1
|
Edens BM, Bronner ME. Making sense of vertebrate senses from a neural crest and cranial placode evo-devo perspective. Trends Neurosci 2025; 48:213-226. [PMID: 39848838 PMCID: PMC11903184 DOI: 10.1016/j.tins.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025]
Abstract
The evolution of vertebrates from protochordate ancestors marked the beginning of the gradual transition to predatory lifestyles. Enabled by the acquisition of multipotent neural crest and cranial placode cell populations, vertebrates developed an elaborate peripheral nervous system, equipped with paired sense organs, which aided in adaptive behaviors and ultimately, successful colonization of diverse environmental niches. Underpinning the enduring success of vertebrates is the highly adaptable nature of the peripheral nervous system, which is enabled by the exceptional malleability of the neural crest and placode developmental programs. Here, we explore the embryonic origins of the vertebrate senses from the neural crest and cranial placodes and discuss the evolutionary trajectory of the senses in the context of adaptation to novel environments.
Collapse
Affiliation(s)
- Brittany M Edens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Nakamuta S, Zhang Z, Nikaido M, Yokoyama T, Yamamoto Y, Nakamuta N. Type 2 vomeronasal receptor expression in the olfactory organ of African lungfish, Protopterus annectens. Cell Tissue Res 2024; 398:79-91. [PMID: 39347998 DOI: 10.1007/s00441-024-03918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
The olfactory organ of tetrapods, with few exceptions, comprises the main and accessory organs: olfactory epithelium (OE) and vomeronasal organ (VNO). Unlike tetrapods, teleost fish lack a VNO. However, lungfish, a type of sarcopterygian fish closely related to tetrapods, possesses a lamellar OE similar to the OE of teleosts and a recess epithelium (RecE) resembling the amphibian VNO. The RecE has been hypothesized as a primordial VNO. Olfactory receptors in tetrapods are distinctively expressed in the OE and VNO. For instance, type 2 vomeronasal receptors (V2Rs) in Xenopus are categorized into those exclusively expressed in the OE and those solely expressed in the VNO. It remains unclear whether V2Rs are differentially expressed between the lamellar OE and RecE in lungfish. This study investigated V2R expression in the lamellar OE and RecE of the African lungfish, Protopterus annectens. P. annectens V2Rs were categorized into three groups: those exclusively expressed in the lamellar OE, those exclusively expressed in the RecE, and those expressed in both the lamellar OE and RecE. V2Rs exclusively expressed in the RecE and those expressed in both the lamellar OE and RecE formed a distinct clade in the phylogenetic tree, whereas others were solely expressed in the lamellar OE. These findings suggest that lungfish V2R expression represents an intermediate stage toward complete segregation between V2Rs expressed in the OE and those expressed in the VNO.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Zicong Zhang
- Institute for the Advanced Study of Human Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8550, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| |
Collapse
|
3
|
Hawkins SJ, Gärtner Y, Offner T, Weiss L, Maiello G, Hassenklöver T, Manzini I. The olfactory network of larval Xenopus laevis regenerates accurately after olfactory nerve transection. Eur J Neurosci 2024; 60:3719-3741. [PMID: 38758670 DOI: 10.1111/ejn.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/19/2024]
Abstract
Across vertebrate species, the olfactory epithelium (OE) exhibits the uncommon feature of lifelong neuronal turnover. Epithelial stem cells give rise to new neurons that can adequately replace dying olfactory receptor neurons (ORNs) during developmental and adult phases and after lesions. To relay olfactory information from the environment to the brain, the axons of the renewed ORNs must reconnect with the olfactory bulb (OB). In Xenopus laevis larvae, we have previously shown that this process occurs between 3 and 7 weeks after olfactory nerve (ON) transection. In the present study, we show that after 7 weeks of recovery from ON transection, two functionally and spatially distinct glomerular clusters are reformed in the OB, akin to those found in non-transected larvae. We also show that the same odourant response tuning profiles observed in the OB of non-transected larvae are again present after 7 weeks of recovery. Next, we show that characteristic odour-guided behaviour disappears after ON transection but recovers after 7-9 weeks of recovery. Together, our findings demonstrate that the olfactory system of larval X. laevis regenerates with high accuracy after ON transection, leading to the recovery of odour-guided behaviour.
