1
|
Lopez-Delisle L, Zakany J, Bochaton C, Osteil P, Mayran A, Darbellay F, Mascrez B, Rekaik H, Duboule D. CTCF-dependent insulation of Hoxb13 and the heterochronic control of tail length. Proc Natl Acad Sci U S A 2024; 121:e2414865121. [PMID: 39499640 PMCID: PMC11573545 DOI: 10.1073/pnas.2414865121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024] Open
Abstract
Mammalian tail length is controlled by several genetic determinants, among which are Hox13 genes, whose function is to terminate the body axis. Accordingly, the precise timing in the transcriptional activation of these genes may impact upon body length. Unlike other Hox clusters, HoxB lacks posterior genes between Hoxb9 and Hoxb13, two genes separated by a ca. 70 kb large DNA segment containing a high number of CTCF sites, potentially isolating Hoxb13 from the rest of the cluster and thereby delaying its negative impact on trunk extension. We deleted the spacer DNA to induce a potential heterochronic gain of function of Hoxb13 at physiological concentration and observed a shortening of the tail as well as other abnormal phenotypes. These defects were all rescued by inactivating Hoxb13 in-cis with the deletion. A comparable gain of function was observed in mutant Embryonic Stem (ES) cells grown as pseudoembryos in vitro, which allowed us to examine in detail the importance of both the number and the orientation of CTCF sites in the insulating activity of the DNA spacer. A short cassette containing all the CTCF sites was sufficient to insulate Hoxb13 from the rest of HoxB, and additional modifications of this CTCF cassette showed that two CTCF sites in convergent orientations were already capable of importantly delaying Hoxb13 activation in these conditions. We discuss the relative importance of genomic distance versus number and orientation of CTCF sites in preventing Hoxb13 to be activated too early during trunk extension and hence to modulate tail length.
Collapse
Affiliation(s)
- Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Jozsef Zakany
- Department of Genetics and Evolution, University of Geneva, Geneva 1211, Switzerland
| | - Célia Bochaton
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Pierre Osteil
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Alexandre Mayran
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Fabrice Darbellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, Geneva 1211, Switzerland
| | - Hocine Rekaik
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université Paris Sciences et Lettres, Paris 75231, France
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva 1211, Switzerland
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université Paris Sciences et Lettres, Paris 75231, France
| |
Collapse
|
2
|
Kingsley EP, Hager ER, Lassance JM, Turner KM, Harringmeyer OS, Kirby C, Neugeboren BI, Hoekstra HE. Adaptive tail-length evolution in deer mice is associated with differential Hoxd13 expression in early development. Nat Ecol Evol 2024; 8:791-805. [PMID: 38378804 PMCID: PMC11009118 DOI: 10.1038/s41559-024-02346-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Variation in the size and number of axial segments underlies much of the diversity in animal body plans. Here we investigate the evolutionary, genetic and developmental mechanisms driving tail-length differences between forest and prairie ecotypes of deer mice (Peromyscus maniculatus). We first show that long-tailed forest mice perform better in an arboreal locomotion assay, consistent with tails being important for balance during climbing. We then identify six genomic regions that contribute to differences in tail length, three of which associate with caudal vertebra length and the other three with vertebra number. For all six loci, the forest allele increases tail length, indicative of the cumulative effect of natural selection. Two of the genomic regions associated with variation in vertebra number contain Hox gene clusters. Of those, we find an allele-specific decrease in Hoxd13 expression in the embryonic tail bud of long-tailed forest mice, consistent with its role in axial elongation. Additionally, we find that forest embryos have more presomitic mesoderm than prairie embryos and that this correlates with an increase in the number of neuromesodermal progenitors, which are modulated by Hox13 paralogues. Together, these results suggest a role for Hoxd13 in the development of natural variation in adaptive morphology on a microevolutionary timescale.
