1
|
Moshtaghion SM, Caballano-Infantes E, Plaza Reyes Á, Valdés-Sánchez L, Fernández PG, de la Cerda B, Riga MS, Álvarez-Dolado M, Peñalver P, Morales JC, Díaz-Corrales FJ. Piceid Octanoate Protects Retinal Cells against Oxidative Damage by Regulating the Sirtuin 1/Poly-ADP-Ribose Polymerase 1 Axis In Vitro and in rd10 Mice. Antioxidants (Basel) 2024; 13:201. [PMID: 38397799 PMCID: PMC10886367 DOI: 10.3390/antiox13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Retinitis pigmentosa is a common cause of inherited blindness in adults, which in many cases is associated with an increase in the formation of reactive oxygen species (ROS) that induces DNA damage, triggering Poly-ADP-Ribose Polymerase 1 (PARP1) activation and leading to parthanatos-mediated cell death. Previous studies have shown that resveratrol (RSV) is a promising molecule that can mitigate PARP1 overactivity, but its low bioavailability is a limitation for medical use. This study examined the impact of a synthesized new acylated RSV prodrug, piceid octanoate (PIC-OCT), in the 661W cell line against H2O2 oxidative stress and in rd10 mice. PIC-OCT possesses a better ADME profile than RSV. In response to H2O2, 661W cells pretreated with PIC-OCT preserved cell viability in more than 38% of cells by significantly promoting SIRT1 nuclear translocation, preserving NAD+/NADH ratio, and suppressing intracellular ROS formation. These effects result from expressing antioxidant genes, maintaining mitochondrial function, reducing PARP1 nuclear expression, and preventing AIF nuclear translocation. In rd10 mice, PIC-OCT inhibited PAR-polymer formation, increased SIRT1 expression, significantly reduced TUNEL-positive cells in the retinal outer nuclear layer, preserved ERGs, and enhanced light chamber activity (all p values < 0.05). Our findings corroborate that PIC-OCT protects photoreceptors by modulating the SIRT1/PARP1 axis in models of retinal degeneration.
Collapse
Affiliation(s)
- Seyed Mohamadmehdi Moshtaghion
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Estefanía Caballano-Infantes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Álvaro Plaza Reyes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Lourdes Valdés-Sánchez
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Patricia Gallego Fernández
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Berta de la Cerda
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Maurizio S. Riga
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Manuel Álvarez-Dolado
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), PTS-Granada, Avda. del Conocimiento, 17, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Juan C. Morales
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), PTS-Granada, Avda. del Conocimiento, 17, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Francisco J. Díaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| |
Collapse
|
2
|
Yan J, Wang L, Yang QL, Yang QX, He X, Dong Y, Hu Z, Seeliger MW, Jiao K, Paquet-Durand F. T-type voltage-gated channels, Na +/Ca 2+-exchanger, and calpain-2 promote photoreceptor cell death in inherited retinal degeneration. Cell Commun Signal 2024; 22:92. [PMID: 38303059 PMCID: PMC10836022 DOI: 10.1186/s12964-023-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 02/03/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.
Collapse
Affiliation(s)
- Jie Yan
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Lan Wang
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Qian-Lu Yang
- The Third Affiliated Hospital of Kunming Medical University &Yunnan Cancer Hospital, Kunming, Yunnan, 650118, China
| | - Qian-Xi Yang
- The Third Affiliated Hospital of Kunming Medical University &Yunnan Cancer Hospital, Kunming, Yunnan, 650118, China
| | - Xinyi He
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
- High-resolution Functional Imaging and Test Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Yujie Dong
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Zhulin Hu
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Kangwei Jiao
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
3
|
ORTAAKARSU AB, MEDETALİBEYOĞLU H. Computational drug repurposing effort for identifying novel hits for the treatment of diseases such as endometriosis, uterine fibroids, and prostate cancer. Turk J Chem 2024; 48:402-421. [PMID: 39050495 PMCID: PMC11265929 DOI: 10.55730/1300-0527.3667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/25/2024] [Accepted: 01/04/2024] [Indexed: 07/27/2024] Open
Abstract
This research aimed to identify potential drug compounds from the ZINC15 molecule database that could effectively treat GnRH1R-related diseases. The study utilized molecular docking and molecular dynamics methods to achieve this goal, which is crucial in drug repurposing research. The virtual screening process involved analyzing known drug compounds using molecular docking. Additionally, molecular dynamics simulations and MM-GBSA were employed to evaluate the stability of the complexes and determine the interactions between the compounds and protein structure. As a result, this study provides significant insights for treating diseases such as endometriosis, uterine fibroids, and prostate cancer related to GnRH1R. The study also involved designing new drugs and identifying necessary molecular scaffolds.
