been shown that non-malignant and malignant cells uptake Hyp at a similar level. In addition, Hyp has displayed light-independent toxicity and anti-proliferative effects in a wide range of concentrations. There are multiple mechanisms underlying Hyp light-independent effects, and we are still missing many details about them. In this paper, we focus on Hyp light-independent effects at several sub-cellular levels—protein distribution and synthesis, organelle ultrastructure and function, and Hyp light-independent effects regarding reactive oxygen species (ROS). We summarize work from our laboratories and that of others to reveal an intricate network of the Hyp light-independent effects. We propose a schematic model of pro- and anti-apoptotic protein dynamics between cell organelles due to Hyp presence without illumination. Based on our model, Hyp can be explored as an adjuvant therapeutic drug in combination with chemo- or radiation cancer therapy.
Collapse
|
13
|
Maslaňáková M, Balogová L, Miškovský P, Tkáčová R, Štroffeková K. Anti- and Pro-apoptotic Bcl2 Proteins Distribution and Metabolic Profile in Human Coronary Aorta Endothelial Cells Before and After HypPDT. Cell Biochem Biophys 2016; 74:435-47. [PMID: 27314518 DOI: 10.1007/s12013-016-0740-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 06/09/2016] [Indexed: 11/24/2022]
Abstract
Understanding apoptosis regulatory mechanisms in endothelial cells (ECs) has great importance for the development of novel therapy strategies for cancer and cardiovascular pathologies. An oxidative stress with the generation of reactive oxygen species (ROS) is a common mechanism causing ECs' dysfunction and apoptosis. The generation of ROS can be triggered by various stimuli including photodynamic therapy (PDT). In most PDT treatments, photosensitizer (PS) is administered systemically, and thus, possibility of high exposure to PS in the ECs remains high. PS accumulation in ECs may be clinically relevant even without PDT, if PS molecules affect the pro-apoptotic cascade without illumination. In the present work, we focused on Hypericin (Hyp) and HypPDT effects on the cell viability, oxidative stress, and the distribution of Bcl2 family members in human coronary artery endothelial (HCAEC) cells. Our findings show that the presence of Hyp itself has an effect on cell viability, oxidative stress, and the distribution of Bcl2 family members, without affecting the mitochondria function. In contrast, HypPDT resulted in mitochondria dysfunction, further increase of oxidative stress and effect on the distribution of Bcl2 family members, and in primarily necrotic type of death in HCAEC cells.
Collapse
Affiliation(s)
- Mária Maslaňáková
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Jesenna 5, Kosice, Slovakia
| | - Lucia Balogová
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Jesenna 5, Kosice, Slovakia
| | - Pavol Miškovský
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Jesenna 5, Kosice, Slovakia.,Center of Interdisciplinary Biosciences, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
| | - Ružena Tkáčová
- Department of Respiratory Medicine, Faculty of Medicine, P.J. Safarik University, Kosice, Slovakia
| | - Katarína Štroffeková
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Jesenna 5, Kosice, Slovakia.
| |
Collapse
|
14
|
Lindenboim L, Sasson T, Worman HJ, Borner C, Stein R. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release. Nucleus 2014; 5:527-41. [PMID: 25482068 PMCID: PMC4615202 DOI: 10.4161/19491034.2014.970105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/31/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
Cellular stress triggers many pathways including nuclear protein redistribution. We previously discovered that this process is regulated by Bax but the underlying mechanism has not yet been studied. Here we define this mechanism by showing that apoptotic stimuli cause Bax-regulated disturbances in lamin A/C and nuclear envelope (NE)-associated proteins which results in the generation and subsequent rupture of nuclear protein-containing bubbles. The bubbles do not contain DNA and are encapsulated by impaired nuclear pore-depleted NE. Stress-induced generation and rupture of nuclear bubbles ultimately leads to the discharge of nuclear proteins into the cytoplasm. This process precedes morphological changes of apoptosis and occurs independently of caspases. Rescue experiments revealed that this Bax effect is non-canonical, i.e. it requires the BH3 domain and α-helices 5 and 6 but it is not inhibited by Bcl(-)xL. Targeting Bax to the NE by the Klarsicht/ANC-1/Syne-1 homology (KASH) domain effectively triggers the generation and rupture of nuclear bubbles. Overall, our findings provide evidence for a novel stress-response, which is regulated by a non-canonical action of Bax on the NE.
Collapse
Key Words
- Bax
- Bax/Bak, Bax and Bak
- DKO, double knockout
- INM, inner nuclear membrane
- KASH, Klarsicht: ANC-1, Syne homology
- LAP, lamina-associated polypeptide
- LINC, links nucleoskeleton and cytoskeleton
- MEFs, mouse embryonic fibroblasts
- MOMP, mitochondrial outer membrane permeabilization
- NE, nuclear envelope
- NPCs, nuclear pore complexes
- NPM, nucleophosmin
- NPR, nuclear protein redistribution
- ONM, outer nuclear membrane
- PI, propidium iodide
- Q-VD-OPH, quinoline-Val-Asp(OMe)-CH2-OPH.
- SIGRUNB, stress-induced generation and rupture of nuclear bubbles
- apoptosis
- lamin
- nuclear envelope
- nucleus
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| | - Tiki Sasson
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology; College of Physicians and Surgeons; Columbia University; New York, NY, USA
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research; Albert Ludwigs University Freiburg; Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM); Albert Ludwigs University Freiburg; Freiburg, Germany
- Excellence Cluster, Centre for Biological Signaling Studies (BIOSS); Albert Ludwigs University Freiburg; Freiburg, Germany
| | - Reuven Stein
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| |
Collapse
|