Collapse
Affiliation(s)
- Evan P Kingsley
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Emily R Hager
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jean-Marc Lassance
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- GIGA Institute, University of Liège, Liège, Belgium
| | - Kyle M Turner
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Centre for Teaching Support & Innovation, University of Toronto, Toronto, Ontario, Canada
| | - Olivia S Harringmeyer
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Christopher Kirby
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Beverly I Neugeboren
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Environmental Health and Safety, Harvard University, Cambridge, MA, USA
| | - Hopi E Hoekstra
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Xia B, Zhang W, Zhao G, Zhang X, Bai J, Brosh R, Wudzinska A, Huang E, Ashe H, Ellis G, Pour M, Zhao Y, Coelho C, Zhu Y, Miller A, Dasen JS, Maurano MT, Kim SY, Boeke JD, Yanai I. On the genetic basis of tail-loss evolution in humans and apes. Nature 2024; 626:1042-1048. [PMID: 38418917 PMCID: PMC10901737 DOI: 10.1038/s41586-024-07095-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.
Collapse
Affiliation(s)
- Bo Xia
- Institute for Computational Medicine, NYU Langone Health, New York, NY, USA.
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Society of Fellows, Harvard University, Cambridge, MA, USA.
| | - Weimin Zhang
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Guisheng Zhao
- Institute for Computational Medicine, NYU Langone Health, New York, NY, USA
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Xinru Zhang
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Jiangshan Bai
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | | | - Emily Huang
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Hannah Ashe
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Gwen Ellis
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Maayan Pour
- Institute for Computational Medicine, NYU Langone Health, New York, NY, USA
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Yu Zhao
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Camila Coelho
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Yinan Zhu
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Alexander Miller
- Department of Neuroscience and Physiology, NYU Langone Health, New York, NY, USA
| | - Jeremy S Dasen
- Department of Neuroscience and Physiology, NYU Langone Health, New York, NY, USA
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Sang Y Kim
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| | - Itai Yanai
- Institute for Computational Medicine, NYU Langone Health, New York, NY, USA.
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
4
|
Konkel MK, Casanova EL. A mobile DNA sequence could explain tail loss in humans and apes. Nature 2024; 626:958-959. [PMID: 38418909 DOI: 10.1038/d41586-024-00309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|
5
|
Masak G, Davidson LA. Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail. Cells Dev 2023; 176:203866. [PMID: 37394035 PMCID: PMC10756936 DOI: 10.1016/j.cdev.2023.203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The pharyngula stage of vertebrate development is characterized by stereotypical arrangement of ectoderm, mesoderm, and neural tissues from the anterior spinal cord to the posterior, yet unformed tail. While early embryologists over-emphasized the similarity between vertebrate embryos at the pharyngula stage, there is clearly a common architecture upon which subsequent developmental programs generate diverse cranial structures and epithelial appendages such as fins, limbs, gills, and tails. The pharyngula stage is preceded by two morphogenetic events: gastrulation and neurulation, which establish common shared structures despite the occurrence of cellular processes that are distinct to each of the species. Even along the body axis of a singular organism, structures with seemingly uniform phenotypic characteristics at the pharyngula stage have been established by different processes. We focus our review on the processes underlying integration of posterior axial tissue formation with the primary axial tissues that creates the structures laid out in the pharyngula. Single cell sequencing and novel gene targeting technologies have provided us with new insights into the differences between the processes that form the anterior and posterior axis, but it is still unclear how these processes are integrated to create a seamless body. We suggest that the primary and posterior axial tissues in vertebrates form through distinct mechanisms and that the transition between these mechanisms occur at different locations along the anterior-posterior axis. Filling gaps that remain in our understanding of this transition could resolve ongoing problems in organoid culture and regeneration.
Collapse
Affiliation(s)
- Geneva Masak
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lance A Davidson
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
6
|
Yuan J, Wang G, Zhao L, Kitchener AC, Sun T, Chen W, Huang C, Wang C, Xu X, Wang J, Lu H, Xu L, Jiangzuo Q, Murphy WJ, Wu D, Li G. How genomic insights into the evolutionary history of clouded leopards inform their conservation. SCIENCE ADVANCES 2023; 9:eadh9143. [PMID: 37801506 PMCID: PMC10558132 DOI: 10.1126/sciadv.adh9143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Clouded leopards (Neofelis spp.), a morphologically and ecologically distinct lineage of big cats, are severely threatened by habitat loss and fragmentation, targeted hunting, and other human activities. The long-held poor understanding of their genetics and evolution has undermined the effectiveness of conservation actions. Here, we report a comprehensive investigation of the whole genomes, population genetics, and adaptive evolution of Neofelis. Our results indicate the genus Neofelis arose during the Pleistocene, coinciding with glacial-induced climate changes to the distributions of savannas and rainforests, and signatures of natural selection associated with genes functioning in tooth, pigmentation, and tail development, associated with clouded leopards' unique adaptations. Our study highlights high-altitude adaptation as the main factor driving nontaxonomic population differentiation in Neofelis nebulosa. Population declines and inbreeding have led to reduced genetic diversity and the accumulation of deleterious variation that likely affect reproduction of clouded leopards, highlighting the urgent need for effective conservation efforts.