Collapse
|
4
|
Miller AL, James RE, Harvey AR, Trifunović D, Carvalho LS. The role of epigenetic changes in the pathology and treatment of inherited retinal diseases. Front Cell Dev Biol 2023; 11:1224078. [PMID: 37601102 PMCID: PMC10436478 DOI: 10.3389/fcell.2023.1224078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Elucidation of the cellular changes that occur in degenerating photoreceptors of people with inherited retinal diseases (IRDs) has been a focus for many research teams, leading to numerous theories on how these changes affect the cell death process. What is clearly emerging from these studies is that there are common denominators across multiple models of IRD, regardless of the underlying genetic mutation. These common markers could open avenues for broad neuroprotective therapeutics to prevent photoreceptor loss and preserve functional vision. In recent years, the role of epigenetic modifications contributing to the pathology of IRDs has been a particular point of interest, due to many studies noting changes in these epigenetic modifications, which coincide with photoreceptor cell death. This review will discuss the two broad categories of epigenetic changes, DNA methylation and histone modifications, that have received particular attention in IRD models. We will review the altered epigenetic regulatory events that are believed to contribute to cell death in IRDs and discuss the therapeutic potential of targeting these alterations.
Collapse
Affiliation(s)
- Annie L. Miller
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Rebekah E. James
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Alan R. Harvey
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Dragana Trifunović
- Institute for Ophthalmic Research, Tubingen University, Tübingen, Germany
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Borgini M, Wipf P. Synthesis of Veliparib Prodrugs and Determination of Drug-Release-Dependent PARP-1 Inhibition. ACS Med Chem Lett 2023; 14:652-657. [PMID: 37197461 PMCID: PMC10184315 DOI: 10.1021/acsmedchemlett.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) plays a key role in repairing DNA damage, and several PARP inhibitors have been approved as treatments in BRCA1/2 mutated breast and ovarian cancers. Mounting evidence also supports their application as neuroprotective agents since PARP overactivation compromises the mitochondrial homeostasis by consumption of NAD+ reserves, leading to an increase in reactive oxygen and nitrogen species and a spike in intracellular Ca2+ levels. Herein, we present the synthesis and preliminary evaluation of new mitochondria-targeting PARP inhibitor prodrugs of (±)-veliparib, with the goal to advance potential neuroprotective properties without impairing the repair of damaged DNA in the nucleus.
Collapse
|
6
|
Dong Y, Yan J, Yang M, Xu W, Hu Z, Paquet-Durand F, Jiao K. Inherited Retinal Degeneration: Towards the Development of a Combination Therapy Targeting Histone Deacetylase, Poly (ADP-Ribose) Polymerase, and Calpain. Biomolecules 2023; 13:biom13040581. [PMID: 37189329 DOI: 10.3390/biom13040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Inherited retinal degeneration (IRD) represents a diverse group of gene mutation-induced blinding diseases. In IRD, the loss of photoreceptors is often connected to excessive activation of histone-deacetylase (HDAC), poly-ADP-ribose-polymerase (PARP), and calpain-type proteases (calpain). Moreover, the inhibition of either HDACs, PARPs, or calpains has previously shown promise in preventing photoreceptor cell death, although the relationship between these enzyme groups remains unclear. To explore this further, organotypic retinal explant cultures derived from wild-type mice and rd1 mice as a model for IRD were treated with different combinations of inhibitors specific for HDAC, PARP, and calpain. The outcomes were assessed using in situ activity assays for HDAC, PARP, and calpain, immunostaining for activated calpain-2, and the TUNEL assay for cell death detection. We confirmed that inhibition of either HDAC, PARP, or calpain reduced rd1 mouse photoreceptor degeneration, with the HDAC inhibitor Vorinostat (SAHA) being most effective. Calpain activity was reduced by inhibition of both HDAC and PARP whereas PARP activity was only reduced by HDAC inhibition. Unexpectedly, combined treatment with either PARP and calpain inhibitors or HDAC and calpain inhibitors did not produce synergistic rescue of photoreceptors. Together, these results indicate that in rd1 photoreceptors, HDAC, PARP, and calpain are part of the same degenerative pathway and are activated in a sequence that begins with HDAC and ends with calpain.
