1
|
Liu M, Yang Q, Zuo H, Zhang X, Mishina Y, Chen Z, Yang J. Dynamic patterns of histone lactylation during early tooth development in mice. J Mol Histol 2023; 54:665-673. [PMID: 37787911 DOI: 10.1007/s10735-023-10154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Histone lactylation on its lysine (K) residues has been reported to have indispensable roles in lung fibrosis, embryogenesis, neural development, inflammation, and tumors. However, little is known about the lactylation activity towards histone lysine residue during tooth development. We investigated the dynamic patterns of lactate-derived histone lysine lactylation (Kla) using a pan-Kla antibody during murine tooth development, including lower first molar and lower incisor. The results showed that pan-Kla exhibited temporo-spatial patterns in both dental epithelium and mesenchyme cells during development. Notably, pan-Kla was identified in primary enamel knot (PEK), stratum intermedium (SI), stellate reticulum (SR), dental follicle cells, odontoblasts, ameloblasts, proliferating cells in dental mesenchyme, as well as osteoblasts around the tooth germ. More importantly, pan-Kla was also identified to be co-localized with neurofilament during tooth development, suggesting histone lysine lactylation may be involved in neural invasion during tooth development. These findings suggest that histone lysine lactylation may play important roles in regulating tooth development.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Qian Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Xinye Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, MI, 48109, USA
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China.
| |
Collapse
|
2
|
Jia S, Bu Y, Lau DSA, Lin Z, Sun T, Lu WW, Lu S, Ruan C, Chan CHJ. Advances in 3D bioprinting technology for functional corneal reconstruction and regeneration. Front Bioeng Biotechnol 2023; 10:1065460. [PMID: 36686254 PMCID: PMC9852906 DOI: 10.3389/fbioe.2022.1065460] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Corneal transplantation constitutes one of the major treatments in severe cases of corneal diseases. The lack of cornea donors as well as other limitations of corneal transplantation necessitate the development of artificial corneal substitutes. Biosynthetic cornea model using 3D printing technique is promising to generate artificial corneal structure that can resemble the structure of the native human cornea and is applicable for regenerative medicine. Research on bioprinting artificial cornea has raised interest into the wide range of materials and cells that can be utilized as bioinks for optimal clarity, biocompatibility, and tectonic strength. With continued advances in biomaterials science and printing technology, it is believed that bioprinted cornea will eventually achieve a level of clinical functionality and practicality as to replace donated corneal tissues, with their associated limitations such as limited or unsteady supply, and possible infectious disease transmission. Here, we review the literature on bioprinting strategies, 3D corneal modelling, material options, and cellularization strategies in relation to keratoprosthesis design. The progress, limitations and expectations of recent cases of 3D bioprinting of artifial cornea are discussed. An outlook on the rise of 3D bioprinting in corneal reconstruction and regeneration is provided.
Collapse
Affiliation(s)
- Shuo Jia
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yashan Bu
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dzi-Shing Aaron Lau
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhizhen Lin
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tianhao Sun
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Gangqing Biomedical Technology Co. Ltd, Shenzhen, China
| | - Weijia William Lu
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sheng Lu
- Department of Orthopedic Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Changshun Ruan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheuk-Hung Jonathan Chan
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Luo H, Basabrain MS, Zhong J, Liu J, Zhang Y, Qi Y, Zou T, Zhang C. Neuroregenerative potential of SCAP-derived neuronal cell spheroids regulated by SCAPs under various microenvironments in a pulp-on-chip system. J Endod 2022. [DOI: 10.1016/j.joen.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Stanwick M, Barkley C, Serra R, Kruggel A, Webb A, Zhao Y, Pietrzak M, Ashman C, Staats A, Shahid S, Peters SB. Tgfbr2 in Dental Pulp Cells Guides Neurite Outgrowth in Developing Teeth. Front Cell Dev Biol 2022; 10:834815. [PMID: 35265620 PMCID: PMC8901236 DOI: 10.3389/fcell.2022.834815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor β (TGFβ) plays an important role in tooth morphogenesis and mineralization. During postnatal development, the dental pulp (DP) mesenchyme secretes neurotrophic factors that guide trigeminal nerve fibers into and throughout the DP. This process is tightly linked with dentin formation and mineralization. Our laboratory established a mouse model in which Tgfbr2 was conditionally deleted in DP mesenchyme using an Osterix promoter-driven Cre recombinase (Tgfbr2 cko ). These mice survived postnatally with significant defects in bones and teeth, including reduced mineralization and short roots. Hematoxylin and eosin staining revealed reduced axon-like structures in the mutant mice. Reporter imaging demonstrated that Osterix-Cre activity within the tooth was active in the DP and derivatives, but not in neuronal afferents. Immunofluorescence staining for β3 tubulin (neuronal marker) was performed on serial cryosections from control and mutant molars on postnatal days 7 and 24 (P7, P24). Confocal imaging and pixel quantification demonstrated reduced innervation in Tgfbr2 cko first molars at both stages compared to controls, indicating that signals necessary to promote neurite outgrowth were disrupted by Tgfbr2 deletion. We performed mRNA-Sequence (RNA-Seq) and gene onotology analyses using RNA from the DP of P7 control and mutant mice to investigate the pathways involved in Tgfbr2-mediated tooth development. These analyses identified downregulation of several mineralization-related and neuronal genes in the Tgfbr2 cko DP compared to controls. Select gene expression patterns were confirmed by quantitative real-time PCR and immunofluorescence imaging. Lastly, trigeminal neurons were co-cultured atop Transwell filters overlying primary Tgfbr2 f/f DP cells. Tgfbr2 in the DP was deleted via Adenovirus-expressed Cre recombinase. Confocal imaging of axons through the filter pores showed increased axonal sprouting from neurons cultured with Tgfbr2-positive DP cells compared to neurons cultured alone. Axon sprouting was reduced when Tgfbr2 was knocked down in the DP cells. Immunofluorescence of dentin sialophosphoprotein in co-cultured DP cells confirmed reduced mineralization potential in cells with Tgfbr2 deletion. Both our proteomics and RNA-Seq analyses indicate that axonal guidance cues, particularly semaphorin signaling, were disrupted by Tgfbr2 deletion. Thus, Tgfbr2 in the DP mesenchyme appears to regulate differentiation and the cells' ability to guide neurite outgrowth during tooth mineralization and innervation.