Collapse
Affiliation(s)
- Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Guiqiang Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH9 3PX, UK
| | - Ting Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chen Wang
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Huimeng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qigao Jiangzuo
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| |
Collapse
|
7
|
Stepien BK, Pawolski V, Wagner MC, Kurth T, Schmidt MHH, Epperlein HH. The Role of Posterior Neural Plate-Derived Presomitic Mesoderm (PSM) in Trunk and Tail Muscle Formation and Axis Elongation. Cells 2023; 12:cells12091313. [PMID: 37174713 PMCID: PMC10177618 DOI: 10.3390/cells12091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Elongation of the posterior body axis is distinct from that of the anterior trunk and head. Early drivers of posterior elongation are the neural plate/tube and notochord, later followed by the presomitic mesoderm (PSM), together with the neural tube and notochord. In axolotl, posterior neural plate-derived PSM is pushed posteriorly by convergence and extension of the neural plate. The PSM does not go through the blastopore but turns anteriorly to join the gastrulated paraxial mesoderm. To gain a deeper understanding of the process of axial elongation, a detailed characterization of PSM morphogenesis, which precedes somite formation, and of other tissues (such as the epidermis, lateral plate mesoderm and endoderm) is needed. We investigated these issues with specific tissue labelling techniques (DiI injections and GFP+ tissue grafting) in combination with optical tissue clearing and 3D reconstructions. We defined a spatiotemporal order of PSM morphogenesis that is characterized by changes in collective cell behaviour. The PSM forms a cohesive tissue strand and largely retains this cohesiveness even after epidermis removal. We show that during embryogenesis, the PSM, as well as the lateral plate and endoderm move anteriorly, while the net movement of the axis is posterior.
Collapse
Affiliation(s)
- Barbara K Stepien
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Verena Pawolski
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Marc-Christoph Wagner
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Hans-Henning Epperlein
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| |
Collapse
|
8
|
Mendizábal-Castillero M, Merlo MA, Cross I, Rodríguez ME, Rebordinos L. Genomic Characterization of hox Genes in Senegalese Sole ( Solea senegalensis, Kaup 1858): Clues to Evolutionary Path in Pleuronectiformes. Animals (Basel) 2022; 12:ani12243586. [PMID: 36552509 PMCID: PMC9774920 DOI: 10.3390/ani12243586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The Senegalese sole (Solea senegalensis, Kaup 1858), a marine flatfish, belongs to the Pleuronectiformes order. It is a commercially important species for fisheries and aquaculture. However, in aquaculture, several production bottlenecks have still to be resolved, including skeletal deformities and high mortality during the larval and juvenile phase. The study aims to characterize the hox gene clusters in S. senegalensis to understand better the developmental and metamorphosis process in this species. Using a BAC library, the clones that contain hox genes were isolated, sequenced by NGS and used as BAC-FISH probes. Subsequently the hox clusters were studied by sequence analysis, comparative genomics, and cytogenetic and phylogenetic analysis. Cytogenetic analysis demonstrated the localization of four BAC clones on chromosome pairs 4, 12, 13, and 16 of the Senegalese sole cytogenomic map. Comparative and phylogenetic analysis showed a highly conserved organization in each cluster and different phylogenetic clustering in each hox cluster. Analysis of structural and repetitive sequences revealed accumulations of polymorphisms mediated by repetitive elements in the hoxba cluster, mainly retroelements. Therefore, a possible loss of the hoxb7a gene can be established in the Pleuronectiformes lineage. This work allows the organization and regulation of hox clusters to be understood, and is a good base for further studies of expression patterns.
