1
|
Yokoyama H, Moreno-Andrés D, Takizawa K, Chu Z, Scheufen A, Funabashi T, Ma J, Antonin W, Gruss OJ, Haramoto Y. SART1 uniquely localizes to spindle poles forming a SART1 cap and promotes spindle pole assembly. J Biol Chem 2025; 301:108561. [PMID: 40320072 DOI: 10.1016/j.jbc.2025.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/27/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
The nuclear protein squamous cell carcinoma antigen recognized by T cells 1 (SART1) has been associated with pre-mRNA splicing, but SART1 RNAi knockdown results also in defects in mitotic progression, centrosome biogenesis, and chromosome cohesion. The mitotic roles of SART1 have not been characterized in detail, and it remains unclear whether SART1 functions in mitosis directly or indirectly via pre-mRNA splicing. Here, we identify SART1 as a direct, mitosis-specific microtubule-associated protein. SART1 downregulation in human cells leads to spindle assembly defects with reduced microtubule dynamics, end-on attachment defects, and checkpoint activation, while microtubule dynamics remain unaffected in interphase. SART1 uniquely localizes to the distal surface of mitotic centrosomes along the spindle axis, forming a previously not described structure we refer to as SART1 cap. Immunoprecipitation of SART1 consistently identifies centrosomal proteins as interaction partners. Immunostaining of these shows that SART1 downregulation does not affect centriole duplication and centrosome accumulation of γ-tubulin but reduces the accumulation of selective pericentriolar material (PCM) proteins such as ninein. Depletion of SART1 from frog egg extracts disrupts spindle pole assembly around sperm nuclei and DNA-coated beads. Spindles formed around DNA-coated beads do not contain centrosomes but still recruit PCM proteins for spindle pole assembly. We finally show that the N-terminus of SART1 is its microtubule-binding region and is essential for spindle assembly. Our data unravel a unique localization of SART1 and its novel function to recruit selective PCM proteins for spindle pole assembly in centrosomal and acentrosomal spindle assembly.
Collapse
Affiliation(s)
- Hideki Yokoyama
- National Institute of Technology, Ibaraki College, Hitachinaka, Japan.
| | - Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | | | - Zhenzhen Chu
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Tsumugi Funabashi
- National Institute of Technology, Ibaraki College, Hitachinaka, Japan
| | - Jian Ma
- ID Pharma Co. Ltd, Tsukuba, Japan
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Oliver J Gruss
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Yoshikazu Haramoto
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan; Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, Tokyo, Japan
| |
Collapse
|
2
|
Mukhamedova F, Mukhamedov F. Stability and robustness of kinetochore dynamics under sudden perturbations and stochastic influences. Sci Rep 2025; 15:14883. [PMID: 40295768 PMCID: PMC12038042 DOI: 10.1038/s41598-025-98415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Understanding the dynamic behavior of kinetochores is crucial for understanding the mechanisms of accurate chromosome segregation during cell division. In this study, we introduced non-linear exponents p and q into two new systems to capture the complex movements that govern the intersister movement of kinetochores during chromosome segregation. Our analysis revealed a power-law relationship between these exponents and the maximum amplitude A of sister kinetochore 2, indicating that even small adjustments in p and q lead to significant changes in kinetochore movement. This sensitivity suggests that kinetochore dynamics are governed by scale-invariant principles, potentially reflecting intrinsic properties of the kinetochore-microtubule interface such as motor protein activity. We observed that the Type II model with perturbation functions, demonstrated stability with rapidly dampening oscillations across various forms of noise and sudden shocks. This highlights the effectiveness of adaptable regulatory mechanisms in maintaining stability during mitosis. In contrast, the Type I model without such regulatory parameters exhibited sustained, bounded oscillations that did not dampen over time and showed significant fragility under stochastic noise, potentially compromising chromosome segregation fidelity. Our findings highlight the role of the exponents p and q in modulating kinetochore behavior and suggest that enhancing or mimicking these regulatory mechanisms could be a potential strategy for improving cell division fidelity as shown in our theoretical work.
Collapse
Affiliation(s)
| | - Farrukh Mukhamedov
- Department of Mathematical Sciences, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
brown TJ, Pichurin J, Parrado CR, Kabeche L, Baserga SJ. A role for the kinetochore protein, NUF2, in ribosome biogenesis. Mol Biol Cell 2025; 36:ar16. [PMID: 39705402 PMCID: PMC11809303 DOI: 10.1091/mbc.e24-08-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024] Open
Abstract
Ribosome biogenesis (RB) is an intricate and evolutionarily conserved process that takes place mainly in the nucleolus and is required for eukaryotic cells to maintain homeostasis, grow in size, and divide. Our laboratory has identified the NUF2 protein, part of the mitotic kinetochore, in a genome-wide siRNA screen for proteins required for making ribosomes in MCF10A human breast epithelial cells. After rigorous validation and using several biochemical and cell-based assays, we find a role for NUF2 in pre-rRNA transcription, the primary and rate-limiting step of RB. siRNA depletion of other components of the NUF2 kinetochore sub-complex, NDC80, SPC24, and SPC25, also reduce pre-rRNA transcription. Interestingly, essential protein components for pre-rRNA transcription, including the largest subunit of RNA polymerase I, POLR1A, are reduced upon siRNA depletion of NUF2 and its protein partners. Their reduced levels are a likely mechanism for the decrease in pre-rRNA transcription. siRNA depletion of NUF2 and NDC80 also cause increased TP53 and CDKN1A (p21) mRNA levels, which can be restored by codepletion of RPL5, indicating activation of the nucleolar stress pathway (NSP). These results reveal a new connection between proteins with a known role in mitosis to the function of the nucleolus in RB during interphase.
Collapse
Affiliation(s)
- ty j. brown
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Jennifer Pichurin
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Carlos Ramirez Parrado
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Yale Cancer Biology Institute, Yale University and the Yale School of Medicine, West Haven, 06516 CT
| | - Susan J. Baserga
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Therapeutic Radiology, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| |
Collapse
|
4
|
Mishra PK, Au WC, Castineira PG, Ali N, Stanton J, Boeckmann L, Takahashi Y, Costanzo M, Boone C, Bloom KS, Thorpe PH, Basrai MA. Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability. Mol Biol Cell 2023; 34:ar99. [PMID: 37436802 PMCID: PMC10551700 DOI: 10.1091/mbc.e23-03-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Centromere (CEN) identity is specified epigenetically by specialized nucleosomes containing evolutionarily conserved CEN-specific histone H3 variant CENP-A (Cse4 in Saccharomyces cerevisiae, CENP-A in humans), which is essential for faithful chromosome segregation. However, the epigenetic mechanisms that regulate Cse4 function have not been fully defined. In this study, we show that cell cycle-dependent methylation of Cse4-R37 regulates kinetochore function and high-fidelity chromosome segregation. We generated a custom antibody that specifically recognizes methylated Cse4-R37 and showed that methylation of Cse4 is cell cycle regulated with maximum levels of methylated Cse4-R37 and its enrichment at the CEN chromatin occur in the mitotic cells. Methyl-mimic cse4-R37F mutant exhibits synthetic lethality with kinetochore mutants, reduced levels of CEN-associated kinetochore proteins and chromosome instability (CIN), suggesting that mimicking the methylation of Cse4-R37 throughout the cell cycle is detrimental to faithful chromosome segregation. Our results showed that SPOUT methyltransferase Upa1 contributes to methylation of Cse4-R37 and overexpression of UPA1 leads to CIN phenotype. In summary, our studies have defined a role for cell cycle-regulated methylation of Cse4 in high-fidelity chromosome segregation and highlight an important role of epigenetic modifications such as methylation of kinetochore proteins in preventing CIN, an important hallmark of human cancers.