Collapse
|
7
|
Ji Y, Zhao M, Qiao X, Peng GH. Decitabine improves MMS-induced retinal photoreceptor cell damage by targeting DNMT3A and DNMT3B. Front Mol Neurosci 2023; 15:1057365. [PMID: 36704326 PMCID: PMC9872157 DOI: 10.3389/fnmol.2022.1057365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Retinitis pigmentosa (RP) is a group of neurodegenerative retinopathies causing blindness due to progressive and irreversible photoreceptor cell death. The alkylating agent methyl methanesulfonate (MMS) can induce selective photoreceptor cell death, which is used to establish RP animal models. MMS induces DNA base damage by adding alkyl groups to DNA, and epigenetic modifications influence DNA damage response. Here, we aimed to explore the relationship between DNA methylation and DNA damage response in dying photoreceptors of RP. Methods The mouse RP model was established by a single intraperitoneal injection of MMS. The retinal structure and function were assessed by H&E, OCT, TUNEL, and ERG at several time points. The expression of DNA methylation regulators was assessed by qPCR and Western blot. DNMT inhibitor 5-aza-dC was applied to inhibit the activity of DNA methyltransferases and improve the retinal photoreceptor damage. Results The outer nuclear layer (ONL) and IS/OS layer were significantly thinner and the retinal function was impaired after MMS treatment. The cell death was mainly located in the ONL. The retinal damage induced by MMS was accompanied by hyperexpression of DNMT3A/3B. The application of DNMT inhibitor 5-aza-dC could suppress the expression level of DNMT3A/3B, resulting in the remission of MMS-induced photoreceptor cell damage. The ONL and IS/OS layers were thicker than that of the control group, and the retinal function was partially restored. This protective effect of 5-aza-dC was associated with the down-regulated expression of DNMT3A/3B. Conclusion These findings identified a functional role of DNMT3A/3B in MMS-induced photoreceptor cell damage and provided novel evidence to support DNMTs as potential therapeutic targets in retinal degenerative diseases.Graphical Abstract.
Collapse
Affiliation(s)
- Yanli Ji
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China,Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Meng Zhao
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China,Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Qiao
- Department of Forensic Medicine, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China,Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China,*Correspondence: Guang-Hua Peng, ✉
| |
Collapse
|
8
|
Zhu Y, Cao B, Tolone A, Yan J, Christensen G, Arango-Gonzalez B, Ueffing M, Paquet-Durand F. In vitro Model Systems for Studies Into Retinal Neuroprotection. Front Neurosci 2022; 16:938089. [PMID: 35873807 PMCID: PMC9301112 DOI: 10.3389/fnins.2022.938089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Therapy development for neurodegenerative diseases of the retina constitutes a major unmet medical need, and this may be particularly relevant for inherited diseases of the retina, which are largely untreatable to this day. Therapy development necessitates appropriate models to improve the understanding of the underlying degenerative mechanisms, as well as for the testing and evaluation of novel treatment approaches. This review provides an overview of various in vitro model systems used to study retinal neuroprotection. The in vitro methods and technologies discussed range from primary retinal cell cultures and cell lines, to retinal organoids and organotypic retinal explants, to the cultivation of whole eyeballs. The advantages and disadvantages of these methods are compared and evaluated, also in view of the 3R principles (i.e., the refinement, reduction, and replacement of live animal testing), to identify suitable in vitro alternatives for in vivo experimentation. The article further expands on the use of in vitro models to test and evaluate neuroprotective treatments and to aid the development of retinal drug delivery systems. Among the pharmacological agents tested and characterized in vitro are such that interfere with aberrant cyclic guanosine monophosphate (cGMP) -signaling or such that inhibit the activities of poly (ADP-ribose) polymerase (PARP), histone deacetylases (HDAC), calpain-type proteases, as well as unfolded protein response-related stress. We then introduce nanoparticle-based drug delivery systems and discuss how different in vitro systems may be used to assess their efficacy in the treatment of retinal diseases. The summary provides a brief comparison of available in vitro models and relates their advantages and limitations to the various experimental requirements, for instance, for studies into disease mechanisms, novel treatments, or retinal toxicity. In many cases, combinations of different in vitro models may be required to obtain a comprehensive view of the efficacy of a given retinal neuroprotection approach.