Collapse
Affiliation(s)
- Sara J Hawkins
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Yvonne Gärtner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Guido Maiello
- Department of Experimental Psychology, Justus Liebig University Gießen, Gießen, Germany
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| |
Collapse
|
4
|
Electrophysiological responses to conspecific odorants in Xenopus laevis show potential for chemical signaling. PLoS One 2022; 17:e0273035. [PMID: 36070316 PMCID: PMC9451071 DOI: 10.1371/journal.pone.0273035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
The fully aquatic African clawed frog, Xenopus laevis, has an unusual and highly adapted nose that allows it to separately sample both airborne and waterborne stimuli. The function of the adult water nose has received little study, despite the fact that it is quite likely to receive information about conspecifics through secretions released into the water and could aid the frog in making decisions about social and reproductive behaviors. To assess the potential for chemical communication in this species, we developed an in situ electroolfactogram preparation and tested the olfactory responses of adult males to cloacal fluids and skin secretions from male and female conspecifics. We found robust olfactory responses to all conspecific stimuli, with greatest sensitivity to female cloacal fluids. These results open the door to further testing to identify compounds within cloacal fluids and skin secretions that are driving these responses and examine behavioral responses to those compounds. Understanding the role of chemical communication in social and reproductive behaviors may add to our rich understanding of vocal communication to create a more complete picture of social behavior in this species.
Collapse
|
5
|
Weiss L, Segoviano Arias P, Offner T, Hawkins SJ, Hassenklöver T, Manzini I. Distinct interhemispheric connectivity at the level of the olfactory bulb emerges during Xenopus laevis metamorphosis. Cell Tissue Res 2021; 386:491-511. [PMID: 34580751 PMCID: PMC8595194 DOI: 10.1007/s00441-021-03527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
During metamorphosis, the olfactory system of anuran tadpoles undergoes substantial restructuring. The main olfactory epithelium in the principal nasal cavity of Xenopus laevis tadpoles is associated with aquatic olfaction and transformed into the adult air-nose, while a new adult water-nose emerges in the middle cavity. Impacts of this metamorphic remodeling on odor processing, behavior, and network structure are still unexplored. Here, we used neuronal tracings, calcium imaging, and behavioral experiments to examine the functional connectivity between the epithelium and the main olfactory bulb during metamorphosis. In tadpoles, olfactory receptor neurons in the principal cavity project axons to glomeruli in the ventral main olfactory bulb. These projections are gradually replaced by receptor neuron axons from the newly forming middle cavity epithelium. Despite this reorganization in the ventral bulb, two spatially segregated odor processing streams remain undisrupted and behavioral responses to waterborne odorants are unchanged. Contemporaneously, new receptor neurons in the remodeling principal cavity innervate the emerging dorsal part of the bulb, which displays distinct wiring features. Glomeruli around its midline are innervated from the left and right nasal epithelia. Additionally, postsynaptic projection neurons in the dorsal bulb predominantly connect to multiple glomeruli, while half of projection neurons in the ventral bulb are uni-glomerular. Our results show that the "water system" remains functional despite metamorphic reconstruction. The network differences between the dorsal and ventral olfactory bulb imply a higher degree of odor integration in the dorsal main olfactory bulb. This is possibly connected with the processing of different odorants, airborne vs. waterborne.
Collapse
Affiliation(s)
- Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| | - Paola Segoviano Arias
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- Max Planck Research Unit for Neurogenetics, 60438, Frankfurt, Germany
| | - Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Sara Joy Hawkins
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| |
Collapse
|
6
|
Kowatschew D, Korsching SI. An Ancient Adenosine Receptor Gains Olfactory Function in Bony Vertebrates. Genome Biol Evol 2021; 13:6367781. [PMID: 34499158 PMCID: PMC8462279 DOI: 10.1093/gbe/evab211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Nucleotides are an important class of odorants for aquatic vertebrates such as frogs and fishes, but also have manifold signaling roles in other cellular processes. Recently, an adenosine receptor believed to belong to the adora2 clade has been identified as an olfactory receptor in zebrafish. Here, we set out to elucidate the evolutionary history of both this gene and its olfactory function. We have performed a thorough phylogenetic study in vertebrates, chordates and their sister group, ambulacraria, and show that the origin of the zebrafish olfactory receptor gene can be traced back to the most recent common ancestor of all three groups as a segregate sister clade (adorb) to the adora gene family. Eel, carp, and clawed frog all express adorb in a sparse and distributed pattern within their olfactory epithelium very similar to the pattern observed for zebrafish that is, consistent with a function as olfactory receptor. In sharp contrast, lamprey adorb-expressing cells are absent from the sensory region of the lamprey nose, but form a contiguous domain directly adjacent to the sensory region. Double-labeling experiments confirmed the expression of lamprey adorb in nonneuronal cells and are consistent with an expression in neuronal progenitor cells. Thus, adorb may have undergone a switch of function in the jawed lineage of vertebrates towards a role as olfactory receptor.
