1
|
Goluguri RR, Ghosh C, Quintong J, Sadqi M, Muñoz V. How to scan naked DNA using promiscuous recognition and no clamping: a model for pioneer transcription factors. Nucleic Acids Res 2024; 52:11098-11114. [PMID: 39287129 PMCID: PMC11472051 DOI: 10.1093/nar/gkae790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Most DNA scanning proteins uniquely recognize their cognate sequence motif and slide on DNA assisted by some sort of clamping interface. The pioneer transcription factors that control cell fate in eukaryotes must forgo both elements to gain access to DNA in naked and chromatin forms; thus, whether or how these factors scan naked DNA is unknown. Here, we use single-molecule techniques to investigate naked DNA scanning by the Engrailed homeodomain (enHD) as paradigm of highly promiscuous recognition and open DNA binding interface. We find that enHD scans naked DNA quite effectively, and about 200000-fold faster than expected for a continuous promiscuous slide. To do so, enHD scans about 675 bp of DNA in 100 ms and then redeploys stochastically to another location 530 bp afar in just 10 ms. During the scanning phase enHD alternates between slow- and medium-paced modes every 3 and 40 ms, respectively. We also find that enHD binds nucleosomes and does so with enhanced affinity relative to naked DNA. Our results demonstrate that pioneer-like transcription factors can in principle do both, target nucleosomes and scan active DNA efficiently. The hybrid scanning mechanism used by enHD appears particularly well suited for the highly complex genomic signals of eukaryotic cells.
Collapse
Affiliation(s)
- Rama Reddy Goluguri
- CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA 95343, USA
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
| | - Catherine Ghosh
- CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA 95343, USA
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
| | - Joshua Quintong
- CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA 95343, USA
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
| | - Mourad Sadqi
- CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA 95343, USA
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
| | - Victor Muñoz
- CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA 95343, USA
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
2
|
Atac D, Maggi K, Feil S, Maggi J, Cuevas E, Sowden JC, Koller S, Berger W. Identification and Characterization of ATOH7-Regulated Target Genes and Pathways in Human Neuroretinal Development. Cells 2024; 13:1142. [PMID: 38994994 PMCID: PMC11240604 DOI: 10.3390/cells13131142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
The proneural transcription factor atonal basic helix-loop-helix transcription factor 7 (ATOH7) is expressed in early progenitors in the developing neuroretina. In vertebrates, this is crucial for the development of retinal ganglion cells (RGCs), as mutant animals show an almost complete absence of RGCs, underdeveloped optic nerves, and aberrations in retinal vessel development. Human mutations are rare and result in autosomal recessive optic nerve hypoplasia (ONH) or severe vascular changes, diagnosed as autosomal recessive persistent hyperplasia of the primary vitreous (PHPVAR). To better understand the role of ATOH7 in neuroretinal development, we created ATOH7 knockout and eGFP-expressing ATOH7 reporter human induced pluripotent stem cells (hiPSCs), which were differentiated into early-stage retinal organoids. Target loci regulated by ATOH7 were identified by Cleavage Under Targets and Release Using Nuclease with sequencing (CUT&RUN-seq) and differential expression by RNA sequencing (RNA-seq) of wildtype and mutant organoid-derived reporter cells. Additionally, single-cell RNA sequencing (scRNA-seq) was performed on whole organoids to identify cell type-specific genes. Mutant organoids displayed substantial deficiency in axon sprouting, reduction in RGCs, and an increase in other cell types. We identified 469 differentially expressed target genes, with an overrepresentation of genes belonging to axon development/guidance and Notch signaling. Taken together, we consolidate the function of human ATOH7 in guiding progenitor competence by inducing RGC-specific genes while inhibiting other cell fates. Furthermore, we highlight candidate genes responsible for ATOH7-associated optic nerve and retinovascular anomalies, which sheds light to potential future therapy targets for related disorders.
Collapse
Affiliation(s)
- David Atac
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Kevin Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Elisa Cuevas
- UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK (J.C.S.)
| | - Jane C. Sowden
- UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK (J.C.S.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Ma X, Zhao LL, Yu YC, Cheng Y. Engrailed: Pathological and physiological effects of a multifunctional developmental gene. Genesis 2024; 62:e23557. [PMID: 37830136 DOI: 10.1002/dvg.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Engrailed-1 (EN1) is a developmental gene that encodes En1, a highly conserved transcription factor involved in regionalization during early embryogenesis and in the later maintenance of normal neurons. After birth, EN1 still plays a role in the development and physiology of the body; for example, it exerts a protective effect on midbrain dopaminergic (mDA) neurons, and loss of EN1 causes mDA neurons in the ventral midbrain to gradually die approximately 6 weeks after birth, resulting in motor and nonmotor symptoms similar to those observed in Parkinson's disease. Notably, EN1 has been identified as a possible susceptibility gene for idiopathic Parkinson's disease in humans. EN1 is involved in the processes of wound-healing scar production and tissue and organ fibrosis. Additionally, EN1 can lead to tumorigenesis and thus provides a target for the treatment of some tumors. In this review, we summarize the effects of EN1 on embryonic organ development, describe the consequences of the deletion or overexpression of the EN1 gene, and discuss the pathways in which EN1 is involved. We hope to clarify the role of EN1 as a developmental gene and present potential therapeutic targets for diseases involving the EN1 gene.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Liang-Liang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yi-Chun Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
4
|
Carlier L, Samson D, Khemtemourian L, Joliot A, Fuchs PFJ, Lequin O. Anionic lipids induce a fold-unfold transition in the membrane-translocating Engrailed homeodomain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184030. [PMID: 35988722 DOI: 10.1016/j.bbamem.2022.184030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Homeoprotein transcription factors have the property of interacting with membranes through their DNA-binding homeodomain, which is involved in unconventional internalization and secretion. Both processes depend on membrane-translocating events but their detailed molecular mechanisms are still poorly understood. We have previously characterized the conformational properties of Engrailed 2 homeodomain (EnHD) in aqueous solution and in micelles as membrane-mimetic environments. In the present study, we used small isotropic lipid bicelles as a more relevant membrane-mimetic model to characterize the membrane-bound state of EnHD. We show that lipid bicelles, in contrast to micelles, adequately reproduce the requirement of anionic lipids in the membrane binding and conformational transition of EnHD. The fold-unfold transition of EnHD induced by anionic lipids was characterized by NMR using 1H, 13C, 15N chemical shifts, nuclear Overhauser effects, residual dipolar couplings, intramolecular and intermolecular paramagnetic relaxation enhancements induced by site-directed spin-label or paramagnetic lipid probe, respectively. A global unpacking of EnHD helices is observed leading to a loss of the native fold. However, near-native propensities of EnHD backbone conformation are maintained in membrane environment, including not only the three helices but also the turn connecting helices H2 and H3. NMR and coarse-grained molecular dynamics simulations reveal that the EnHD adopts a shallow insertion in the membrane, with the three helices oriented parallel to the membrane. EnHD explores extended conformations and closed U-shaped conformations, which are stabilized by anionic lipid recruitment.