Collapse
Affiliation(s)
- Monica Stanwick
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Courtney Barkley
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew Kruggel
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Chandler Ashman
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Allie Staats
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Shifa Shahid
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Sarah B. Peters
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States,Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Sarah B. Peters,
| |
Collapse
|
5
|
The Versatile Roles of Nerve Growth Factor in Neuronal Attraction, Odontoblast Differentiation, and Mineral Deposition in Human Teeth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34453293 DOI: 10.1007/978-3-030-74046-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Nerve growth factor (NGF) is an important molecule for the development and differentiation of neuronal and non-neuronal cells. Here we analyze by immunohistochemistry the distribution of NGF in the dental pulp mesenchyme of embryonic and functional human teeth. In the dental pulp of both embryonic and healthy functional teeth, NGF is mainly expressed in the odontoblasts that are responsible for dentine formation, while in functional teeth NGF is also expressed in nerve fibers innervating the dental pulp. In injured teeth, NGF is expressed in the newly formed odontoblastic-like cells, which replace the dying odontoblasts. In these teeth, NGF expression is also upregulated in the intact odontoblasts, suggesting a role for this molecule in dental tissue repair. Similarly, in cultures of human dental pulp cells, NGF expression is strongly upregulated during their differentiation into odontoblasts as well as during the mineralization process. In microfluidic devices, release of NGF from cultured human dental pulp cells induced neuronal growth from trigeminal ganglia toward the NGF secreting cells. These results show that NGF is closely linked to the various functions of odontoblasts, including secretory and neuronal attraction processes.
Collapse
|
6
|
Chen B, Li LX, Zhou LL. Dental management of a patient with Moebius syndrome: A case report. World J Clin Cases 2021; 9:7269-7278. [PMID: 34540988 PMCID: PMC8409181 DOI: 10.12998/wjcc.v9.i24.7269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Moebius syndrome (MBS) is a nonprogressive and rare congenital neuromuscular disorder involving the facial nerve and abductor nerve; it mainly manifests as facial paralysis and eye strabismus paralytic symptoms. Tissues in the oral cavity are also compromised, characterized by microstomia, micrognathia, tongue malformation, cleft lip, high arched palate or cleft palate, bifid uvula, and dental malocclusion. Therefore, dentistry plays a fundamental and crucial role in caring for these individuals. However, there is limited available data on MBS treatment, particularly regarding dental management.
CASE SUMMARY This case report presents dental treatment of a 21-year-old man with MBS and discusses crucial interactions among oral complications of MBS. In this case, the patient was clinically characterized by congenital neuromuscular disorder, occlusal disorders, and tooth and gum problems. It is noteworthy that the patient presented early eruption of deciduous teeth 2 mo after birth, which has not been reported in other MBS cases and suggests a potentially new clinical manifestation of this syndrome. It is important to note that MBS cannot be cured, and oral manifestations of this syndrome can be managed by a multidisciplinary health care team that helps the patient maintain oral hygiene and dental health. After a series of oral treatments, no obvious poor oral hygiene, swollen gums, or abnormal imaging results were observed after 2 years of follow-up.
CONCLUSION This case addressed the oral clinical manifestations of MBS and difficulties experienced during dental management, and suggested early tooth eruption as a potentially new clinical manifestation of this syndrome. Knowledge of the loop-mediated association among oral complications of this syndrome is essential to perfecting treatments.
Collapse
Affiliation(s)
- Ben Chen
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ling-Xia Li
- Department of Generality, Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Li-Li Zhou
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
7
|
Shi L, Wang C, Yan Y, Wang G, Zhang J, Feng L, Yang X, Li G. Function study of vasoactive intestinal peptide on chick embryonic bone development. Neuropeptides 2020; 83:102077. [PMID: 32839008 DOI: 10.1016/j.npep.2020.102077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
Embryonic bone development is a complicated procedure and modulated by neuro-osteogenic interaction. Vasoactive intestinal peptide (VIP) was first identified as a neural vasodilator and further proved to possess multiple biological functions such as neurotransmitter and immune regulator. However, as a key peptide regulator presented in skeletal nerve fibers, the function of VIP on innervation and early bone development regulation has not fully been uncovered yet. In this study, the chick embryo has been used as an experimental model to address the effect of VIP on embryonic bone development. Our study results confirmed the innervation of peripheral nerve fibers into limb bone tissue, which was revealed by the detection of neurofilament (NF) and class III β-tubulin (TUJ-1) in bone tissue at various developing stages. The VIP mRNA and peptide expression level in bone tissue were also increased upon innervation progress. A chick embryonic chemical sympathectomy model was constructed by exposing chick embryos with neurotoxin 6-OHDA. The 6-OHDA exposure of the early chick embryo caused the reduction of neural crest formation and NF expression. 6-OHDA treatment also inhibited distal limb bone development as well as VIP expression. Furthermore, co-application of VIP with 6-OHDA exposure could rescue the inhibited osteogenesis activity and delayed bone development during embryogenesis. Taken together, these results reveal that VIP played an important role during innervation at early stage of bone development. VIP could restore chemical sympathectomy induced osteogenesis inhibition and bone development impair in chick embryos.