Collapse
|
9
|
Yang C, Wang X, Zhang H, Kou Z, Gao Y, He Y, Liu B. Microscopical observations on the regenerating tail of tsinling dwarf skink (Scincella tsinlingensis). Micron 2022; 154:103215. [PMID: 35051802 DOI: 10.1016/j.micron.2022.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Although the key steps of tail regeneration in lizards are well understood, further investigations involving skinks can provide the field of regeneration research with additional information. In order to characterize the cytoarchitecture of tail regeneration in Scincella tsinlingensis, an endemic species in China, its histological events and growth trends are investigated. The rate of tail regeneration varies with the season: it proceeds faster in summer and autumn than it does in winter and spring. Tail regeneration of S. tsinlingensis is summarized as wound healing, blastema formation, cell differentiation and tail growth, which can be subdivided into seven stages. Wound healing following tail loss, begins with an obvious outgrowth undergoing re-epithelialization. Numerous proliferating mesenchymal-like cells aggregate near the distal end of the severed spinal cord to form the blastema. The expanding blastema is invaded by blood vessels, nerves and ependyma. A cartilaginous skeleton is formed around the ependymal tube and the muscle starts to differentiate. The keratinization of epidermis coincides with scale formation. Pigmentation eventually occurs in the regenerated tail. Tail regeneration in S. tsinlingensis is an epimorphic kind of regeneration that is also known as blastema-mediated. Structure and composition of the regenerated tail, including its cytoarchitecture, represent a conserved pattern of regeneration also known from other lizards.
Collapse
Affiliation(s)
- Chun Yang
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China.
| | - Xin Wang
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Huihui Zhang
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Zhaoting Kou
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Yanyan Gao
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Yijie He
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Bo Liu
- Department of Intensive Care Medicine, Hanzhong Central Hospital, Hanzhong, 723000 Shaanxi Province, PR China.
| |
Collapse
|
10
|
Weldon SA, Münsterberg AE. Somite development and regionalisation of the vertebral axial skeleton. Semin Cell Dev Biol 2021; 127:10-16. [PMID: 34690064 DOI: 10.1016/j.semcdb.2021.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022]
Abstract
A critical stage in the development of all vertebrate embryos is the generation of the body plan and its subsequent patterning and regionalisation along the main anterior-posterior axis. This includes the formation of the vertebral axial skeleton. Its organisation begins during early embryonic development with the periodic formation of paired blocks of mesoderm tissue called somites. Here, we review axial patterning of somites, with a focus on studies using amniote model systems - avian and mouse. We summarise the molecular and cellular mechanisms that generate paraxial mesoderm and review how the different anatomical regions of the vertebral column acquire their specific identity and thus shape the body plan. We also discuss the generation of organoids and embryo-like structures from embryonic stem cells, which provide insights regarding axis formation and promise to be useful for disease modelling.
Collapse
Affiliation(s)
- Shannon A Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
11
|
Hofmann R, Lehmann T, Warren DL, Ruf I. The squirrel is in the detail: Anatomy and morphometry of the tail in Sciuromorpha (Rodentia, Mammalia). J Morphol 2021; 282:1659-1682. [PMID: 34549832 DOI: 10.1002/jmor.21412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/07/2022]
Abstract
In mammals, the caudal vertebrae are certainly among the least studied elements of their skeleton. However, the tail plays an important role in locomotion (e.g., balance, prehensility) and behavior (e.g., signaling). Previous studies largely focused on prehensile tails in Primates and Carnivora, in which certain osteological features were selected and used to define tail regions (proximal, transitional, distal). Interestingly, the distribution pattern of these anatomical characters and the relative proportions of the tail regions were similar in both orders. In order to test if such tail regionalization can be applied to Rodentia, we investigated the caudal vertebrae of 20 Sciuridae and six Gliridae species. Furthermore, we examined relationships between tail anatomy/morphometry and locomotion. The position of selected characters along the tail was recorded and their distribution was compared statistically using Spearman rank correlation. Vertebral body length (VBL) was measured to calculate the proportions of each tail region and to perform procrustes analysis on the shape of relative vertebral body length (rVBL) progressions. Our results show that tail regionalization, as defined for Primates and Carnivora, can be applied to almost all investigated squirrels, regardless of their locomotor category. Moreover, major locomotor categories can be distinguished by rVBL progression and tail region proportions. In particular, the small flying squirrels Glaucomys volans and Hylopetes sagitta show an extremely short transitional region. Likewise, several semifossorial taxa can be distinguished by their short distal region. Moreover, among flying squirrels, Petaurista petaurista shows differences with the small flying squirrels, mirroring previous observations on locomotory adaptations based on their inner ear morphometry. Our results show furthermore that the tail region proportions of P. petaurista, phylogenetically more basal than the small flying squirrels, are similar to those of bauplan-conservative arboreal squirrels.