Collapse
Affiliation(s)
- Daniel Kowatschew
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany
| |
Collapse
|
7
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, Wong WY, Nowoshilow S, Kneitz S, Kawaguchi A, Fabrizius A, Xiong P, Dechaud C, Spaink HP, Volff JN, Simakov O, Burmester T, Tanaka EM, Schartl M. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 2021; 590:284-289. [PMID: 33461212 PMCID: PMC7875771 DOI: 10.1038/s41586-021-03198-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023]
Abstract
Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.
Collapse
Affiliation(s)
- Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | | | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | | | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Wai Yee Wong
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | | | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Akane Kawaguchi
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Peiwen Xiong
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle, École Normale Superieure, Université Claude Bernard, Lyon, France
| | - Herman P Spaink
- Faculty of Science, Universiteit Leiden, Leiden, The Netherlands
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle, École Normale Superieure, Université Claude Bernard, Lyon, France
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
| | | | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany.
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
9
|
Gerlach G, Wullimann MF. Neural pathways of olfactory kin imprinting and kin recognition in zebrafish. Cell Tissue Res 2021; 383:273-287. [PMID: 33515290 PMCID: PMC7873017 DOI: 10.1007/s00441-020-03378-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Teleost fish exhibit extraordinary cognitive skills that are comparable to those of mammals and birds. Kin recognition based on olfactory and visual imprinting requires neuronal circuits that were assumed to be necessarily dependent on the interaction of mammalian amygdala, hippocampus, and isocortex, the latter being a structure that teleost fish are lacking. We show that teleosts—beyond having a hippocampus and pallial amygdala homolog—also have subpallial amygdalar structures. In particular, we identify the medial amygdala and neural olfactory central circuits related to kin imprinting and kin recognition corresponding to an accessory olfactory system despite the absence of a separate vomeronasal organ.
Collapse
Affiliation(s)
- Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl-von-Ossietzky University, 26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), 26129, Oldenburg, Germany.,Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, QLD, 4811, Townsville, Australia
| | - Mario F Wullimann
- Graduate School of Systemic Neurosciences & Department Biology II, Ludwig-Maximilians-Universität Munich, 82152, Planegg-Martinsried, Germany. .,Max-Planck-Institute for Neurobiology, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
10
|
Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021; 383:367-386. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.
Collapse
Affiliation(s)
- Roberto Tirindelli
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
11
|
Weiss L, Manzini I, Hassenklöver T. Olfaction across the water-air interface in anuran amphibians. Cell Tissue Res 2021; 383:301-325. [PMID: 33496878 PMCID: PMC7873119 DOI: 10.1007/s00441-020-03377-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Extant anuran amphibians originate from an evolutionary intersection eventually leading to fully terrestrial tetrapods. In many ways, they have to deal with exposure to both terrestrial and aquatic environments: (i) phylogenetically, as derivatives of the first tetrapod group that conquered the terrestrial environment in evolution; (ii) ontogenetically, with a development that includes aquatic and terrestrial stages connected via metamorphic remodeling; and (iii) individually, with common changes in habitat during the life cycle. Our knowledge about the structural organization and function of the amphibian olfactory system and its relevance still lags behind findings on mammals. It is a formidable challenge to reveal underlying general principles of circuity-related, cellular, and molecular properties that are beneficial for an optimized sense of smell in water and air. Recent findings in structural organization coupled with behavioral observations could help to understand the importance of the sense of smell in this evolutionarily important animal group. We describe the structure of the peripheral olfactory organ, the olfactory bulb, and higher olfactory centers on a tissue, cellular, and molecular levels. Differences and similarities between the olfactory systems of anurans and other vertebrates are reviewed. Special emphasis lies on adaptations that are connected to the distinct demands of olfaction in water and air environment. These particular adaptations are discussed in light of evolutionary trends, ontogenetic development, and ecological demands.