Collapse
Affiliation(s)
- Liu Shi
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, PR China; School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, PR China
| | - Chaojie Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Yu Yan
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Jinfang Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, SAR, PR China.
| |
Collapse
|
8
|
Allison TS, Moritz J, Turk P, Stone-Roy LM. Lingual electrotactile discrimination ability is associated with the presence of specific connective tissue structures (papillae) on the tongue surface. PLoS One 2020; 15:e0237142. [PMID: 32764778 PMCID: PMC7413419 DOI: 10.1371/journal.pone.0237142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation of nerve endings in the tongue can be used to communicate information to users and has been shown to be highly effective in sensory substitution applications. The anterior tip of the tongue has very small somatosensory receptive fields, comparable to those of the finger tips, allowing for precise two-point discrimination and high tactile sensitivity. However, perception of electrotactile stimuli varies significantly between users, and across the tongue surface. Despite this, previous studies all used uniform electrode grids to stimulate a region of the dorsal-medial tongue surface. In an effort to customize electrode layouts for individual users, and thus improve efficacy for sensory substitution applications, we investigated whether specific neuroanatomical and physiological features of the tongue are associated with enhanced ability to perceive active electrodes. Specifically, the study described here was designed to test whether fungiform papillae density and/or propylthiouracil sensitivity are positively or negatively associated with perceived intensity and/or discrimination ability for lingual electrotactile stimuli. Fungiform papillae number and distribution were determined for 15 participants and they were exposed to patterns of electrotactile stimulation (ETS) and asked to report perceived intensity and perceived number of stimuli. Fungiform papillae number and distribution were then compared to ETS characteristics using comprehensive and rigorous statistical analyses. Our results indicate that fungiform papillae density is correlated with enhanced discrimination ability for electrical stimuli. In contrast, papillae density, on average, is not correlated with perceived intensity of active electrodes. However, results for at least one participant suggest that further research is warranted. Our data indicate that propylthiouracil taster status is not related to ETS perceived intensity or discrimination ability. These data indicate that individuals with higher fungiform papillae number and density in the anterior medial tongue region may be better able to use lingual ETS for sensory substitution.
Collapse
Affiliation(s)
- Tyler S. Allison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Joel Moritz
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- Sapien LLC, Fort Collins, Colorado, United States of America
| | - Philip Turk
- Department of Statistics, Colorado State University, Fort Collins, Colorado, United States of America
| | - Leslie M. Stone-Roy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
Innervation plays a key role in the development, homeostasis, and regeneration of organs and tissues. However, the mechanisms underlying these phenomena are not well understood yet. In particular, the role of innervation in tooth development and regeneration is neglected. Cocultures constitute a valuable method to investigate and manipulate the interactions between nerve fibers and teeth in a controlled and isolated environment. Microfluidic systems for allow cocultures of neurons and different cell types in their appropriate culture media, while permitting the passage of axons from one compartment to the other. Here we describe how to isolate and coculture developing trigeminal ganglia and tooth germs in a microfluidic coculture system. This protocol describes a simple and flexible way to coculture ganglia/nerves and their target tissues and to study the roles of specific molecules on such interactions in a controlled and isolated environment.
Collapse
|
10
|
Ameloblastomas Exhibit Stem Cell Potential, Possess Neurotrophic Properties, and Establish Connections with Trigeminal Neurons. Cells 2020; 9:cells9030644. [PMID: 32155948 PMCID: PMC7140461 DOI: 10.3390/cells9030644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Ameloblastomas are locally invasive and aggressive odontogenic tumors treated via surgical resection, which results in facial deformity and significant morbidity. Few studies have addressed the cellular and molecular events of ameloblastoma onset and progression, thus hampering the development of non-invasive therapeutic approaches. Tumorigenesis is driven by a plethora of factors, among which innervation has been long neglected. Recent findings have shown that innervation directly promotes tumor progression. On this basis, we investigated the molecular characteristics and neurotrophic properties of human ameloblastomas. Our results showed that ameloblastomas express dental epithelial stem cell markers, as well as components of the Notch signaling pathway, indicating persistence of stemness. We demonstrated that ameloblastomas express classical stem cell markers, exhibit stem cell potential, and form spheres. These tumors express also molecules of the Notch signaling pathway, fundamental for stem cells and their fate. Additionally, we showed that ameloblastomas express the neurotrophic factors NGF and BDNF, as well as their receptors TRKA, TRKB, and P75/NGFR, which are responsible for their innervation by trigeminal axons in vivo. In vitro studies using microfluidic devices showed that ameloblastoma cells attract and form connections with these nerves. Innervation of ameloblastomas might play a key role in the onset of this malignancy and might represent a promising target for non-invasive pharmacological interventions.