Collapse
Affiliation(s)
- Prashant K. Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Pedro G. Castineira
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nazrin Ali
- Queen Mary University of London, E1 4NS, UK
| | - John Stanton
- University of North Carolina, Chapel Hill, NC 27599
| | - Lars Boeckmann
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yoshimitsu Takahashi
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | | | - Munira A. Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
5
|
A review on regulation of cell cycle by extracellular matrix. Int J Biol Macromol 2023; 232:123426. [PMID: 36708893 DOI: 10.1016/j.ijbiomac.2023.123426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The extracellular matrix (ECM) is a network of structural proteins, glycoproteins and proteoglycans that assists independent cells in aggregating and forming highly organized functional structures. ECM serves numerous purposes and is an essential component of tissue structure and functions. Initially, the role of ECM was considered to be confined to passive functions like providing mechanical strength and structural identity to tissues, serving as barriers and platforms for cells. The doors to understanding ECM's proper role in tissue functioning opened with the discovery of cellular receptors, integrins to which ECM components binds and influences cellular activities. Understanding and utilizing ECM's potential to control cellular function has become a topic of much interest in recent decades, providing different outlooks to study processes involved in developmental programs, wound healing and tumour progression. On another front, the regulatory mechanisms operating to prevent errors in the cell cycle have been topics of a titanic amount of studies. This is expected as many diseases, most infamously cancer, are associated with defects in their functioning. This review focuses on how ECM, through different methods, influences the progression of the somatic cell cycle and provides deeper insights into molecular mechanisms of functional communication between adhesion complex, signalling pathways and cell cycle machinery.
Collapse
|
6
|
Hinshaw SM, Quan Y, Cai J, Zhou AL, Zhou H. Multi-site phosphorylation of yeast Mif2/CENP-C promotes inner kinetochore assembly. Curr Biol 2023; 33:688-696.e6. [PMID: 36736323 PMCID: PMC9992315 DOI: 10.1016/j.cub.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Kinetochores control eukaryotic chromosome segregation by connecting chromosomal centromeres to spindle microtubules. Duplication of centromeric DNA necessitates kinetochore disassembly and subsequent reassembly on nascent sisters. To search for a regulatory mechanism that controls the earliest steps of this process, we studied Mif2/CENP-C, an essential basal component of the kinetochore. We found that phosphorylation of a central region of Mif2 (Mif2-PEST) enhances inner kinetochore assembly. Eliminating Mif2-PEST phosphorylation sites progressively impairs cellular fitness. The most severe Mif2-PEST mutations are lethal in cells lacking otherwise non-essential inner kinetochore factors. These data show that multi-site phosphorylation of Mif2/CENP-C controls inner kinetochore assembly.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Stanford Cancer Institute, Stanford School of Medicine, 1291 Welch Road, Stanford, CA 94305, USA.
| | - Yun Quan
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA
| | - Jiaxi Cai
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA
| | - Ann L Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA.
| |
Collapse
|
7
|
Zhao Y, Yang J, Lu D, Zhu Y, Liao K, Tian Y, Yin R. The Loss-Function of KNL1 Causes Oligospermia and Asthenospermia in Mice by Affecting the Assembly and Separation of the Spindle through Flow Cytometry and Immunofluorescence. SENSORS (BASEL, SWITZERLAND) 2023; 23:2571. [PMID: 36904774 PMCID: PMC10007211 DOI: 10.3390/s23052571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
KNL1 (kinetochore scaffold 1) has attracted much attention as one of the assembly elements of the outer kinetochore, and the functions of its different domains have been gradually revealed, most of which are associated with cancers, but few links have been made between KNL1 and male fertility. Here, we first linked KNL1 to male reproductive health and the loss-function of KNL1 resulted in oligospermia and asthenospermia in mice (an 86.5% decrease in total sperm number and an 82.4% increase in static sperm number, respectively) through CASA (computer-aided sperm analysis). Moreover, we introduced an ingenious method to pinpoint the abnormal stage in the spermatogenic cycle using flow cytometry combined with immunofluorescence. Results showed that 49.5% haploid sperm was reduced and 53.2% diploid sperm was increased after the function of KNL1 was lost. Spermatocytes arrest was identified at the meiotic prophase I of spermatogenesis, which was induced by the abnormal assembly and separation of the spindle. In conclusion, we established an association between KNL1 and male fertility, providing a guide for future genetic counseling regarding oligospermia and asthenospermia, and a powerful method for further exploring spermatogenic dysfunction by utilizing flow cytometry and immunofluorescence.