Collapse
Affiliation(s)
- Ludovic Carlier
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France.
| | - Damien Samson
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France
| | - Lucie Khemtemourian
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France
| | - Alain Joliot
- INSERM U932, Institut Curie Centre de Recherche, PSL University, France
| | - Patrick F J Fuchs
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France; Université Paris Cité, UFR Sciences du Vivant, F-75013 Paris, France
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France.
| |
Collapse
|
5
|
Kato Y, Sawada A, Tonai K, Tatsuno H, Uenoyama T, Itoh M. A new allele of <i>engrailed</i>, <i>en<sup>NK14</sup></i>, causes supernumerary spermathecae in <i>Drosophila melanogaster</i>. Genes Genet Syst 2021; 96:259-269. [DOI: 10.1266/ggs.21-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology
| | - Akiko Sawada
- Department of Applied Biology, Kyoto Institute of Technology
| | - Kazuki Tonai
- Department of Applied Biology, Kyoto Institute of Technology
| | - Hisashi Tatsuno
- Department of Applied Biology, Kyoto Institute of Technology
| | | | - Masanobu Itoh
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology
| |
Collapse
|
6
|
Zhang X, Piano I, Messina A, D'Antongiovanni V, Crò F, Provenzano G, Bozzi Y, Gargini C, Casarosa S. Retinal defects in mice lacking the autism-associated gene Engrailed-2. Neuroscience 2019; 408:177-190. [DOI: 10.1016/j.neuroscience.2019.03.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
|
7
|
LncRNA BLAT1 is Upregulated in Basal-like Breast Cancer through Epigenetic Modifications. Sci Rep 2018; 8:15572. [PMID: 30349062 PMCID: PMC6197278 DOI: 10.1038/s41598-018-33629-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
Long-noncoding RNAs (lncRNAs) have been shown to participate in oncogenesis across a variety of cancers and may represent novel therapeutic targets. However, little is known about the role of lncRNAs in basal-like breast cancer (BLBC), the aggressive form of breast cancer with no molecularly defined therapeutic target. To examine whether altered lncRNA expression contributes to the aggressive phenotype characteristic of BLBC, we performed a comparative analysis of BLBC versus non-BLBC using microarray profiling and RNA sequencing of primary breast cancer. We identified RP11-19E11.1 as a significantly up-regulated lncRNA in BLBC tumors and named it Basal-Like breast cancer Associated Transcript 1 (BLAT1). Analysis of pan-cancer datasets showed the highest expression of BLAT1 in BLBC tumors compared to all other cancers. Depletion of BLAT1 in breast cancer cells led to significantly increased apoptosis, partly because of accumulation of DNA damage. Mechanistically, BLAT1 expression is regulated at the epigenetic level via DNA methylation at CpG islands in the promoter. Concordantly, patients harboring tumors with BLAT1 hypomethylation showed decreased overall survival. Our results suggest that increased expression of BLAT1 via CpG site hypomethylation may contribute to the aggressive phenotype of BLBC, raising a possibility of new biomarkers for prognosis of aggressive BLBC tumors.
Collapse
|
8
|
Cang J, Savier E, Barchini J, Liu X. Visual Function, Organization, and Development of the Mouse Superior Colliculus. Annu Rev Vis Sci 2018; 4:239-262. [PMID: 29852095 DOI: 10.1146/annurev-vision-091517-034142] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The superior colliculus (SC) is the most prominent visual center in mice. Studies over the past decade have greatly advanced our understanding of the function, organization, and development of the mouse SC, which has rapidly become a popular model in vision research. These studies have described the diverse and cell-type-specific visual response properties in the mouse SC, revealed their laminar and topographic organizations, and linked the mouse SC and downstream pathways with visually guided behaviors. Here, we summarize these findings, compare them with the rich literature of SC studies in other species, and highlight important gaps and exciting future directions. Given its clear importance in mouse vision and the available modern neuroscience tools, the mouse SC holds great promise for understanding the cellular, circuit, and developmental mechanisms that underlie visual processing, sensorimotor transformation, and, ultimately, behavior.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA;
| | - Elise Savier
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA;
| | - Jad Barchini
- Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Xiaorong Liu
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA;
| |
Collapse
|