Collapse
|
11
|
Pagella P, Miran S, Neto E, Martin I, Lamghari M, Mitsiadis TA. Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB J 2020; 34:5499-5511. [PMID: 32096581 DOI: 10.1096/fj.201902482r] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) have the capacity to self-renew and differentiate into specific cell types and are, therefore, key players during tissue repair and regeneration. The use of MSCs for the regeneration of tissues in vivo is increasingly being explored and already constitutes a promising alternative to existing clinical treatments. MSCs also exert paracrine and trophic functions, including the promotion of innervation that plays fundamental roles in regeneration and in restoration of the function of organs. Human bone marrow stem cells (hBMSCs) and human dental pulp stem cells (hDPSCs) have been used in studies that aimed at the repair and/or regeneration of bone or other tissues of the craniofacial complex. However, the capabilities of hBMSCs and hDPSCs to elicit the growth of specific axons in order to reestablish functional innervation of the healing tissues are not known. Here, we compared the neurotrophic effects of hDPSCs and hBMSCs on trigeminal and dorsal root ganglia neurons using microfluidic organs-on-chips devices. We found that hDPSCs express significantly higher levels of neurotrophins than hBMSCs and consequently neurons cocultured with hDPSCs develop longer axons in the microfluidic co-culture system when compared to neurons cocultured with hBMSCs. Moreover, hDPSCs elicited the formation of extensive axonal networks and established close contacts with neurons, a phenomenon not observed in presence of hBMSCs. Taken together, these findings indicate that hDPSCs constitute a superior option for restoring the functionality of damaged craniofacial tissues, as they are able to support and promote extensive trigeminal innervation.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Shayee Miran
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Estrela Neto
- i3S, University of Porto, Porto, Portugal.,Institute of Biomedical Engineering (INEB), University of Porto, Porto, Portugal
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Meriem Lamghari
- i3S, University of Porto, Porto, Portugal.,Institute of Biomedical Engineering (INEB), University of Porto, Porto, Portugal
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Barkley C, Serra R, Peters SB. A Co-Culture Method to Study Neurite Outgrowth in Response to Dental Pulp Paracrine Signals. J Vis Exp 2020. [PMID: 32116290 DOI: 10.3791/60809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tooth innervation allows teeth to sense pressure, temperature and inflammation, all of which are crucial to the use and maintenance of the tooth organ. Without sensory innervation, daily oral activities would cause irreparable damage. Despite its importance, the roles of innervation in tooth development and maintenance have been largely overlooked. Several studies have demonstrated that DP cells secrete extracellular matrix proteins and paracrine signals to attract and guide TG axons into and throughout the tooth. However, few studies have provided detailed insight into the crosstalk between the DP mesenchyme and neuronal afferents. To address this gap in knowledge, researchers have begun to utilize co-cultures and a variety of techniques to investigate these interactions. Here, we demonstrate the multiple steps involved in co-culturing primary DP cells with TG neurons dispersed on an overlying transwell filter with large diameter pores to allow axonal growth through the pores. Primary DP cells with the gene of interest flanked by loxP sites were utilized to facilitate gene deletion using an Adenovirus-Cre-GFP recombinase system. Using TG neurons from the Thy1-YFP mouse allowed for precise afferent imaging, with expression well above background levels by confocal microscopy. The DP responses can be investigated via protein or RNA collection and analysis, or alternatively, through immunofluorescent staining of DP cells plated on removable glass coverslips. Media can be analyzed using techniques such as proteomic analyses, although this will require albumin depletion due to the presence of fetal bovine serum in the media. This protocol provides a simple method that can be manipulated to study the morphological, genetic, and cytoskeletal responses of TG neurons and DP cells in response to the controlled environment of a co-culture assay.
Collapse
Affiliation(s)
- Courtney Barkley
- Cell, Developmental and Integrative Biology Department, University of Alabama at Birmingham
| | - Rosa Serra
- Cell, Developmental and Integrative Biology Department, University of Alabama at Birmingham
| | - Sarah B Peters
- Cell, Developmental and Integrative Biology Department, University of Alabama at Birmingham;
| |
Collapse
|
13
|
Feigin CY, Newton AH, Pask AJ. Widespread cis-regulatory convergence between the extinct Tasmanian tiger and gray wolf. Genome Res 2019; 29:1648-1658. [PMID: 31533979 PMCID: PMC6771401 DOI: 10.1101/gr.244251.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
Abstract
The extinct marsupial Tasmanian tiger, or thylacine, and the eutherian gray wolf are among the most widely recognized examples of convergent evolution in mammals. Despite being distantly related, these large predators independently evolved extremely similar craniofacial morphologies, and evidence suggests that they filled similar ecological niches. Previous analyses revealed little evidence of adaptive convergence between their protein-coding genes. Thus, the genetic basis of their convergence is still unclear. Here, we identified candidate craniofacial cis-regulatory elements across vertebrates and compared their evolutionary rates in the thylacine and wolf, revealing abundant signatures of convergent positive selection. Craniofacial thylacine-wolf accelerated regions were enriched near genes involved in TGF beta (TGFB) and BMP signaling, both of which are key morphological signaling pathways with critical roles in establishing the identities and boundaries between craniofacial tissues. Similarly, enhancers of genes involved in craniofacial nerve development showed convergent selection and involvement in these pathways. Taken together, these results suggest that adaptation in cis-regulators of TGF beta and BMP signaling may provide a mechanism to explain the coevolution of developmentally and functionally integrated craniofacial structures in these species. We also found that despite major structural differences in marsupial and eutherian brains, accelerated regions in both species were common near genes with roles in brain development. Our findings support the hypothesis that, relative to protein-coding genes, positive selection on cis-regulatory elements is likely to be an essential driver of adaptive convergent evolution and may underpin thylacine-wolf phenotypic similarities.
Collapse
Affiliation(s)
- Charles Y Feigin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Axel H Newton
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Museums Victoria, Melbourne, Victoria 3053, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Museums Victoria, Melbourne, Victoria 3053, Australia
| |
Collapse
|
14
|
Physiology, Pathology and Regeneration of Salivary Glands. Cells 2019; 8:cells8090976. [PMID: 31455013 PMCID: PMC6769486 DOI: 10.3390/cells8090976] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/03/2023] Open
Abstract
Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach can compensate the impairment of salivary glands, and treatment are purely symptomatic. Understanding the cellular and molecular control of salivary glands function is, therefore, highly relevant for therapeutic purposes. In this review, we provide a starting platform for future studies in basic biology and clinical research, reporting classical ideas on salivary gland physiology and recently developed technology to guide regeneration, reconstruction and substitution of the functional organs.