Collapse
Affiliation(s)
- Rebecca Hofmann
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany.,Institut für Geowissenschaften, Goethe-Universität, Frankfurt am Main, Germany
| | - Thomas Lehmann
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
| | - Dan L Warren
- Senckenberg Biodiversität und Klima Forschungszentrum, Frankfurt am Main, Germany.,Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany.,Institut für Geowissenschaften, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Dai M, Song J, Wang L, Zhou K, Shu L. HOXC13 promotes cervical cancer proliferation, invasion and Warburg effect through β-catenin/c-Myc signaling pathway. J Bioenerg Biomembr 2021; 53:597-608. [PMID: 34309767 DOI: 10.1007/s10863-021-09908-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is one of the most common malignancy and is the second leading cause of death in gynecologic malignancies worldwide. The homeobox transcription factor homeobox C13 (HOXC13) has been demonstrated to play crucial roles in various cancers. However, its function in CC remains to be addressed. In the present study, upregulation of HOXC13 expression in human CC tissues was found in The Cancer Genome Atlas (TCGA) dataset and clinical samples and was associated with tumor size, FIGO stage and lymph node metastasis. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays suggested that the expression of HOXC13 was up-regulated in CC cells. Cell Counting Kit (CCK)-8, colony formation and cell cycle analysis assays indicated that HOXC13 promoted the proliferation and cycle progression of CC cells in vitro. Of note, knockdown of HOXC13 hinders tumor growth of xenograft tumor mice in vivo. Moreover, transwell and glycolysis measurement assays demonstrated that HOXC13 enhanced the migration, invasion and glycolysis of CC cells in vitro. Further mechanism analysis suggested that HOXC13 participated in CC progression through regulation of the β-catenin/c-Myc signaling pathway. Collectively, HOXC13 facilitated cell proliferation, migration, invasion and glycolysis through modulating β-catenin/c-Myc signaling pathway in CC, indicating that HOXC13 may provide a promising therapeutic target for the therapy of CC.
Collapse
Affiliation(s)
- MiMi Dai
- Department of Obstetric and Gynecology, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - JiaJia Song
- Department of Obstetric and Gynecology, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - LianYun Wang
- Department of Obstetric and Gynecology, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - KeNing Zhou
- Department of Obstetric and Gynecology, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Shu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), NO.1, banshangdong Road, Gongshu District, 310000, Hangzhou, China.
| |
Collapse
|
13
|
Gladysheva J, Evnukova E, Kondakova E, Kulakova M, Efremov V. Neurulation in the posterior region of zebrafish, Danio rerio embryos. J Morphol 2021; 282:1437-1454. [PMID: 34233026 DOI: 10.1002/jmor.21396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/06/2022]
Abstract
The neural tube of amniotes is formed through different mechanisms that take place in the anterior and posterior regions and involve neural plate folding or mesenchymal condensation followed by its cavitation. Meanwhile, in teleost trunk region, the neural plate forms the neural keel, while the lumen develops later. However, the data on neurulation and other morphogenetic processes in the posterior body region in Teleostei remain fragmentary. We proposed that there could be variations in the morphogenetic processes, such as cell shape changes and cell rearrangements, in the posterior region compared to the anterior one at the different stages. Here, we performed morphological and histochemical analyses of morphogenetic processes with an emphasis on neurulation in the zebrafish tail bud (TB) and posterior region. To analyze the posterior expression of sox2 and tbxta we performed whole mount in situ hybridization. We showed that the TB cells of variable shapes and orientation are tightly packed, and the neural and notochord primordia develop first. The shape of the neural primordium undergoes numerous changes as a result of cell rearrangements leading to the development of the neural rod. At the prim-6 stage, the cells of the neural primordium directly form the neural rod. The neuroepithelial cells undergo sequential shape changes. At the stage of the neural rod formation, the apical regions of triangular neuroepithelial cells of the floor plate are enriched in F-actin. The neurocoel development onset is above the apical poles of neuroepithelial cells. The expression domains of sox2 and tbxta become more restricted during the development.