Collapse
Affiliation(s)
- Yu Zhu
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bowen Cao
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Jie Yan
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Gustav Christensen
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Blanca Arango-Gonzalez
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- *Correspondence: Marius Ueffing,
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- François Paquet-Durand,
| |
Collapse
|
9
|
Neuroprotective Effects of PARP Inhibitors in Drosophila Models of Alzheimer’s Disease. Cells 2022; 11:cells11081284. [PMID: 35455964 PMCID: PMC9027574 DOI: 10.3390/cells11081284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible age-related neurodegenerative disorder clinically characterized by severe memory impairment, language deficits and cognitive decline. The major neuropathological hallmarks of AD include extracellular deposits of the β-amyloid (Aβ) peptides and cytoplasmic neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein. The accumulation of plaques and tangles in the brain triggers a cascade of molecular events that culminate in neuronal damage and cell death. Despite extensive research, our understanding of the molecular basis of AD pathogenesis remains incomplete and a cure for this devastating disease is still not available. A growing body of evidence in different experimental models suggests that poly(ADP-ribose) polymerase-1 (PARP-1) overactivation might be a crucial component of the molecular network of interactions responsible for AD pathogenesis. In this work, we combined genetic, molecular and biochemical approaches to investigate the effects of two different PARP-1 inhibitors (olaparib and MC2050) in Drosophila models of Alzheimer’s disease by exploring their neuroprotective and therapeutic potential in vivo. We found that both pharmacological inhibition and genetic inactivation of PARP-1 significantly extend lifespan and improve the climbing ability of transgenic AD flies. Consistently, PARP-1 inhibitors lead to a significant decrease of Aβ42 aggregates and partially rescue the epigenetic alterations associated with AD in the brain. Interestingly, olaparib and MC2050 also suppress the AD-associated aberrant activation of transposable elements in neuronal tissues of AD flies.
Collapse
|
10
|
Yan J, Günter A, Das S, Mühlfriedel R, Michalakis S, Jiao K, Seeliger MW, Paquet-Durand F. Inherited Retinal Degeneration: PARP-Dependent Activation of Calpain Requires CNG Channel Activity. Biomolecules 2022; 12:biom12030455. [PMID: 35327647 PMCID: PMC8946186 DOI: 10.3390/biom12030455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Inherited retinal degenerations (IRDs) are a group of blinding diseases, typically involving a progressive loss of photoreceptors. The IRD pathology is often based on an accumulation of cGMP in photoreceptors and associated with the excessive activation of calpain and poly (ADP-ribose) polymerase (PARP). Inhibitors of calpain or PARP have shown promise in preventing photoreceptor cell death, yet the relationship between these enzymes remains unclear. To explore this further, organotypic retinal explant cultures derived from wild-type and IRD-mutant mice were treated with inhibitors specific for calpain, PARP, and voltage-gated Ca2+ channels (VGCCs). The outcomes were assessed using in situ activity assays for calpain and PARP and immunostaining for activated calpain-2, poly (ADP-ribose), and cGMP, as well as the TUNEL assay for cell death detection. The IRD models included the Pde6b-mutant rd1 mouse and rd1*Cngb1−/− double-mutant mice, which lack the beta subunit of the rod cyclic nucleotide-gated (CNG) channel and are partially protected from rd1 degeneration. We confirmed that an inhibition of either calpain or PARP reduces photoreceptor cell death in rd1 retina. However, while the activity of calpain was decreased by the inhibition of PARP, calpain inhibition did not alter the PARP activity. A combination treatment with calpain and PARP inhibitors did not synergistically reduce cell death. In the slow degeneration of rd1*Cngb1−/− double mutant, VGCC inhibition delayed photoreceptor cell death, while PARP inhibition did not. Our results indicate that PARP acts upstream of calpain and that both are part of the same degenerative pathway in Pde6b-dependent photoreceptor degeneration. While PARP activation may be associated with CNG channel activity, calpain activation is linked to VGCC opening. Overall, our data highlights PARP as a target for therapeutic interventions in IRD-type diseases.