Collapse
|
15
|
Trejo JL. Cranial Nerves: Mind Your Head. Anat Rec (Hoboken) 2019; 302:374-377. [DOI: 10.1002/ar.24071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/20/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- José Luis Trejo
- Department of Translational Neuroscience, CSIC; Cajal Institute; Madrid Spain
| |
Collapse
|
16
|
Ma C, Gao T, Ju J, Zhang Y, Ni Q, Li Y, Zhao Z, Chai J, Yang X, Sun M. Sympathetic innervation contributes to perineural invasion of salivary adenoid cystic carcinoma via the β2-adrenergic receptor. Onco Targets Ther 2019; 12:1475-1495. [PMID: 30863115 PMCID: PMC6391132 DOI: 10.2147/ott.s190847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Perineural invasion (PNI) is reported to correlate with local recurrence and poor prognosis of salivary adenoid cystic carcinoma (SACC). However, the pathogenesis of PNI remains unclear. The aims of this study were to investigate the correlation between sympathetic innervation and SACC PNI and to elucidate how the sympathetic neurotransmitter norepinephrine (NE) regulates the PNI process. Materials and methods Sympathetic innervation and β2-adrenergic receptor (β2-AR) expression in SACC tissues were evaluated by immunohistochemistry. The NE concentrations in SACC tissues and dorsal root ganglia (DRG) coculture models were measured by ELISA. β2-AR expression in SACC cells was detected by performing quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence assay. SACC cells were treated with NE, the nonselective α-AR blocker phentolamine, the β2-AR antagonist ICI118,551, or were transfected with β2-AR small interfering RNA (siRNA). Proliferation was evaluated in methyl thiazolyl tetrazolium assay, and migration was evaluated in Transwell assay and wound-healing assay. PNI was tested through both Transwell assay and a DRG coculture model. The expressions of epithelial–mesenchymal transition (EMT) markers and matrix metalloproteinases (MMPs) were measured by performing qRT-PCR and Western blot assay. Results Sympathetic innervation and β2-AR were highly distributed in SACC tissues and correlated positively with PNI (P=0.035 and P=0.003, respectively). The sympathetic neurotransmitter NE was overexpressed in SACC tissues and DRG coculture models. Exogenously added NE promoted proliferation, migration, and PNI of SACC cells via β2-AR activation. NE/β2-AR signaling may promote proliferation, migration, and PNI by inducing EMT and upregulating MMPs. However, β2-AR inhibition with either an antagonist or siRNA abrogated NE-induced PNI. Conclusion Collectively, our findings reveal the supportive role of sympathetic innervation in the pathogenesis of SACC PNI and suggest β2-AR as a potential therapeutic target for treating PNI in SACC.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China,
| | - Tao Gao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China, .,Department of Stomatology, The First Hospital of Yu Lin, Yu Lin, Shaanxi, China
| | - Jun Ju
- Department of Otolaryngology Head and Neck Surgery, Navy General Hospital, Beijing, China
| | - Yi Zhang
- Department of Geriatrics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qianwei Ni
- Department of Oral and Maxillofacial Surgery, General Hospital of Xinjiang Military Region, Urumqi, Xin Jiang, China
| | - Yun Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China,
| | - Zhenyan Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China,
| | - Juan Chai
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xiangming Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China,
| | - Moyi Sun
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China,
| |
Collapse
|
17
|
Chidiac JJ, Kassab A, Rifai K, Al-Chaer ED, Saadé NE. Contribution of capsaicin-sensitive innervation to the continuous eruption of the rat mandibular incisors. Anat Sci Int 2018; 94:136-143. [PMID: 30229540 DOI: 10.1007/s12565-018-0460-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
A major component of tooth innervation is made of capsaicin-sensitive primary afferents (CSPA). These fibers play a key role in tooth pain and inflammation; little is known, however, about the role of CSPA in tooth eruption. The aim of this study was to examine the role of the capsaicin-sensitive afferents in the process of eruption of intact rat incisors. CSPA fibers in several rat groups, were subjected to one of the following experimental procedures: systemic chemical ablation, systemic ablation followed by chemical sympathectomy and localized activation. The observed effects on incisor eruption were compared to those made on controls. The total amount of eruption in control/naïve rats, measured over a total period of 144 h, was 3.18 ± 0.07 mm and decreased to 2.43 ± 0.08 mm (n = 7; p < 0.001) following systemic ablation of CSPA. Further decrease to 2.24 ± 0.08 mm (n = 7; p < 0.001) was noticed when chemical sympathectomy was added to CSPA ablation. The average rate of eruption was 1.7 ± 0.25 mm following CSPA activation, compared to an average of 0.8 ± 0.07 mm for controls (n = 7; p < 0.001). Capsaicin sensitive fibers play an important role in tooth homeostasis, and intact neural supply is required for tooth growth under normal conditions.
Collapse
Affiliation(s)
| | - Ammar Kassab
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Khaldoun Rifai
- School of Dentistry, Lebanese University, Beirut, Lebanon
| | - Elie D Al-Chaer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nayef E Saadé
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
18
|
Queiroz BFGD, Almeida MPAD, Bakhle YS, Francischi JN. Calcitonin-gene related peptide is a potent inducer of oedema in rat orofacial tissue. Neuropeptides 2018; 68:43-48. [PMID: 29396376 DOI: 10.1016/j.npep.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/23/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS This study aimed to assess the potential of calcitonin-gene related peptide (CGRP), a neuropeptide released from sensory nerves, to induce oedema in orofacial tissue. EXPERIMENTAL APPROACH Wistar rats (150-200 g) anesthetized with isoflurane were injected intraorally with CGRP (100 μl; 8-33 pmol) in the right side of the mouth. The contralateral side was injected with the same volume of physiological saline. Increased cheek thickness (in mm), as a measure of oedema formation, was assayed bilaterally with a digital caliper before (T = 0) and up to 24 h following injection of CGRP. Pretreatment with antagonists (CGRP8-37, 10 nmol; pizotifen, 2 mg/kg) was given by intra-oral or subcutaneous injection, 10 or 30 min, respectively, before the inflammatory stimulus. CGRP and CGRP8-37 were also injected into the rat hind paw to induce oedema. Data are presented as the mean (±SEM) difference in thickness between the right and the left sides at each time. RESULTS Following intra-oral injection, CGRP induced a rapidly developing (5-15 min) and long-lasting (6 h), dose-dependent oedema in the rat cheek, blocked by pre-treatment with CGRP8-37 or pizotifen. CGRP induced a smaller oedematogenic effect in the rat hind paw also blocked by the CGRP antagonist. CGRP (16 pmol) potentiated the oedema induced by co-injected substance P (3.7 nmol) and contributed to the oedema following intraoral injection of carrageenan (100 μg). Injection of CGRP8-37 alone induced an early but short-lasting oedema. CONCLUSION Local injection of CGRP potently induced oedema in the orofacial tissue of rats which was blocked by a CGRP receptor antagonist. The overall inhibition of carrageenan-induced oedema by CGRP8-37 suggests that endogenous CGRP contributes to an oedematogenic response in orofacial tissues.