Collapse
Affiliation(s)
- Yuwei Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
- Shanghai WeHealth BioMedical Technology Co., Ltd., Shanghai 201318, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
| | - Yijian Zhu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
| | - Kai Liao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
| | - Yafei Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
- Shanghai WeHealth BioMedical Technology Co., Ltd., Shanghai 201318, China
| | - Rui Yin
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
- Reproductive Medicine Research Center, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Ren M, Zhao H, Gao Y, Chen Q, Zhao X, Yue W. NUF2 promotes tumorigenesis by interacting with HNRNPA2B1 via PI3K/AKT/mTOR pathway in ovarian cancer. J Ovarian Res 2023; 16:17. [PMID: 36670423 PMCID: PMC9862784 DOI: 10.1186/s13048-023-01101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the commonest and deadliest diseases that threaten the health of women worldwide. It is essential to find out its pathogenic mechanisms and therapeutic targets for OC patients. Although NUF2 (Ndc80 kinetochore complex component) has been suggested to play an important role in the development of many cancers, but little is known about its function and the roles of proteins that regulate NUF2 in OC. This study aimed to investigate the effect of NUF2 on the tumorigenicity of OC and the activities of proteins that interact with NUF2. METHODS Oncomine database and immunohistochemical (IHC) staining were used to evaluate the expression of NUF2 in OC tissues and normal tissues respectively. Normal ovarian epithelial cell lines (HOSEpiC) and OC cell lines (OVCAR3、HEY、SKOV3) were cultured. Western blot was applied to analyze the expression of NUF2 in these cell lines. Small interfering RNA (siRNA) was used to silence the expression of NUF2 in OC cell lines, SKOV3 and HEY. Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), the CCK-8 method, colony formation assay and flow cytometry were conducted to analyze the biological functions of NUF2 in vitro. OC subcutaneous xenograft tumor models were used for in vivo tests. Immunoprecipitation and mass spectrometry (IP/MS) were performed to verify the molecular mechanisms of NUF2 in OC. IP, immunofluorescence, IHC staining, and Gene Expression Profiling Interactive Analysis platform (GEPIA) were used to analyze the relationship between HNRNPA2B1 and NUF2 in OC cells. SiRNA was used to silence the expression of HNRNPA2B1 in SKOV3 cells, reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay and western blot were used to detect the effect of HNRNPA2B1 on NUF2. GEPIA, The Cancer Genome Atlas (TCGA) database, GSEA and western blot were used to detect the potential signaling pathways related to the roles of HNRNPA2B1 and NUF2 in OC cells. RESULTS Our results showed high NUF2 expression in OC tissues and OC cell lines, which was associated with shorter overall survival and progression-free survival in patients. NUF2 depletion by siRNA suppressed the proliferation abilities and induced cell apoptosis of OC cells in vitro, and impeded OC growth in vivo. Mechanistically, NUF2 interacted with HNRNPA2B1 and activated the PI3K/AKT/mTOR signaling pathway in OC cells. CONCLUSION NUF2 could serve as a prognostic biomarker, and regulated the carcinogenesis and progression of OC. Moreover, NUF2 may interact with HNRNPA2B1 by activating the PI3K/AKT/mTOR signaling pathway to promote the development of OC cells. Our present study supported the key role of NUF2 in OC and suggested its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Meng Ren
- grid.24696.3f0000 0004 0369 153XCentral Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026 People’s Republic of China
| | - Hongyu Zhao
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110 USA
| | - Yan Gao
- grid.24696.3f0000 0004 0369 153XCentral Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026 People’s Republic of China
| | - Qi Chen
- grid.24696.3f0000 0004 0369 153XCentral Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026 People’s Republic of China
| | - Xiaoting Zhao
- grid.24696.3f0000 0004 0369 153XCentral Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026 People’s Republic of China
| | - Wentao Yue
- grid.24696.3f0000 0004 0369 153XCentral Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026 People’s Republic of China
| |
Collapse
|
9
|
Cui Z, Du L, Wang J, Li Z, Xu J, Ou S, Li D, Li S, Hu H, Chen G, Wu Z. Overexpression of CENPL mRNA potentially regulated by miR-340-3p predicts the prognosis of pancreatic cancer patients. BMC Cancer 2022; 22:1354. [PMID: 36572856 PMCID: PMC9793567 DOI: 10.1186/s12885-022-10450-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In our previous study it was found that CENPL was overexpressed in hepatocellular carcinoma and significantly predicted patient's prognosis. However, the expression and prognostic value of CENPL in other gastrointestinal tumors remain unknown. Therefore, we investigated the expression and prognostic value of CENPL in esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), pancreatic adenocarcinoma (PAAD), colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ). METHODS In this study, Oncomine, GEPIA, OncoLnc, TIMER, cBioPortal, miRWalk and ENCORI databases were used to analyze the level of CENPL mRNA, prognostic value and potential regulatory mechanism of CENPL mRNA in tumors. The CENPL expression and clinicopathological data regarding PAAD were from the UCSC Xena database and univariate and multivariate Cox regression analyses were performed using R (Version 3.6.3). Immunohistochemical staining was used to verify the expression of CENPL protein in clinical specimens. Cytoscape (Version: 3.7.2) was used to visualize microRNA (miRNA) that potentially regulates CENPL. RESULTS Gene differential expression analysis showed that CENPL mRNA was significantly overexpressed in ESCA, STAD, PAAD, COAD and READ (p < 0.01). The overexpression of CENPL mRNA was significantly correlated with the poor prognosis of PAAD patients (p < 0.05). However, there was no significant correlation between the level of CENPL mRNA and the prognosis of ESCA, STAD, COAD and READ patients (p > 0.05). Univariate and multivariate Cox regression analyses suggested that CENPL was a prognostic risk factor for PAAD. The mutation rate of CENPL in PAAD was 2.2% (17/850). There was no significant correlation between the CENPL expression and the infiltration levels of immune cells in PAAD (|Cor|< 0.5). Immunohistochemical staining showed that CENPL was overexpressed in 42% (11/26) of PAAD specimens, which was significantly higher compared with that in the normal tissues. The expression of miR-340-3p and miR-484 in PAAD were significantly lower than in the normal tissues (p < 0.05) and PAAD patients with lower expression of miR-340-3p had poorer prognosis (p < 0.05). CONCLUSION CENPL potentially regulated by miR-340-3p, is overexpressed in PAAD and predicts patient's prognosis, suggestive of a diagnostic and prognostic value in PAAD patients.
Collapse
Affiliation(s)
- Zhongyuan Cui
- grid.12955.3a0000 0001 2264 7233Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital), Xiamen University, Fuzhou, 350025 Fujian China
| | - Ling Du
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Jielong Wang
- grid.12955.3a0000 0001 2264 7233Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital), Xiamen University, Fuzhou, 350025 Fujian China ,grid.256112.30000 0004 1797 9307Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force, Fujian Medical University, Fuzhou, 350025 Fujian China
| | - Zhongzhuan Li
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Jiehong Xu
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Shiyu Ou
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Dongliang Li
- grid.12955.3a0000 0001 2264 7233Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital), Xiamen University, Fuzhou, 350025 Fujian China ,grid.256112.30000 0004 1797 9307Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force, Fujian Medical University, Fuzhou, 350025 Fujian China
| | - Shasha Li
- grid.12955.3a0000 0001 2264 7233Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital), Xiamen University, Fuzhou, 350025 Fujian China ,grid.256112.30000 0004 1797 9307Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force, Fujian Medical University, Fuzhou, 350025 Fujian China
| | - Hanfang Hu
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Gang Chen
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Zhixian Wu
- grid.12955.3a0000 0001 2264 7233Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital), Xiamen University, Fuzhou, 350025 Fujian China ,grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| |
Collapse
|
10
|
Geoghegan V, Carnielli JBT, Jones NG, Saldivia M, Antoniou S, Hughes C, Neish R, Dowle A, Mottram JC. CLK1/CLK2-driven signalling at the Leishmania kinetochore is captured by spatially referenced proximity phosphoproteomics. Commun Biol 2022; 5:1305. [PMID: 36437406 PMCID: PMC9701682 DOI: 10.1038/s42003-022-04280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Kinetochores in the parasite Leishmania and related kinetoplastids appear to be unique amongst eukaryotes and contain protein kinases as core components. Using the kinetochore kinases KKT2, KKT3 and CLK2 as baits, we developed a BirA* proximity biotinylation methodology optimised for sensitivity, XL-BioID, to investigate the composition and function of the Leishmania kinetochore. We could detect many of the predicted components and also discovered two novel kinetochore proteins, KKT24 and KKT26. Using KKT3 tagged with a fast-acting promiscuous biotin ligase variant, we took proximity biotinylation snapshots of the kinetochore in synchronised parasites. To quantify proximal phosphosites at the kinetochore as the parasite progressed through the cell cycle, we further developed a spatially referenced proximity phosphoproteomics approach. This revealed a group of phosphosites at the kinetochore that were highly dynamic during kinetochore assembly. We show that the kinase inhibitor AB1 targets CLK1/CLK2 (KKT10/KKT19) in Leishmania leading to defective cytokinesis. Using AB1 to uncover CLK1/CLK2 driven signalling pathways important for kinetochore function at G2/M, we found a set of 16 inhibitor responsive kinetochore-proximal phosphosites. Our results exploit new proximity labelling approaches to provide a direct analysis of the Leishmania kinetochore, which is emerging as a promising drug target.