Collapse
Affiliation(s)
- Julia Gladysheva
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,The Scandinavia AVA-PETER Clinic, St. Petersburg, Russian Federation
| | - Evdokia Evnukova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Ekaterina Kondakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,Federal State Scientific Establishment "Berg State Research Institute on Lake and River Fisheries" (GosNIORH), St. Petersburg branch of VNIRO, Russian federal Research Institute of Fisheries and Oceanography, Moscow, Russian Federation
| | - Milana Kulakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Vladimir Efremov
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| |
Collapse
|
14
|
Williams SA, Pilbeam D. Homeotic change in segment identity derives the human vertebral formula from a chimpanzee-like one. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:283-294. [PMID: 34227681 DOI: 10.1002/ajpa.24356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES One of the most contentious issues in paleoanthropology is the nature of the last common ancestor of humans and our closest living relatives, chimpanzees and bonobos (panins). The numerical composition of the vertebral column has featured prominently, with multiple models predicting distinct patterns of evolution and contexts from which bipedalism evolved. Here, we study total numbers of vertebrae from a large sample of hominoids to quantify variation in and patterns of regional and total numbers of vertebrae in hominoids. MATERIALS AND METHODS We compile and study a large sample (N = 893) of hominoid vertebral formulae (numbers of cervical, thoracic, lumbar, sacral, caudal segments in each specimen) and analyze full vertebral formulae, total numbers of vertebrae, and super-regional numbers of vertebrae: presacral (cervical, thoracic, lumbar) vertebrae and sacrococcygeal vertebrae. We quantify within- and between-taxon variation using heterogeneity and similarity measures derived from population genetics. RESULTS We find that humans are most similar to African apes in total and super-regional numbers of vertebrae. Additionally, our analyses demonstrate that selection for bipedalism reduced variation in numbers of vertebrae relative to other hominoids. DISCUSSION The only proposed ancestral vertebral configuration for the last common ancestor of hominins and panins that is consistent with our results is the modal formula demonstrated by chimpanzees and bonobos (7 cervical-13 thoracic-4 lumbar-6 sacral-3 coccygeal). Hox gene expression boundaries suggest that a rostral shift in Hox10/Hox11-mediated complexes could produce the human modal formula from the proposal ancestral and panin modal formula.
Collapse
Affiliation(s)
- Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, USA.,New York Consortium in Evolutionary Primatology, New York, USA
| | - David Pilbeam
- Department of Human Evolutionary Biology, Harvard University, Cambridge, USA
| |
Collapse
|
15
|
Abstract
The axial skeleton of all vertebrates is composed of individual units known as vertebrae. Each vertebra has individual anatomical attributes, yet they can be classified in five different groups, namely cervical, thoracic, lumbar, sacral and caudal, according to shared characteristics and their association with specific body areas. Variations in vertebral number, size, morphological features and their distribution amongst the different regions of the vertebral column are a major source of the anatomical diversity observed among vertebrates. In this review I will discuss the impact of those variations on the anatomy of different vertebrate species and provide insights into the genetic origin of some remarkable morphological traits that often serve to classify phylogenetic branches or individual species, like the long trunks of snakes or the long necks of giraffes.
Collapse
|
16
|
Giammona FF. Form and function of the caudal fin throughout the phylogeny of fishes. Integr Comp Biol 2021; 61:550-572. [PMID: 34114010 DOI: 10.1093/icb/icab127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Fishes are the longest persisting living vertebrates and as such, display an incredible array of diversity. Variation in the tail, or caudal fin, is often a reflection of a fish's environment, and affects movement, predation, defense, and reproduction. Previous literature has discussed many aspects of caudal fin form and function in particular taxonomic groups; however, no previous work has synthesized these studies in order to detail how the caudal fin is structured, and what purpose this structure serves, throughout the phylogeny of fishes. This review examines the caudal fin throughout the main lineages of fish evolution, and highlights where changes in shape and usage have occurred. Such novelties in form and function tend to have far-reaching evolutionary consequences. Through integration of past and present work, this review creates a coherent picture of caudal fin evolution. Patterns and outliers that demonstrate how form and function of this appendage are intertwined can further inform hypotheses that fill critical gaps in knowledge concerning the caudal fin.