Collapse
Affiliation(s)
- Jie Yan
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (J.Y.); (S.D.)
- Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Alexander Günter
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (A.G.); (R.M.)
| | - Soumyaparna Das
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (J.Y.); (S.D.)
| | - Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (A.G.); (R.M.)
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, 80539 München, Germany;
| | - Kangwei Jiao
- Key Laboratory of Yunnan Province, Affiliated Hospital of Yunnan University, Kunming 650051, China;
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (A.G.); (R.M.)
- Correspondence: (M.W.S.); (F.P.-D.)
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (J.Y.); (S.D.)
- Correspondence: (M.W.S.); (F.P.-D.)
| |
Collapse
|
11
|
Xu W, Li Y, Dong Y, Xiao L, Li L, Jiao K. Integrative RNA-seq and ATAC-seq analyses of phosphodiesterase 6 mutation-induced retinitis pigmentosa. Int Ophthalmol 2022; 42:2385-2395. [PMID: 35147831 DOI: 10.1007/s10792-022-02238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Inhibition of poly-ADP-ribose polymerase 1 (PARP1) could relieve phosphodiesterase 6 mutation-induced retinitis pigmentosa (RP). However, the mechanism related to PARP1 overexpression in the RP has not been clarified. We attempted to explore the potential mechanism related to PARP1 regulating RP. METHODS ATAC-seq and RNA-seq were performed for retina tissues of C3H and rd1 mice. The differentially expressed genes (DEGs) were identified, followed by the construction of PARP1-DEG co-expression and protein-protein interaction (PPI) networks. Gene ontology-biological process and pathway enrichment of DEGs were performed by clusterProfiler software. The overlapped genes that might play regulatory roles in PARP1 expression were mined by integrated analysis of RNA-seq and ATAC-seq data. RESULTS A total of 1061 DEGs were identified between C3H and rd1 group. Co-expression network was constructed with 313 PARP1-gene co-expression pairs. The down-regulated DEGs were closely related to visual perception and light stimulus-related biological process, while the up-regulated DEGs were significantly enriched in phototransduction and PPAR signaling pathway. PPI network was constructed with 202 nodes and 375 edges, which was clustered into 3 modules. Module 1 genes were closely related to detection of light stimulus, visual perception related biological process and phototransduction pathway (involved with Gnat1/Guca1b/Gnat2/Sag/Pde6g). By integrated analysis of the RNA-seq and ATAC-seq, the overlapped up-regulated genes were Asxl3 and Nyap2, while the down-regulated genes were Tmem136 and Susd3. CONCLUSION Gnat1 may play a key role in RP development by interacting with PARP1. Susd3 may play a regulatory role in PARP1 expression and affect RP formation.
Collapse
Affiliation(s)
- Wenrong Xu
- Kunming Medical University, Kunming, 650500, Yunnan, China
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, 650024, Kunming, Yunnan, China
| | - Yan Li
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, 650021, Kunming, China
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Yujie Dong
- Kunming Medical University, Kunming, 650500, Yunnan, China
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, 650021, Kunming, China
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Libo Xiao
- Kunming Medical University, Kunming, 650500, Yunnan, China
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, 650021, Kunming, China
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Lan Li
- Kunming Medical University, Kunming, 650500, Yunnan, China.
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, 650024, Kunming, Yunnan, China.
| | - Kangwei Jiao
- Kunming Medical University, Kunming, 650500, Yunnan, China.
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, 650021, Kunming, China.
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Yunnan University, 176 Qingnian, Kunming, 650021, China.
| |
Collapse
|
12
|
Durdagi S, Avsar T, Orhan MD, Serhatli M, Balcioglu BK, Ozturk HU, Kayabolen A, Cetin Y, Aydinlik S, Bagci-Onder T, Tekin S, Demirci H, Guzel M, Akdemir A, Calis S, Oktay L, Tolu I, Butun YE, Erdemoglu E, Olkan A, Tokay N, Işık Ş, Ozcan A, Acar E, Buyukkilic S, Yumak Y. The neutralization effect of montelukaston SARS-CoV-2 is shown by multiscale in silicosimulations and combined in vitro studies. Mol Ther 2021; 30:963-974. [PMID: 34678509 PMCID: PMC8524809 DOI: 10.1016/j.ymthe.2021.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Serdar Durdagi
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey.