Collapse
Affiliation(s)
- Vincent Geoghegan
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Juliana B. T. Carnielli
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Nathaniel G. Jones
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Manuel Saldivia
- grid.418424.f0000 0004 0439 2056Novartis Institute for Tropical Diseases, Emeryville, CA USA
| | - Sergios Antoniou
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Charlotte Hughes
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Rachel Neish
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Adam Dowle
- grid.5685.e0000 0004 1936 9668Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD UK
| | - Jeremy C. Mottram
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| |
Collapse
|
11
|
Archambault V, Li J, Emond-Fraser V, Larouche M. Dephosphorylation in nuclear reassembly after mitosis. Front Cell Dev Biol 2022; 10:1012768. [PMID: 36268509 PMCID: PMC9576876 DOI: 10.3389/fcell.2022.1012768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In most animal cell types, the interphase nucleus is largely disassembled during mitotic entry. The nuclear envelope breaks down and chromosomes are compacted into separated masses. Chromatin organization is also mostly lost and kinetochores assemble on centromeres. Mitotic protein kinases play several roles in inducing these transformations by phosphorylating multiple effector proteins. In many of these events, the mechanistic consequences of phosphorylation have been characterized. In comparison, how the nucleus reassembles at the end of mitosis is less well understood in mechanistic terms. In recent years, much progress has been made in deciphering how dephosphorylation of several effector proteins promotes nuclear envelope reassembly, chromosome decondensation, kinetochore disassembly and interphase chromatin organization. The precise roles of protein phosphatases in this process, in particular of the PP1 and PP2A groups, are emerging. Moreover, how these enzymes are temporally and spatially regulated to ensure that nuclear reassembly progresses in a coordinated manner has been partly uncovered. This review provides a global view of nuclear reassembly with a focus on the roles of dephosphorylation events. It also identifies important open questions and proposes hypotheses.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Vincent Archambault,
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
GRANT Motif Regulates CENP-A Incorporation and Restricts RNA Polymerase II Accessibility at Centromere. Genes (Basel) 2022; 13:genes13101697. [PMID: 36292582 PMCID: PMC9602348 DOI: 10.3390/genes13101697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Precise chromosome segregation is essential for maintaining genomic stability, and its proper execution centers on the centromere, a chromosomal locus that mounts the kinetochore complex to mediate attachment of chromosomes to the spindle microtubules. The location of the centromere is epigenetically determined by a centromere-specific histone H3 variant, CENP-A. Many human cancers exhibit overexpression of CENP-A, which correlates with occurrence of aneuploidy in these malignancies. Centromeric targeting of CENP-A depends on its histone fold, but recent studies showed that the N-terminal tail domain (NTD) also plays essential roles. Here, we investigated implications of NTD in conferring aneuploidy formation when CENP-A is overexpressed in fission yeast. A series of mutant genes progressively lacking one amino acid of the NTD have been constructed for overexpression in wild-type cells using the intermediate strength nmt41 promoter. Constructs hosting disrupted GRANT (Genomic stability-Regulating site within CENP-A N-Terminus) motif in NTD results in growth retardation, aneuploidy, increased localization to the centromere, upregulated RNA polymerase II accessibility and transcriptional derepression of the repressive centromeric chromatin, suggesting that GRANT residues fine-tune centromeric CENP-A incorporation and restrict RNA polymerase II accessibility. This work highlighted the importance of CENP-A NTD, particularly the GRANT motif, in aneuploidy formation of overexpressed CENP-A in fission yeast.
Collapse
|
13
|
Navarro AP, Cheeseman IM. Dynamic cell cycle-dependent phosphorylation modulates CENP-L-CENP-N centromere recruitment. Mol Biol Cell 2022; 33:ar87. [PMID: 35830614 PMCID: PMC9582625 DOI: 10.1091/mbc.e22-06-0239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The kinetochore is a macromolecular structure that is needed to ensure proper chromosome segregation during each cellular division. The kinetochore is assembled upon a platform of the 16-subunit constitutive centromere-associated network (CCAN), which is present at centromeres throughout the cell cycle. The nature and regulation of CCAN assembly, interactions, and dynamics needed to facilitate changing centromere properties and requirements remain to be fully elucidated. The CENP-LN complex is a CCAN component that displays unique cell cycle–dependent localization behavior, peaking in the S phase. Here, we demonstrate that phosphorylation of CENP-L and CENP-N controls CENP-LN complex formation and localization in a cell cycle–dependent manner. Mimicking constitutive phosphorylation of either CENP-L or CENP-N or simultaneously preventing phosphorylation of both proteins prevents CENP-LN localization and disrupts chromosome segregation. Our work suggests that cycles of phosphorylation and dephosphorylation are critical for CENP-LN complex recruitment and dynamics at kinetochores to enable cell cycle–dependent CCAN reorganization.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
14
|
Mikdache A, Boueid MJ, Lesport E, Delespierre B, Loisel-Duwattez J, Degerny C, Tawk M. Timely Schwann cell division drives peripheral myelination in vivo via the laminin/cAMP pathway. Development 2022; 149:276236. [DOI: 10.1242/dev.200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Schwann cells (SCs) migrate along peripheral axons and divide intensively to generate the right number of cells prior to axonal ensheathment; however, little is known regarding the temporal and molecular control of their division and its impact on myelination. We report that Sil, a spindle pole protein associated with autosomal recessive primary microcephaly, is required for temporal mitotic exit of SCs. In sil-deficient cassiopeia (csp−/−) mutants, SCs fail to radially sort and myelinate peripheral axons. Elevation of cAMP, but not Rac1 activity, in csp−/− restores myelin ensheathment. Most importantly, we show a significant decrease in laminin expression within csp−/− posterior lateral line nerve and that forcing Laminin 2 expression in csp−/− fully restores the ability of SCs to myelinate. Thus, we demonstrate an essential role for timely SC division in mediating laminin expression to orchestrate radial sorting and peripheral myelination in vivo.