Collapse
Affiliation(s)
- Bárbara F G de Queiroz
- Pharmacology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcella P A de Almeida
- Pharmacology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Y S Bakhle
- NHLI, Imperial College, London, United Kingdom
| | - Janetti N Francischi
- Pharmacology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
19
|
DNA methylation profile is associated with the osteogenic potential of three distinct human odontogenic stem cells. Signal Transduct Target Ther 2018. [PMID: 29527327 PMCID: PMC5837092 DOI: 10.1038/s41392-017-0001-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Among the various sources of human autologous stem cells, stem cells isolated from dental tissues exhibit excellent properties in tissue engineering and regenerative medicine. However, the distinct potential of these odontogenic cell lines remains unclear. In this study, we analyzed DNA methylation patterns to determine whether specific differences existed among three different odontogenic cell types. Using the HumanMethylation450 Beadchip, the whole genomes of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells (DFPCs) were compared. Then, the osteogenic potential of these cells was evaluated both in vitro and in vivo, and the methylation levels of certain genes related to bone formation differed among the three cell lines. P values less than 0.05 were considered to indicate statistical significance. The three cell types showed highly similar DNA methylation patterns, although specific differences were identified. Gene ontology analysis revealed that one of the most significantly different gene categories was related to bone formation. Thus, expression of cell surface epitopes and osteogenic-related transcription factors as well as the bone formation capacity were compared. The results showed that compared with DFPCs and DPSCs, PDLSCs had higher transcription levels of osteogenic-related factors, a higher in vitro osteogenic potential, and an increased new bone formation capacity in vivo. In conclusion, the results of this study suggested that the differential DNA methylation profiles could be related to the osteogenic potential of these human odontogenic cell populations. Additionally, the increased osteogenic potential of PDLSCs might aid researchers or clinicians in making better choices regarding tissue regeneration and clinical therapies.
Collapse
|
20
|
Mitsiadis TA, Pagella P, Cantù C. Early Determination of the Periodontal Domain by the Wnt-Antagonist Frzb/Sfrp3. Front Physiol 2017; 8:936. [PMID: 29209231 PMCID: PMC5702314 DOI: 10.3389/fphys.2017.00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Odontogenesis results from the continuous and reciprocal interaction between cells of the oral epithelium and cranial neural crest-derived mesenchyme. The canonical Wnt signaling pathway plays a fundamental role in mediating these interactions from the earliest stages of tooth development. Here we analyze by in situ hybridization the expression patterns of the extracellular Wnt antagonist Frzb/Sfrp3. Although Frzb is expressed in dental mesenchymal cells from the earliest stages of odontogenesis, its expression is absent from a tiny population of mesenchymal cells immediately adjacent to the invaginating dental epithelium. Cell proliferation studies using BrdU showed that the Frzb expressing and Frzb non-expressing cell populations display different proliferative behavior during the initial stages of odontogenesis. DiI-mediated cell-fate tracing studies demonstrated that the Frzb expressing cells contribute to the formation of the dental follicle, the future periodontium. In contrast, the Frzb non-expressing cells give rise to the dental pulp. The present results indicate that Frzb is discriminating the presumptive periodontal territory from the rest of the dental mesenchyme from the very beginning of odontogenesis, where it might act as a barrier for the diffusion of Wnt molecules, thus regulating the activation of Wnt-dependent transcription within dental tissues.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Mitsiadis TA, Magloire H, Pagella P. Nerve growth factor signalling in pathology and regeneration of human teeth. Sci Rep 2017; 7:1327. [PMID: 28465581 PMCID: PMC5431060 DOI: 10.1038/s41598-017-01455-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/30/2017] [Indexed: 12/25/2022] Open
Abstract
Nerve growth factor (NGF) is a key regulator of the development and differentiation of neuronal and non-neuronal cells. In the present study we examined the distribution of NGF and its low and high-affinity receptors, p75NTR and TrkA respectively, in permanent human teeth under normal and pathological conditions. In intact functional teeth, NGF, p75NTR and TrkA are weakly expressed in dental pulp fibroblasts and odontoblasts that are responsible for dentine formation, while the NGF and p75NTR molecules are strongly expressed in nerve fibres innervating the dental pulp. In carious and injured teeth NGF and TrkA expression is upregulated in a selective manner in odontoblasts surrounding the injury sites, indicating a link between NGF signalling and dental tissue repair events. Accordingly, NGF and TrkA expression is strongly upregulated in cultured primary human dental mesenchymal cells during their differentiation into odontoblasts. Targeted release of NGF in cultured human tooth slices induced extensive axonal growth and migration of Schwann cells towards the NGF administration site. These results show that NGF signalling is strongly linked to pathological and regenerative processes in human teeth and suggest a potential role for this neurotrophic molecule in pulp regeneration.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Henry Magloire
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure (ENS), Lyon, France
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry. Stem Cells Int 2016; 2016:7231038. [PMID: 27648076 PMCID: PMC5018320 DOI: 10.1155/2016/7231038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistry.