Collapse
Affiliation(s)
- Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Olfactory subsystems in the peripheral olfactory organ of anuran amphibians. Cell Tissue Res 2020; 383:289-299. [PMID: 33247771 DOI: 10.1007/s00441-020-03330-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 10/22/2022]
Abstract
Anuran amphibians (frogs and toads) typically have a complex life cycle, involving aquatic larvae that metamorphose to semi-terrestrial juveniles and adults. However, the anuran olfactory system is best known in Xenopus laevis, an animal with secondarily aquatic adults. The larval olfactory organ contains two distinct sensory epithelia: the olfactory epithelium (OE) and vomeronasal organ (VNO). The adult organ contains three: the OE, the VNO, and a "middle cavity" epithelium (MCE), each in its own chamber. The sensory epithelia of Xenopus larvae have overlapping sensory neuron morphology (ciliated or microvillus) and olfactory receptor gene expression. The MCE of adults closely resembles the OE of larvae, and senses waterborne odorants; the adult OE is distinct and senses airborne odorants. Olfactory subsystems in other (non-pipid) anurans are diverse. Many anuran larvae show a patch of olfactory epithelium exposed in the buccal cavity (bOE), associated with a grazing feeding mode. And other anuran adults do not have a sensory MCE, but many have a distinct patch of epithelium adjacent to the OE, the recessus olfactorius (RO), which senses waterborne odorants. Olfaction plays a wide variety of roles in the life of larval and adult anurans, and some progress has been made in identifying relevant odorants, including pheromones and feeding cues. Increased knowledge of the diversity of olfactory structure, of odorant receptor expression patterns, and of factors that affect the access of odorants to sensory epithelia will enable us to better understand the adaptation of the anuran olfactory system to aquatic and terrestrial environments.
Collapse
|
13
|
Weiss L, Jungblut LD, Pozzi AG, O’Connell LA, Hassenklöver T, Manzini I. Conservation of Glomerular Organization in the Main Olfactory Bulb of Anuran Larvae. Front Neuroanat 2020; 14:44. [PMID: 32792916 PMCID: PMC7393516 DOI: 10.3389/fnana.2020.00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
The glomerular array in the olfactory bulb of many vertebrates is segregated into molecularly and anatomically distinct clusters linked to different olfactory functions. In anurans, glomerular clustering is so far only described in Xenopus laevis. We traced olfactory projections to the bulb in tadpoles belonging to six distantly related anuran species in four families (Pipidae, Hylidae, Bufonidae, Dendrobatidae) and found that glomerular clustering is remarkably conserved. The general bauplan consists of four unequally sized glomerular clusters with minor inter-species variation. During metamorphosis, the olfactory system undergoes extensive remodeling. Tracings in metamorphotic and juvenile Dendrobates tinctorius and Xenopus tropicalis suggest a higher degree of variation in the glomerular organization after metamorphosis is complete. Our study highlights, that the anatomical organization of glomeruli in the main olfactory bulb (MOB) is highly conserved, despite an extensive ecomorphological diversification among anuran tadpoles, which suggests underlying developmental constraints.
Collapse
Affiliation(s)
- Lukas Weiss
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Lucas D. Jungblut
- Departamento de Biodiversidad y Biología Experimental, IBBEA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea G. Pozzi
- Departamento de Biodiversidad y Biología Experimental, IBBEA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Heerema J, Bogart S, Helbing C, Pyle G. Olfactory epithelium ontogenesis and function in postembryonic North American Bullfrog (Rana (Lithobates) catesbeiana) tadpoles. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During metamorphosis, the olfactory system remodelling in anuran tadpoles — to transition from detecting waterborne odorants to volatile odorants as frogs — is extensive. How the olfactory system transitions from the larval to frog form is poorly understood, particularly in species that become (semi-)terrestrial. We investigated the ontogeny and function of the olfactory epithelium of North American Bullfrog (Rana (Lithobates) catesbeiana Shaw, 1802) tadpoles at various stages of postembryonic development. Changes in sensory components observable at the epithelial surface were examined by scanning electron microscopy. Functionality of the developing epithelium was tested using a neurophysiological technique (electro-olfactography (EOG)), and behaviourally, using a choice maze to assess tadpole response to olfactory stimuli (algae extract, amino acids). The youngest (premetamorphic) tadpoles responded behaviourally to an amino acid mixture despite having underdeveloped olfactory structures (cilia, olfactory knobs) and no EOG response. The consistent appearance of olfactory structures in older (prometamorphic) tadpoles coincided with reliably obtaining EOG responses to olfactory stimuli. However, as tadpoles aged further, and despite indistinguishable differences in sensory components, behavioural- and EOG-based olfactory responses were drastically reduced, most strongly near metamorphic climax. This work demonstrates a more complex relationship between structure and function of the olfactory system during tadpole life history than originally thought.