| | - Timucin Avsar
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Muge Didem Orhan
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Muge Serhatli
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Bertan Koray Balcioglu
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Hasan Umit Ozturk
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Alisan Kayabolen
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Yuksel Cetin
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Seyma Aydinlik
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450 Istanbul, Turkey; Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey
| | - Saban Tekin
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli; Department of Basic Sciences, Division of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Hasan Demirci
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Mustafa Guzel
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Computer-aided Drug Discovery Laboratory, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Seyma Calis
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34485 Istanbul, Turkey
| | - Lalehan Oktay
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Ilayda Tolu
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Yasar Enes Butun
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ece Erdemoglu
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Alpsu Olkan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Nurettin Tokay
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Şeyma Işık
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Aysenur Ozcan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Elif Acar
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sehriban Buyukkilic
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Yesim Yumak
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Science and Letters, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
13
|
Yan J, Chen Y, Zhu Y, Paquet-Durand F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between cGMP-Dependent Pathways and PARthanatos? Int J Mol Sci 2021; 22:10567. [PMID: 34638907 PMCID: PMC8508647 DOI: 10.3390/ijms221910567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) is a highly regulated process that results in the orderly destruction of a cell. Many different forms of PCD may be distinguished, including apoptosis, PARthanatos, and cGMP-dependent cell death. Misregulation of PCD mechanisms may be the underlying cause of neurodegenerative diseases of the retina, including hereditary retinal degeneration (RD). RD relates to a group of diseases that affect photoreceptors and that are triggered by gene mutations that are often well known nowadays. Nevertheless, the cellular mechanisms of PCD triggered by disease-causing mutations are still poorly understood, and RD is mostly still untreatable. While investigations into the neurodegenerative mechanisms of RD have focused on apoptosis in the past two decades, recent evidence suggests a predominance of non-apoptotic processes as causative mechanisms. Research into these mechanisms carries the hope that the knowledge created can eventually be used to design targeted treatments to prevent photoreceptor loss. Hence, in this review, we summarize studies on PCD in RD, including on apoptosis, PARthanatos, and cGMP-dependent cell death. Then, we focus on a possible interplay between these mechanisms, covering cGMP-signaling targets, overactivation of poly(ADP-ribose)polymerase (PARP), energy depletion, Ca2+-permeable channels, and Ca2+-dependent proteases. Finally, an outlook is given into how specific features of cGMP-signaling and PARthanatos may be targeted by therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (J.Y.); (Y.C.); (Y.Z.)
| |
Collapse
|
14
|
Technological advancements to study cellular signaling pathways in inherited retinal degenerative diseases. Curr Opin Pharmacol 2021; 60:102-110. [PMID: 34388439 DOI: 10.1016/j.coph.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
Inherited retinal degenerative diseases (IRDs) are rare neurodegenerative disorders with mutations in hundreds of genes leading to vision loss, primarily owing to photoreceptor cell death. This genetic diversity is impeding development of effective treatment options. Gene-based therapies have resulted in the first FDA-approved drug (Luxturna) for RPE65-specific IRD. Although currently explored in clinical trials, genomic medicines are mutation-dependent, hence suitable only for patients harboring a specific mutation. Better understanding of the pathways leading to photoreceptor degeneration may help to determine common targets and develop mutation-independent therapies for larger groups of patients with IRDs. In this review, we discuss the key pathways involved in photoreceptor cell death studied by transcriptomics, proteomics, and metabolomics techniques to identify potential therapeutic targets in IRDs.
Collapse
|
15
|
Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies. Int J Mol Sci 2021; 22:ijms22042096. [PMID: 33672611 PMCID: PMC7924201 DOI: 10.3390/ijms22042096] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of retinal disorders that cause progressive and severe loss of vision because of retinal cell death, mainly photoreceptor cells. IRDs include retinitis pigmentosa (RP), the most common IRD. IRDs present a genetic and clinical heterogeneity that makes it difficult to achieve proper treatment. The progression of IRDs is influenced, among other factors, by the activation of the immune cells (microglia, macrophages, etc.) and the release of inflammatory molecules such as chemokines and cytokines. Upregulation of tumor necrosis factor alpha (TNFα), a pro-inflammatory cytokine, is found in IRDs. This cytokine may influence photoreceptor cell death. Different cell death mechanisms are proposed, including apoptosis, necroptosis, pyroptosis, autophagy, excessive activation of calpains, or parthanatos for photoreceptor cell death. Some of these cell death mechanisms are linked to TNFα upregulation and inflammation. Therapeutic approaches that reduce retinal inflammation have emerged as useful therapies for slowing down the progression of IRDs. We focused this review on the relationship between retinal inflammation and the different cell death mechanisms involved in RP. We also reviewed the main anti-inflammatory therapies for the treatment of IRDs.