Collapse
|
17
|
Ye Z, Braden CR, Wills A, Kimelman D. Identification of in vivo Hox13-binding sites reveals an essential locus controlling zebrafish brachyury expression. Development 2021; 148:268973. [PMID: 34061173 DOI: 10.1242/dev.199408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
During early embryogenesis, the vertebrate embryo extends from anterior to posterior because of the progressive addition of cells from a posteriorly localized neuromesodermal progenitor (NMp) population. An autoregulatory loop between Wnt and Brachyury/Tbxt is required for NMps to retain mesodermal potential and, hence, normal axis development. We recently showed that Hox13 genes help to support body axis formation and to maintain the autoregulatory loop, although the direct Hox13 target genes were unknown. Here, using a new method for identifying in vivo transcription factor-binding sites, we identified more than 500 potential Hox13 target genes in zebrafish. Importantly, we found two highly conserved Hox13-binding elements far from the tbxta transcription start site that also contain a conserved Tcf7/Lef1 (Wnt response) site. We show that the proximal of the two elements is sufficient to confer somitogenesis-stage expression to a tbxta promoter that, on its own, only drives NMp expression during gastrulation. Importantly, elimination of this proximal element produces shortened embryos due to aberrant formation of the most posterior somites. Our study provides a potential direct connection between Hox13 and regulation of the Wnt/Brachyury loop.
Collapse
Affiliation(s)
- Zhi Ye
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Christopher R Braden
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Andrea Wills
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| |
Collapse
|
18
|
Proks P, Johansen TM, Nývltová I, Komenda D, Černochová H, Vignoli M. Vertebral Formulae and Congenital Vertebral Anomalies in Guinea Pigs: A Retrospective Radiographic Study. Animals (Basel) 2021; 11:ani11030589. [PMID: 33668174 PMCID: PMC7995982 DOI: 10.3390/ani11030589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Guinea pigs are popular pets, but there is still a lack of information about their morphology. Variable morphology of the vertebral column can lead to incorrect localization of spinal diseases or the site of surgical intervention. This study aimed to determine the numerical variants of vertebral column and prevalence, localization, and type of congenital anomalies of the vertebral column. Vertebral column radiographs were reviewed in 240 guinea pigs, and nine numerical variants of the vertebral column were noticed. The most common vertebral formula, seven cervical, 13 thoracic, six lumbar, four sacral, and five to seven caudal vertebrae, was found in 75% of guinea pigs. Congenital anomalies were also found as incidental findings in 12.5% of guinea pigs, mostly in the thoracolumbar and lumbosacral regions. The most common congenital anomalies were a variable morphology of the last pair of ribs in the thoracolumbar region and transitional vertebra with a mixed morphological characteristic of lumbar and sacral vertebrae in the lumbosacral region. The cervical region was the least common region for congenital anomalies of the vertebral column. Our results contribute to the knowledge of clinical morphology in guinea pigs applicable in both, research and clinical practice. Abstract The objectives of this retrospective study of 240 guinea pigs (148 females and 92 males) were to determine the prevalence of different vertebral formulae and the type and anatomical localization of congenital vertebral anomalies (CVA). Radiographs of the cervical (C), thoracic (Th), lumbar (L), sacral (S), and caudal (Cd) part of the vertebral column were reviewed. Morphology and number of vertebrae in each segment of the vertebral column and type and localization of CVA were recorded. In 210/240 guinea pigs (87.50%) with normal vertebral morphology, nine vertebral formulae were found with constant number of C but variable number of Th, L, and S vertebrae: C7/Th13/L6/S4/Cd5-7 (75%), C7/Th13/L6/S3/Cd6-7 (4.17%), C7/Th13/L5/S4/Cd6-7 (2.50%), C7/Th13/L6/S5/Cd5-6 (1.67%), C7/Th12/L6/S4/Cd6 (1.25%), C7/Th13/L7/S4/Cd6 (1.25%), C7/Th13/L7/S3/Cd6-7 (0.83%), C7/Th12/L7/S4/Cd5 (0.42%), C7/Th13/L5/S5/Cd7 (0.42%). CVA were found in 30/240 (12.5%) of guinea pigs, mostly as a transitional vertebra (28/30), which represents 100% of single CVA localised in cervicothoracic (n = 1), thoracolumbar (n = 22) and lumbosacral segments (n = 5). Five morphological variants of thoracolumbar transitional vertebrae (TTV) were identified. Two (2/30) guinea pigs had a combination of CVA: cervical block vertebra and TTV (n = 1) and TTV and lumbosacral transitional vertebra (LTV) (n = 1). These findings suggest that guinea pigs’ vertebral column displays more morphological variants with occasional CVA predominantly transitional vertebrae.