Collapse
Affiliation(s)
- Aya Mikdache
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Marie-José Boueid
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Emilie Lesport
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | | | | | - Cindy Degerny
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Marcel Tawk
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| |
Collapse
|
15
|
Yang K, Liang X, Wen K. Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 2022; 48:175. [PMID: 36004472 PMCID: PMC9478986 DOI: 10.3892/or.2022.8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Genomic instability, a feature of most cancers, contributes to malignant cell transformation and cancer progression due to the accumulation of genetic alterations. Genomic instability is reflected at numerous levels, from single nucleotide to the chromosome levels. However, the exact molecular mechanisms and regulators of genomic instability in cancer remain unclear. Growing evidence indicates that the binding of long non-coding RNAs (lncRNAs) to protein chaperones confers a variety of regulatory functions, including managing of genomic instability. The aim of the present review was to examine the roles of mitosis, telomeres, DNA repair, and epigenetics in genomic instability, and the mechanisms by which lncRNAs regulate them by binding proteins in cancer cells. This review contributes to our understanding of the role of lncRNAs and genomic instability in cancer and can potentially provide entry points and molecular targets for cancer therapies.
Collapse
Affiliation(s)
- Kai Yang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoxiang Liang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
16
|
Liu Y, Yao Y, Liao B, Zhang H, Yang Z, Xia P, Jiang X, Ma W, Wu X, Mei C, Wang G, Gao M, Xu K, GongYe X, Cheng Z, Jiang P, Chen X, Yuan Y. A positive feedback loop of CENPU/E2F6/E2F1 facilitates proliferation and metastasis via ubiquitination of E2F6 in hepatocellular carcinoma. Int J Biol Sci 2022; 18:4071-4087. [PMID: 35844791 PMCID: PMC9274498 DOI: 10.7150/ijbs.69495] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/05/2022] [Indexed: 11/10/2022] Open
Abstract
Centromere protein U (CENPU), a centromere-binding protein required for cellular mitosis, has been reported to be closely associated with carcinogenesis in multiple malignancies; however, the role of CENPU in hepatocellular carcinoma (HCC) is still unclear. Herein, we investigated its biological role and molecular mechanism in the development of HCC. High CENPU expression in HCC tissue was observed and correlated positively with a poor prognosis in HCC patients. CENPU knockdown inhibited the proliferation, metastasis, and G1/S transition of HCC cells in vivo and in vitro, while ectopic expression of CENPU exerted the opposite effects. Mechanistically, CENPU physically interacted with E2F6 and promoted its ubiquitin-mediated degradation, thus affecting the transcription level of E2F1 and further accelerating the G1/S transition to promote HCC cell proliferation. E2F1 directly binds to the CENPU promoter and increases the transcription of CENPU, thereby forming a positive regulatory loop. Collectively, our findings indicate a crucial role for CENPU in E2F1-mediated signalling for cell cycle progression and reveal a role for CENPU as a predictive biomarker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yingyi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Ye Yao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Bo Liao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Zhangshuo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Peng Xia
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xiaoling Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Chengjie Mei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Meng Gao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Kequan Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xiangdong GongYe
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Zhixiang Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Ping Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| |
Collapse
|
17
|
Abstract
In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of California, Davis, California, USA; ,
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
18
|
Herman JA, Arora S, Carter L, Zhu J, Biggins S, Paddison PJ. Functional dissection of human mitotic genes using CRISPR-Cas9 tiling screens. Genes Dev 2022; 36:495-510. [PMID: 35483740 PMCID: PMC9067404 DOI: 10.1101/gad.349319.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
In this Resource/Methodology, Herman et al. developed a method that leverages CRISPR–Cas9-induced mutations across protein-coding genes for the a priori identification of functional regions at the sequence level. As a test case, they applied this method to 48 human mitotic genes, revealing hundreds of regions required for cell proliferation, including domains that were experimentally characterized, ones that were predicted based on homology, and novel ones. The identity of human protein-coding genes is well known, yet our in-depth knowledge of their molecular functions and domain architecture remains limited by shortcomings in homology-based predictions and experimental approaches focused on whole-gene depletion. To bridge this knowledge gap, we developed a method that leverages CRISPR–Cas9-induced mutations across protein-coding genes for the a priori identification of functional regions at the sequence level. As a test case, we applied this method to 48 human mitotic genes, revealing hundreds of regions required for cell proliferation, including domains that were experimentally characterized, ones that were predicted based on homology, and novel ones. We validated screen outcomes for 15 regions, including amino acids 387–402 of Mad1, which were previously uncharacterized but contribute to Mad1 kinetochore localization and chromosome segregation fidelity. Altogether, we demonstrate that CRISPR–Cas9-based tiling mutagenesis identifies key functional domains in protein-coding genes de novo, which elucidates separation of function mutants and allows functional annotation across the human proteome.
Collapse
Affiliation(s)
- Jacob A Herman
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Lucas Carter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
19
|
Mobility of kinetochore proteins measured by FRAP analysis in living cells. Chromosome Res 2022; 30:43-57. [PMID: 34997387 PMCID: PMC8942963 DOI: 10.1007/s10577-021-09678-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/01/2022]
Abstract
The kinetochore is essential for faithful chromosome segregation during mitosis and is assembled through dynamic processes involving numerous kinetochore proteins. Various experimental strategies have been used to understand kinetochore assembly processes. Fluorescence recovery after photobleaching (FRAP) analysis is also a useful strategy for revealing the dynamics of kinetochore assembly. In this study, we introduced fluorescence protein-tagged kinetochore protein cDNAs into each endogenous locus and performed FRAP analyses in chicken DT40 cells. Centromeric protein (CENP)-C was highly mobile in interphase, but immobile during mitosis. CENP-C mutants lacking the CENP-A-binding domain became mobile during mitosis. In contrast to CENP-C, CENP-T and CENP-H were immobile during both interphase and mitosis. The mobility of Dsn1, which is a component of the Mis12 complex and directly binds to CENP-C, depended on CENP-C mobility during mitosis. Thus, our FRAP assays provide dynamic aspects of how the kinetochore is assembled.
Collapse
|
20
|
Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Int J Biochem Cell Biol 2022; 144:106155. [PMID: 34990836 DOI: 10.1016/j.biocel.2021.106155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/15/2023]
Abstract
Epigenetic dysregulation is an important contributor to carcinogenesis. This is not surprising, as chromatin-genomic DNA organized around structural histone scaffolding-serves as the template on which occurs essential nuclear processes, such as transcription, DNA replication and DNA repair. Histone H3 lysine 36 (H3K36) methyltransferases, such as the SET-domain 2 protein (SETD2), have emerged as critical tumor suppressors. Previous work on mammalian SETD2 and its counterpart in model organisms, Set2, has highlighted the role of this protein in governing genomic stability through transcriptional elongation and splicing, as well as in DNA damage response processes and cell cycle progression. A compendium of SETD2 mutations have been documented, garnered from sequenced cancer patient genome data, and these findings underscore the cancer-driving properties of SETD2 loss-of-function. In this review, we consolidate the molecular mechanisms regulated by SETD2/Set2 and discuss evidence of its dysregulation in tumorigenesis. Insight into the genetic interactions that exist between SETD2 and various canonical intracellular signaling pathways has not only empowered pharmacological intervention by taking advantage of synthetic lethality but underscores SETD2 as a druggable target for precision cancer therapy.