Collapse
|
16
|
Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 2020; 19:711-736. [PMID: 32884152 DOI: 10.1038/s41573-020-0076-6] [Citation(s) in RCA: 329] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The process of poly(ADP-ribosyl)ation and the major enzyme that catalyses this reaction, poly(ADP-ribose) polymerase 1 (PARP1), were discovered more than 50 years ago. Since then, advances in our understanding of the roles of PARP1 in cellular processes such as DNA repair, gene transcription and cell death have allowed the investigation of therapeutic PARP inhibition for a variety of diseases - particularly cancers in which defects in DNA repair pathways make tumour cells highly sensitive to the inhibition of PARP activity. Efforts to identify and evaluate potent PARP inhibitors have so far led to the regulatory approval of four PARP inhibitors for the treatment of several types of cancer, and PARP inhibitors have also shown therapeutic potential in treating non-oncological diseases. This Review provides a timeline of PARP biology and medicinal chemistry, summarizes the pathophysiological processes in which PARP plays a role and highlights key opportunities and challenges in the field, such as counteracting PARP inhibitor resistance during cancer therapy and repurposing PARP inhibitors for the treatment of non-oncological diseases.
Collapse
Affiliation(s)
- Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK.
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
17
|
Carullo G, Federico S, Relitti N, Gemma S, Butini S, Campiani G. Retinitis Pigmentosa and Retinal Degenerations: Deciphering Pathways and Targets for Drug Discovery and Development. ACS Chem Neurosci 2020; 11:2173-2191. [PMID: 32589402 DOI: 10.1021/acschemneuro.0c00358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a group of retinopathies generally caused by genetic mutations. Retinitis pigmentosa (RP) represents one of the most studied IRDs. RP leads to intense vision loss or blindness resulting from the degeneration of photoreceptor cells. To date, RP is mainly treated with palliative supplementation of vitamin A and retinoids, gene therapies, or surgical interventions. Therefore, a pharmacologically based therapy is an urgent need requiring a medicinal chemistry approach, to validate molecular targets able to deal with retinal degeneration. This Review aims at outlining the recent research efforts in identifying new drug targets for RP, especially focusing on the neuroprotective role of the Wnt/β-catenin/GSK3β pathway and apoptosis modulators (in particular PARP-1) but also on growth factors such as VEGF and BDNF. Furthermore, the role of spatiotemporally expressed G protein-coupled receptors (GPR124) in the retina and the emerging function of histone deacetylase inhibitors in promoting retinal neuroprotection will be discussed.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
18
|
Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9040313. [PMID: 32326494 PMCID: PMC7222183 DOI: 10.3390/antiox9040313] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying some groups of rare diseases: Friedreich’s ataxia, diseases with neurodegeneration with brain iron accumulation, Charcot-Marie-Tooth as an example of rare neuromuscular disorders, inherited retinal dystrophies, progressive myoclonus epilepsies, and pediatric drug-resistant epilepsies. Despite the discrimination between cause and effect may not be easy on many occasions, all these conditions are Mendelian rare diseases that share oxidative stress as a common factor, and this may represent a potential target for therapies.
Collapse
|
19
|
Members of our Early Career Panel highlight key research articles on the theme of drug repurposing. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
20
|
Wang FC, Peng B, Cao SL, Li HY, Yuan XL, Zhang TT, Shi R, Li Z, Liao J, Wang H, Li J, Xu X. Synthesis and cytotoxic activity of chalcone analogues containing a thieno[2,3-d]pyrimidin-2-yl group as the A-ring or B-ring. Bioorg Chem 2020; 94:103346. [DOI: 10.1016/j.bioorg.2019.103346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/18/2019] [Accepted: 10/04/2019] [Indexed: 12/28/2022]
|