Collapse
Affiliation(s)
- J.L. Heerema
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - S.J. Bogart
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - C.C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, Station CSC, Victoria, BC V8W 2Y2, Canada
| | - G.G. Pyle
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
15
|
Kishida T, Go Y, Tatsumoto S, Tatsumi K, Kuraku S, Toda M. Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes. Proc Biol Sci 2019; 286:20191828. [PMID: 31506057 DOI: 10.1098/rspb.2019.1828] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marine amniotes, a polyphyletic group, provide an excellent opportunity for studying convergent evolution. Their sense of smell tends to degenerate, but this process has not been explored by comparing fully aquatic species with their amphibious relatives in an evolutionary context. Here, we sequenced the genomes of fully aquatic and amphibious sea snakes and identified repertoires of chemosensory receptor genes involved in olfaction. Snakes possess large numbers of the olfactory receptor (OR) genes and the type-2 vomeronasal receptor (V2R) genes, and expression profiling in the olfactory tissues suggests that snakes use the ORs in the main olfactory system (MOS) and the V2Rs in the vomeronasal system (VNS). The number of OR genes has decreased in sea snakes, and fully aquatic species lost MOS which is responsible for detecting airborne odours. By contrast, sea snakes including fully aquatic species retain a number of V2R genes and a well-developed VNS for smelling underwater. This study suggests that the sense of smell also degenerated in sea snakes, particularly in fully aquatic species, but their residual olfactory capability is distinct from that of other fully aquatic amniotes. Amphibious species show an intermediate status between terrestrial and fully aquatic snakes, implying their importance in understanding the process of aquatic adaptation.
Collapse
Affiliation(s)
- Takushi Kishida
- Wildlife Research Center, Kyoto University, 2-24 Tanaka Sekiden-cho, Sakyo, Kyoto 606-8203, Japan
| | - Yasuhiro Go
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
| | - Shoji Tatsumoto
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
| | - Kaori Tatsumi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Shigehiro Kuraku
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Mamoru Toda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
16
|
Abstract
Steroids play vital roles in animal physiology across species, and the production of specific steroids is associated with particular internal biological functions. The internal functions of steroids are, in most cases, quite clear. However, an important feature of many steroids (their chemical stability) allows these molecules to play secondary, external roles as chemical messengers after their excretion via urine, feces, or other shed substances. The presence of steroids in animal excretions has long been appreciated, but their capacity to serve as chemosignals has not received as much attention. In theory, the blend of steroids excreted by an animal contains a readout of its own biological state. Initial mechanistic evidence for external steroid chemosensation arose from studies of many species of fish. In sea lampreys and ray-finned fishes, bile salts were identified as potent olfactory cues and later found to serve as pheromones. Recently, we and others have discovered that neurons in amphibian and mammalian olfactory systems are also highly sensitive to excreted glucocorticoids, sex steroids, and bile acids, and some of these molecules have been confirmed as mammalian pheromones. Steroid chemosensation in olfactory systems, unlike steroid detection in most tissues, is performed by plasma membrane receptors, but the details remain largely unclear. In this review, we present a broad view of steroid detection by vertebrate olfactory systems, focusing on recent research in fishes, amphibians, and mammals. We review confirmed and hypothesized mechanisms of steroid chemosensation in each group and discuss potential impacts on vertebrate social communication.
Collapse
|
17
|
Hawkins SJ, Weiss L, Offner T, Dittrich K, Hassenklöver T, Manzini I. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit. Front Cell Neurosci 2017; 11:380. [PMID: 29234276 PMCID: PMC5712363 DOI: 10.3389/fncel.2017.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.
Collapse
Affiliation(s)
- Sara J Hawkins
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lukas Weiss
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Offner
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Katarina Dittrich
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|