Collapse
|
21
|
Bolanos-Garcia VM. On the Regulation of Mitosis by the Kinetochore, a Macromolecular Complex and Organising Hub of Eukaryotic Organisms. Subcell Biochem 2022; 99:235-267. [PMID: 36151378 DOI: 10.1007/978-3-031-00793-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The kinetochore is the multiprotein complex of eukaryotic organisms that is assembled on mitotic or meiotic centromeres to connect centromeric DNA with microtubules. Its function involves the coordinated action of more than 100 different proteins. The kinetochore acts as an organiser hub that establishes physical connections with microtubules and centromere-associated proteins and recruits central protein components of the spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance mechanism of eukaryotic organisms that detects unattached kinetochores and destabilises incorrect kinetochore-microtubule attachments. The molecular communication between the kinetochore and the SAC is highly dynamic and tightly regulated to ensure that cells can progress towards anaphase until each chromosome is properly bi-oriented on the mitotic spindle. This is achieved through an interplay of highly cooperative interactions and concerted phosphorylation/dephosphorylation events that are organised in time and space.This contribution discusses our current understanding of the function, structure and regulation of the kinetochore, in particular, how its communication with the SAC results in the amplification of specific signals to exquisitely control the eukaryotic cell cycle. This contribution also addresses recent advances in machine learning approaches, cell imaging and proteomics techniques that have enhanced our understanding of the molecular mechanisms that ensure the high fidelity and timely segregation of the genetic material every time a cell divides as well as the current challenges in the study of this fascinating molecular machine.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
22
|
DeLuca KF, Mick JE, Ide AH, Lima WC, Sherman L, Schaller KL, Anderson SM, Zhao N, Stasevich TJ, Varma D, Nilsson J, DeLuca JG. Generation and diversification of recombinant monoclonal antibodies. eLife 2021; 10:72093. [PMID: 34970967 PMCID: PMC8763395 DOI: 10.7554/elife.72093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.
Collapse
Affiliation(s)
- Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Jeanne E Mick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Amy Hodges Ide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Wanessa C Lima
- Geneva Antibody Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lori Sherman
- CU Cancer Center Cell Technologies Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Kristin L Schaller
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Steven M Anderson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Dileep Varma
- Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Germany
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| |
Collapse
|
23
|
Abstract
The centromere performs a universally conserved function, to accurately partition genetic information upon cell division. Yet, centromeres are among the most rapidly evolving regions of the genome and are bound by a varying assortment of centromere-binding factors that are themselves highly divergent at the protein-sequence level. A common thread in most species is the dependence on the centromere-specific histone variant CENP-A for the specification of the centromere site. However, CENP-A is not universally required in all species or cell types, making the identification of a general mechanism for centromere specification challenging. In this review, we examine our current understanding of the mechanisms of centromere specification in CENP-A-dependent and independent systems, focusing primarily on recent work.
Collapse
Affiliation(s)
- Barbara G Mellone
- Department of Molecular and Cell Biology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005 Paris, France.
| |
Collapse
|
24
|
West AL, Miles EA, Han L, Lillycrop KA, Napier JA, Calder PC, Burdge GC. Dietary Supplementation with Transgenic Camelina sativa Oil Containing 20:5n-3 and 22:6n-3 or Fish Oil Induces Differential Changes in the Transcriptome of CD3 + T Lymphocytes. Nutrients 2021; 13:3116. [PMID: 34578993 PMCID: PMC8466821 DOI: 10.3390/nu13093116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) are important for leukocyte function. This study investigated whether consuming transgenic Camelina sativa (tCSO) seed oil containing both 20:5n-3 and 22:6n-3 is as effective as fish oil (FO) for increasing the 20:5n-3 and 22:6n-3 content of leukocytes and altering mitogen-induced changes to the T cell transcriptome. Healthy adults (n = 31) consumed 450 mg/day of 20:5n-3 plus 22:6n-3 from either FO or tCSO for 8 weeks. Blood was collected before and after the intervention. 20:5n-3 and 22:6n-3 incorporation from tCSO into immune cell total lipids was comparable to FO. The relative expression of the transcriptomes of mitogen-stimulated versus unstimulated T lymphocytes in a subgroup of 16 women/test oil showed 4390 transcripts were differentially expressed at Baseline (59% up-regulated), 4769 (57% up-regulated) after FO and 3443 (38% up-regulated) after tCSO supplementation. The 20 most altered transcripts after supplementation differed between test oils. The most altered pathways were associated with cell proliferation and immune function. In conclusion, 20:5n-3 and 22:6n-3 incorporation into immune cells from tCSO was comparable to FO and can modify mitogen-induced changes in the T cell transcriptome, contingent on the lipid matrix of the oil.
Collapse
Affiliation(s)
- Annette L. West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.L.W.); (E.A.M.); (P.C.C.)
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.L.W.); (E.A.M.); (P.C.C.)
| | - Lihua Han
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK; (L.H.); (J.A.N.)
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Johnathan A. Napier
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK; (L.H.); (J.A.N.)
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.L.W.); (E.A.M.); (P.C.C.)
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.L.W.); (E.A.M.); (P.C.C.)
| |
Collapse
|
25
|
Krivov MA, Ataullakhanov FI, Ivanov PS. Computer simulation of merotelic kinetochore-microtubule attachments: corona size is more important than other cell parameters. Chromosome Res 2021; 29:327-349. [PMID: 34427825 DOI: 10.1007/s10577-021-09669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
The even chromosome segregation between daughter cells during mitosis is crucial for genome integrity and is mostly regulated by proper attachments of spindle microtubules to kinetochores. Abnormalities in this process can lead to chromosome mis-segregation and potentially result in severe developmental disorders such as aneuploidy and cancer. Merotelic attachments when tubulin microtubules captured by the kinetochore of one chromatid originate from both spindle poles are considered as one of the key molecular processes that cause such abnormalities. In this paper, we use computer modeling and the Monte Carlo approach to reveal the reasons for retaining merotelic attachments at the end of metaphase. To this end, we varied, in small increments, the basic cell parameters within ensembles of 100, 500, and 1000 virtual cells. The analysis of configurations that ensure the preservation of the largest fraction of merotelic attachments enabled us to conclude that only a change in the size of the kinetochore corona can significantly increase the number of merotelic attachments and the angle between the centromere axis and the spindle axis. The effect of the other changes in model parameters, if any, was steadily suppressed by the end of metaphase. In addition, our computer model was validated by successfully reproducing the results of third-party theoretical studies as well as some experimental observations. We also found that the orientation of chromosomes and the number of merotelic attachments do not have an explicit correlation with each other and within some limits can change independently.