Collapse
Affiliation(s)
- Pavel Proks
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (T.M.J.); (I.N.); (D.K.)
- Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic
- Correspondence:
| | - Trude Maria Johansen
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (T.M.J.); (I.N.); (D.K.)
| | - Ivana Nývltová
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (T.M.J.); (I.N.); (D.K.)
| | - Dominik Komenda
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (T.M.J.); (I.N.); (D.K.)
| | - Hana Černochová
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Massimo Vignoli
- Faculty of Veterinary Medicine, University of Teramo, Piano D’Accio, 64100 Teramo, Italy;
| |
Collapse
|
19
|
Sox2 and Canonical Wnt Signaling Interact to Activate a Developmental Checkpoint Coordinating Morphogenesis with Mesoderm Fate Acquisition. Cell Rep 2020; 33:108311. [PMID: 33113369 PMCID: PMC7653682 DOI: 10.1016/j.celrep.2020.108311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Animal embryogenesis requires a precise coordination between morphogenesis and cell fate specification. During mesoderm induction, mesodermal fate acquisition is tightly coordinated with the morphogenetic process of epithelial-to-mesenchymal transition (EMT). In zebrafish, cells exist transiently in a partial EMT state during mesoderm induction. Here, we show that cells expressing the transcription factor Sox2 are held in the partial EMT state, stopping them from completing the EMT and joining the mesoderm. This is critical for preventing the formation of ectopic neural tissue. The mechanism involves synergy between Sox2 and the mesoderm-inducing canonical Wnt signaling pathway. When Wnt signaling is inhibited in Sox2-expressing cells trapped in the partial EMT, cells exit into the mesodermal territory but form an ectopic spinal cord instead of mesoderm. Our work identifies a critical developmental checkpoint that ensures that morphogenetic movements establishing the mesodermal germ layer are accompanied by robust mesodermal cell fate acquisition.
Collapse
|
20
|
Li C, Cui J, Zou L, Zhu L, Wei W. Bioinformatics analysis of the expression of HOXC13 and its role in the prognosis of breast cancer. Oncol Lett 2019; 19:899-907. [PMID: 31897205 PMCID: PMC6924138 DOI: 10.3892/ol.2019.11140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
The homeobox (HOX) genes, a class of transcription factors, are known to promote embryonic development and induce tumor formation. To date, the HOXA and HOXB gene families have been reported to be associated with breast cancer. However, the expression and exact role of homeobox C13 (HOXC13) in breast cancer has not yet been investigated. In the present study, the HOXC13 expression in human breast cancer was evaluated using the Oncomine database and Cancer Cell Line Encyclopedia (CCLE). Next, the Gene expression-based Outcome for Breast cancer online database, cBioportal, University of California Santa Cruz Xena browser and bc-GenExMinerv were used to explore the specific expression of HOXC13 in breast cancer. The methylation and mutation status of HOXC13 in breast cancer was then validated using the CCLE and cBioportal databases. Finally, the co-expression of HOX transcript antisense RNA (HOTAIR) and HOXC13 in breast cancer were analyzed and their impact on clinical prognosis determined. It was found that the expression of HOXC13 was high in breast cancer compared with other types of cancer, such as gastric cancer and colon cancer. Following co-expression analysis, a significant positive association was identified between HOTAIR and HOXC13. An association between HOTAIR and HOXC13, and lymph node and distant metastasis recurrence was also revealed during the development of breast cancer. Of note, survival analysis showed that high expression of HOTAIR and HOXC13 predicted poor prognosis. These findings revealed that HOXC13 plays an important role in the progression of breast cancer. However, the specific mechanism needs to be confirmed by subsequent experiments.
Collapse
Affiliation(s)
- Changyou Li
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Junwei Cui
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Li Zou
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Lizhang Zhu
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Wei Wei
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|