Collapse
|
23
|
Mitsiadis TA, Pagella P. Expression of Nerve Growth Factor (NGF), TrkA, and p75(NTR) in Developing Human Fetal Teeth. Front Physiol 2016; 7:338. [PMID: 27536251 PMCID: PMC4972002 DOI: 10.3389/fphys.2016.00338] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 11/25/2022] Open
Abstract
Nerve growth factor (NGF) is important for the development and the differentiation of neuronal and non-neuronal cells. NGF binds to specific low- and high-affinity cell surface receptors, respectively, p75NTR and TrkA. In the present study, we examined by immunohistochemistry the expression patterns of the NGF, p75NTR, and TrkA proteins during human fetal tooth development, in order to better understand the mode of NGF signaling action in dental tissues. The results obtained show that these molecules are expressed in a wide range of dental cells of both epithelial and mesenchymal origin during early stages of odontogenesis, as well as in nerve fibers that surround the developing tooth germs. At more advanced developmental stages, NGF and TrkA are localized in differentiated cells with secretory capacities such as preameloblasts/ameloblasts secreting enamel matrix and odontoblasts secreting dentine matrix. In contrast, p75NTR expression is absent from these secretory cells and restricted in proliferating cells of the dental epithelium. The temporospatial distribution of NGF and p75NTR in fetal human teeth is similar, but not identical, with that observed previously in the developing rodent teeth, thus indicating that the genetic information is well-conserved during evolution. The expression patterns of NGF, p75NTR, and TrkA during odontogenesis suggest regulatory roles for NGF signaling in proliferation and differentiation of epithelial and mesenchymal cells, as well as in attraction and sprouting of nerve fibers within dental tissues.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Center for Dentistry (ZZM), University of Zurich Zurich, Switzerland
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Center for Dentistry (ZZM), University of Zurich Zurich, Switzerland
| |
Collapse
|
24
|
Nicolescu MI. Regenerative Perspective in Modern Dentistry. Dent J (Basel) 2016; 4:dj4020010. [PMID: 29563452 PMCID: PMC5851266 DOI: 10.3390/dj4020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/16/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
This review aims to trace the contour lines of regenerative dentistry, to offer an introductory overview on this emerging field to both dental students and practitioners. The crystallized depiction of the concept is a translational approach, connecting dental academics to scientific research and clinical utility. Therefore, this review begins by presenting the general features of regenerative medicine, and then gradually introduces the specific aspects of major dental subdomains, highlighting the progress achieved during the last years by scientific research and, in some cases, which has already been translated into clinical results. The distinct characteristics of stem cells and their microenvironment, together with their diversity in the oral cavity, are put into the context of research and clinical use. Examples of regenerative studies regarding endodontic and periodontal compartments, as well as hard (alveolar bone) and soft (salivary glands) related tissues, are presented to make the reader further acquainted with the topic. Instead of providing a conclusion, we will emphasize the importance for all dental community members, from young students to experienced dentists, of an early awareness rising regarding biomedical research progress in general and regenerative dentistry in particular.
Collapse
Affiliation(s)
- Mihnea Ioan Nicolescu
- Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Histology and Cytology Division, Bucharest, 8 Eroilor Sanitari Blvd., RO-050474, Romania.
- Victor Babeș National Institute of Pathology, Radiobiology Laboratory, Bucharest, Romania.
| |
Collapse
|
25
|
Adameyko I, Fried K. The Nervous System Orchestrates and Integrates Craniofacial Development: A Review. Front Physiol 2016; 7:49. [PMID: 26924989 PMCID: PMC4759458 DOI: 10.3389/fphys.2016.00049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/02/2016] [Indexed: 01/14/2023] Open
Abstract
Development of a head is a dazzlingly complex process: a number of distinct cellular sources including cranial ecto- and endoderm, mesoderm and neural crest contribute to facial and other structures. In the head, an extremely fine-tuned developmental coordination of CNS, peripheral neural components, sensory organs and a musculo-skeletal apparatus occurs, which provides protection and functional integration. The face can to a large extent be considered as an assembly of sensory systems encased and functionally fused with appendages represented by jaws. Here we review how the developing brain, neurogenic placodes and peripheral nerves influence the morphogenesis of surrounding tissues as a part of various general integrative processes in the head. The mechanisms of this impact, as we understand it now, span from the targeted release of the morphogens necessary for shaping to providing a niche for cellular sources required in later development. In this review we also discuss the most recent findings and ideas related to how peripheral nerves and nerve-associated cells contribute to craniofacial development, including teeth, during the post- neural crest period and potentially in regeneration.