Collapse
Affiliation(s)
| | - Fazoil I Ataullakhanov
- M.V. Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicoсhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
26
|
Perutka Z, Kaduchová K, Chamrád I, Beinhauer J, Lenobel R, Petrovská B, Bergougnoux V, Vrána J, Pecinka A, Doležel J, Šebela M. Proteome Analysis of Condensed Barley Mitotic Chromosomes. FRONTIERS IN PLANT SCIENCE 2021; 12:723674. [PMID: 34497629 PMCID: PMC8419432 DOI: 10.3389/fpls.2021.723674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Proteins play a major role in the three-dimensional organization of nuclear genome and its function. While histones arrange DNA into a nucleosome fiber, other proteins contribute to higher-order chromatin structures in interphase nuclei, and mitotic/meiotic chromosomes. Despite the key role of proteins in maintaining genome integrity and transferring hereditary information to daughter cells and progenies, the knowledge about their function remains fragmentary. This is particularly true for the proteins of condensed chromosomes and, in particular, chromosomes of plants. Here, we purified barley mitotic metaphase chromosomes by a flow cytometric sorting and characterized their proteins. Peptides from tryptic protein digests were fractionated either on a cation exchanger or reversed-phase microgradient system before liquid chromatography coupled to tandem mass spectrometry. Chromosomal proteins comprising almost 900 identifications were classified based on a combination of software prediction, available database localization information, sequence homology, and domain representation. A biological context evaluation indicated the presence of several groups of abundant proteins including histones, topoisomerase 2, POLYMERASE 2, condensin subunits, and many proteins with chromatin-related functions. Proteins involved in processes related to DNA replication, transcription, and repair as well as nucleolar proteins were found. We have experimentally validated the presence of FIBRILLARIN 1, one of the nucleolar proteins, on metaphase chromosomes, suggesting that plant chromosomes are coated with proteins during mitosis, similar to those of human and animals. These results improve significantly the knowledge of plant chromosomal proteins and provide a basis for their functional characterization and comparative phylogenetic analyses.
Collapse
Affiliation(s)
- Zdeněk Perutka
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Kateřina Kaduchová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Ivo Chamrád
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Jana Beinhauer
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Beáta Petrovská
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Véronique Bergougnoux
- Department of Molecular Biology, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Ales Pecinka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
27
|
Lin C, He Y, Xu K, Feng Q, Li X, Zhang S, Li K, Bai R, Jiang H, Cai K. Mesenchymal Stem Cells Resist Mechanical Confinement through the Activation of the Cortex during Cell Division. ACS Biomater Sci Eng 2021; 7:4602-4613. [PMID: 34365789 DOI: 10.1021/acsbiomaterials.1c00862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanical properties of the natural extracellular matrix (ECM) change extensively, but these specific properties provide a relatively stable environment for resident cells. Although the effect of matrix stiffness on cell functions has been widely studied, the molecular mechanism was still not fully understood. Matrix stiffening is a common phenomenon in tissue damaging processes. To explore the effect of the increase in local matrix stiffness on cell behaviors, a three-dimensional (3D) cell culture system with a tunable modulus but constant other physical parameters was constructed by the alginate hydrogel with different molecular weights and cross-linking degrees. By using this culture system, the transcriptome response of mesenchymal stem cells (MSCs) to matrix stiffness was explored. Furthermore, a finite element model was developed to simulate the interaction between cells and the matrix. Results revealed that the increased matrix stiffness promoted the proliferation-related signaling of MSCs, and this process depended on the increased cortex tension caused by the activation of RAS and myosin II.
Collapse
Affiliation(s)
- Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.,Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Songyue Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ruqing Bai
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400715, China
| |
Collapse
|
28
|
Saldivia M, Wollman AJM, Carnielli JBT, Jones NG, Leake MC, Bower-Lepts C, Rao SPS, Mottram JC. A CLK1-KKT2 Signaling Pathway Regulating Kinetochore Assembly in Trypanosoma brucei. mBio 2021; 12:e0068721. [PMID: 34128702 PMCID: PMC8262961 DOI: 10.1128/mbio.00687-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 01/17/2023] Open
Abstract
During mitosis, eukaryotic cells must duplicate and separate their chromosomes in a precise and timely manner. The apparatus responsible for this is the kinetochore, which is a large protein structure that links chromosomal DNA and spindle microtubules to facilitate chromosome alignment and segregation. The proteins that comprise the kinetochore in the protozoan parasite Trypanosoma brucei are divergent from yeast and mammals and comprise an inner kinetochore complex composed of 24 distinct proteins (KKT1 to KKT23, KKT25) that include four protein kinases, CLK1 (KKT10), CLK2 (KKT19), KKT2, and KKT3. We recently reported the identification of a specific trypanocidal inhibitor of T. brucei CLK1, an amidobenzimidazole, AB1. We now show that chemical inhibition of CLK1 with AB1 impairs inner kinetochore recruitment and compromises cell cycle progression, leading to cell death. Here, we show that KKT2 is a substrate for CLK1 and identify phosphorylation of S508 by CLK1 to be essential for KKT2 function and for kinetochore assembly. Additionally, KKT2 protein kinase activity is required for parasite proliferation but not for assembly of the inner kinetochore complex. We also show that chemical inhibition of the aurora kinase AUK1 does not affect CLK1 phosphorylation of KKT2, indicating that AUK1 and CLK1 are in separate regulatory pathways. We propose that CLK1 is part of a divergent signaling cascade that controls kinetochore function via phosphorylation of the inner kinetochore protein kinase KKT2. IMPORTANCE In eukaryotic cells, kinetochores are large protein complexes that link chromosomes to dynamic microtubule tips, ensuring proper segregation and genomic stability during cell division. Several proteins tightly coordinate kinetochore functions, including the protein kinase aurora kinase B. The kinetochore has diverse evolutionary roots. For example, trypanosomatids, single-cell parasitic protozoa that cause several neglected tropical diseases, possess a unique repertoire of kinetochore components whose regulation during the cell cycle remains unclear. Here, we shed light on trypanosomatid kinetochore biology by showing that the protein kinase CLK1 coordinates the assembly of the inner kinetochore by phosphorylating one of its components, KKT2, allowing the timely spatial recruitment of the rest of the kinetochore proteins and posterior attachment to microtubules in a process that is aurora kinase B independent.
Collapse
Affiliation(s)
- Manuel Saldivia
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- Novartis Institute for Tropical Diseases, Emeryville, California, USA
| | - Adam J. M. Wollman
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, Department of Physics, University of York, Heslington, United Kingdom
| | - Juliana B. T. Carnielli
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | - Nathaniel G. Jones
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | - Mark C. Leake
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, Department of Physics, University of York, Heslington, United Kingdom
| | - Christopher Bower-Lepts
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | | | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| |
Collapse
|
29
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
30
|
Hao X, Qiu Y, Cao L, Yang X, Zhou D, Liu J, Shi Z, Zhao S, Zhang J. Over-Expression of Centromere Protein U Participates in the Malignant Neoplastic Progression of Breast Cancer. Front Oncol 2021; 11:615427. [PMID: 33833984 PMCID: PMC8021899 DOI: 10.3389/fonc.2021.615427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
The expression of Centromere Protein U (CENP-U) is closely related to tumor malignancy. Till now, the role of CENP-U in the malignant progression of breast cancer remains unclear. In this study, we found that CENP-U protein was highly expressed in the primary invasive breast cancer tissues compared to the paired adjacent histologically normal tissues and ductal carcinoma in situ (DCIS) tissues. After CENP-U was knocked down, the proliferation and colony-forming abilities of breast cancer cells were significantly suppressed, whereas the portion of apoptotic cells was increased. Meanwhile, the PI3K/AKT/NF-κB pathway was significantly inhibited. In vivo studies showed that, the inhibition of CENP-U repressed the tumor growth in orthotopic breast cancer models. Therefore, our study demonstrated that the CENP-U might act as an oncogene and promote breast cancer progression via activation of the PI3K/AKT/NF-κB pathway, which suggests a promising direction for targeting therapy in breast cancer.