Collapse
Affiliation(s)
- Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden; Department of Molecular Neurosciences, Center of Brain Research, Medical University of ViennaVienna, Austria
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
26
|
Pagella P, Miran S, Mitsiadis T. Analysis of Developing Tooth Germ Innervation Using Microfluidic Co-culture Devices. J Vis Exp 2015:e53114. [PMID: 26327218 DOI: 10.3791/53114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Innervation plays a key role in the development, homeostasis and regeneration of organs and tissues. However, the mechanisms underlying these phenomena are not well understood yet. In particular, the role of innervation in tooth development and regeneration is neglected. Several in vivo studies have provided important information about the patterns of innervation of dental tissues during development and repair processes of various animal models. However, most of these approaches are not optimal to highlight the molecular basis of the interactions between nerve fibres and target organs and tissues. Co-cultures constitute a valuable method to investigate and manipulate the interactions between nerve fibres and teeth in a controlled and isolated environment. In the last decades, conventional co-cultures using the same culture medium have been performed for very short periods (e.g., two days) to investigate the attractive or repulsive effects of developing oral and dental tissues on sensory nerve fibres. However, extension of the culture period is required to investigate the effects of innervation on tooth morphogenesis and cytodifferentiation. Microfluidics systems allow co-cultures of neurons and different cell types in their appropriate culture media. We have recently demonstrated that trigeminal ganglia (TG) and teeth are able to survive for a long period of time when co-cultured in microfluidic devices, and that they maintain in these conditions the same innervation pattern that they show in vivo. On this basis, we describe how to isolate and co-culture developing trigeminal ganglia and tooth germs in a microfluidic co-culture system.This protocol describes a simple and flexible way to co-culture ganglia/nerves and target tissues and to study the roles of specific molecules on such interactions in a controlled and isolated environment.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich
| | - Shayee Miran
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich
| | - Tim Mitsiadis
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich;
| |
Collapse
|
27
|
Li YK, Yang JM, Huang YB, Ren DD, Chi FL. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection. Neural Regen Res 2015. [PMID: 26199619 PMCID: PMC4498364 DOI: 10.4103/1673-5374.158366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.
Collapse
Affiliation(s)
- Yi-Ke Li
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China ; Shanghai Auditory Medical Center, Shanghai, China ; Key Laboratory of Hearing Science, Ministry of Health, Shanghai, China ; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Juan-Mei Yang
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China ; Shanghai Auditory Medical Center, Shanghai, China ; Key Laboratory of Hearing Science, Ministry of Health, Shanghai, China
| | - Yi-Bo Huang
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China ; Shanghai Auditory Medical Center, Shanghai, China ; Key Laboratory of Hearing Science, Ministry of Health, Shanghai, China
| | - Dong-Dong Ren
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China ; Shanghai Auditory Medical Center, Shanghai, China ; Key Laboratory of Hearing Science, Ministry of Health, Shanghai, China
| | - Fang-Lu Chi
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China ; Shanghai Auditory Medical Center, Shanghai, China ; Key Laboratory of Hearing Science, Ministry of Health, Shanghai, China
| |
Collapse
|
28
|
Crucke J, Van de Kelft A, Huysseune A. The innervation of the zebrafish pharyngeal jaws and teeth. J Anat 2015; 227:62-71. [PMID: 26018453 DOI: 10.1111/joa.12321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 12/12/2022] Open
Abstract
Zebrafish (Danio rerio) teeth are increasingly used as a model to study odontogenesis in non-mammalians. Using serial semi-thin section histology and immunohistochemistry, the nerves innervating the pharyngeal jaws and teeth have been identified. The last pair of branchial arches, which are non-gill bearing but which carry the teeth, are innervated by an internal branch of a post-trematic ramus of the vagal nerve. Another, external, branch is probably responsible for the motor innervation of the branchiomeric musculature. Nerve fibres appear in the pulp cavity of the teeth only late during cytodifferentiation, and are therefore likely not involved in early steps of tooth formation. The precise role of the nervous system during continuous tooth replacement remains to be determined. Nonetheless, this study provides the necessary morphological background information to address this question.
Collapse
Affiliation(s)
- Jeroen Crucke
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | | | - Ann Huysseune
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Woloszyk A, Holsten Dircksen S, Bostanci N, Müller R, Hofmann S, Mitsiadis TA. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds. PLoS One 2014; 9:e111010. [PMID: 25354351 PMCID: PMC4213001 DOI: 10.1371/journal.pone.0111010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone regeneration in mechanically loaded tissues is required.
Collapse
Affiliation(s)
- Anna Woloszyk
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| | | | - Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
30
|
Pagella P, Neto E, Jiménez-Rojo L, Lamghari M, Mitsiadis TA. Microfluidics co-culture systems for studying tooth innervation. Front Physiol 2014; 5:326. [PMID: 25202282 PMCID: PMC4142415 DOI: 10.3389/fphys.2014.00326] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 01/01/2023] Open
Abstract
Innervation plays a key role in the development and homeostasis of organs and tissues of the orofacial complex. Among these structures, teeth are peculiar organs as they are not innervated until later stages of development. Furthermore, the implication of neurons in tooth initiation, morphogenesis and differentiation is still controversial. Co-cultures constitute a valuable method to investigate and manipulate the interactions of nerve fibers with their target organs in a controlled and isolated environment. Conventional co-cultures between neurons and their target tissues have already been performed, but these cultures do not offer optimal conditions that are closely mimicking the in vivo situation. Indeed, specific cell populations require different culture media in order to preserve their physiological properties. In this study we evaluate the usefulness of a microfluidics system for co-culturing mouse trigeminal ganglia and developing teeth. This device allows the application of specific media for the appropriate development of both neuronal and dental tissues. The results show that mouse trigeminal ganglia and teeth survive for long culture periods in this microfluidics system, and that teeth maintain the attractive or repulsive effect on trigeminal neurites that has been observed in vivo. Neurites are repealed when co-cultured with embryonic tooth germs, while postnatal teeth exert an attractive effect to trigeminal ganglia-derived neurons. In conclusion, microfluidics system devices provide a valuable tool for studying the behavior of neurons during the development of orofacial tissues and organs, faithfully imitating the in vivo situation.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Estrela Neto
- NEW Therapies Group, INEB - Instituto de Engenharia Biomédica, Universidade do Porto Porto, Portugal ; Faculdade de Medicina da Universidade do Porto Porto, Portugal
| | - Lucia Jiménez-Rojo
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Meriem Lamghari
- NEW Therapies Group, INEB - Instituto de Engenharia Biomédica, Universidade do Porto Porto, Portugal ; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| | - Thimios A Mitsiadis
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| |
Collapse
|