Collapse
Affiliation(s)
- Xiaomeng Hao
- Third Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yufan Qiu
- Third Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Lixia Cao
- Third Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaonan Yang
- Third Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Dongdong Zhou
- Third Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jingjing Liu
- Third Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhendong Shi
- Third Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Shaorong Zhao
- Third Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jin Zhang
- Third Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
31
|
Nagpal H, Fierz B. The Elusive Structure of Centro-Chromatin: Molecular Order or Dynamic Heterogenetity? J Mol Biol 2021; 433:166676. [PMID: 33065112 DOI: 10.1016/j.jmb.2020.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023]
Abstract
The centromere is an essential chromatin domain required for kinetochore recruitment and chromosome segregation in eukaryotes. To perform this role, centro-chromatin adopts a unique structure that provides access to kinetochore proteins and maintains stability under tension during mitosis. This is achieved by the presence of nucleosomes containing the H3 variant CENP-A, which also acts as the epigenetic mark defining the centromere. In this review, we discuss the role of CENP-A on the structure and dynamics of centromeric chromatin. We further discuss the impact of the CENP-A binding proteins CENP-C, CENP-N, and CENP-B on modulating centro-chromatin structure. Based on these findings we provide an overview of the higher order structure of the centromere.
Collapse
Affiliation(s)
- Harsh Nagpal
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
32
|
Hinshaw SM, Harrison SC. The Structural Basis for Kinetochore Stabilization by Cnn1/CENP-T. Curr Biol 2020; 30:3425-3431.e3. [PMID: 32679099 PMCID: PMC11816742 DOI: 10.1016/j.cub.2020.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Chromosome segregation depends on a regulated connection between spindle microtubules and centromeric DNA. The kinetochore mediates this connection and ensures it persists during anaphase, when sister chromatids must transit into daughter cells uninterrupted. The Ctf19 complex (Ctf19c) forms the centromeric base of the kinetochore in budding yeast. Biochemical experiments show that Ctf19c members associate hierarchically when purified from cell extract [1], an observation that is mostly explained by the structure of the complex [2]. The Ctf3 complex (Ctf3c), which is not required for the assembly of most other Ctf19c factors, disobeys the biochemical assembly hierarchy when observed in dividing cells that lack more basal components [3]. Thus, the biochemical experiments do not completely recapitulate the logic of centromeric Ctf19c assembly. We now present a high-resolution structure of the Ctf3c bound to the Cnn1-Wip1 heterodimer. Associated live-cell imaging experiments provide a mechanism for Ctf3c and Cnn1-Wip1 recruitment to the kinetochore. The mechanism suggests feedback regulation of Ctf19c assembly and unanticipated similarities in kinetochore organization between yeast and vertebrates.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| | - Stephen C Harrison
- Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
33
|
Zion EH, Chandrasekhara C, Chen X. Asymmetric inheritance of epigenetic states in asymmetrically dividing stem cells. Curr Opin Cell Biol 2020; 67:27-36. [PMID: 32871437 DOI: 10.1016/j.ceb.2020.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Asymmetric cell division produces two cells that are genetically identical but each have distinctly different cell fates. During this process, epigenetic mechanisms play an important role in allowing the two daughter cells to have unique gene expression profiles that lead to their specific cell identities. Although the process of duplicating and segregating the genetic information during the cell cycle has been well studied, the question of how epigenetic information is duplicated and partitioned still remains. In this review, we discuss recent advances in understanding how epigenetic states are established and inherited, with emphasis on the asymmetric inheritance patterns of histones, DNA methylation, nonhistone proteins, RNAs, and organelles. We also discuss how misregulation of these processes may lead to diseases such as cancer and tissue degeneration.
Collapse
Affiliation(s)
- Emily H Zion
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Chinmayi Chandrasekhara
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
34
|
N-Terminus Does Not Govern Protein Turnover of Schizosaccharomyces pombe CENP-A. Int J Mol Sci 2020; 21:ijms21176175. [PMID: 32859127 PMCID: PMC7503380 DOI: 10.3390/ijms21176175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Centromere integrity underlies an essential framework for precise chromosome segregation and epigenetic inheritance. Although centromeric DNA sequences vary among different organisms, all eukaryotic centromeres comprise a centromere-specific histone H3 variant, centromeric protein A (CENP-A), on which other centromeric proteins assemble into the kinetochore complex. This complex connects chromosomes to mitotic spindle microtubules to ensure accurate partitioning of the genome into daughter cells. Overexpression of CENP-A is associated with many cancers and is correlated with its mistargeting, forming extra-centromeric kinetochore structures. The mislocalization of CENP-A can be counteracted by proteolysis. The amino (N)-terminal domain (NTD) of CENP-A has been implicated in this regulation and shown to be dependent on the proline residues within this domain in Saccharomyces cerevisiae CENP-A, Cse4. We recently identified a proline-rich GRANT motif in the NTD of Schizosaccharomyces pombe CENP-A (SpCENP-A) that regulates the centromeric targeting of CENP-A via binding to the CENP-A chaperone Sim3. Here, we investigated whether the NTD is required to confer SpCENP-A turnover (i.e., counter stability) using various truncation mutants of SpCENP-A. We show that sequential truncation of the NTD did not improve the stability of the protein, indicating that the NTD of SpCENP-A does not drive turnover of the protein. Instead, we reproduced previous observations that heterochromatin integrity is important for SpCENP-A stability, and showed that this occurs in an NTD-independent manner. Cells bearing the null mutant of the histone H3 lysine 9 methyltransferase Clr4 (Δclr4), which have compromised constitutive heterochromatin integrity, showed reductions in the proportion of SpCENP-A in the chromatin-containing insoluble fraction of the cell extract, suggesting that heterochromatin may promote SpCENP-A chromatin incorporation. Thus, a disruption in heterochromatin may result in the delocalization of SpCENP-A from chromatin, thus exposing it to protein turnover. Taken together, we show that the NTD is not required to confer SpCENP-A protein turnover.
Collapse
|
35
|
How Essential Kinesin-5 Becomes Non-Essential in Fission Yeast: Force Balance and Microtubule Dynamics Matter. Cells 2020; 9:cells9051154. [PMID: 32392819 PMCID: PMC7290485 DOI: 10.3390/cells9051154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The bipolar mitotic spindle drives accurate chromosome segregation by capturing the kinetochore and pulling each set of sister chromatids to the opposite poles. In this review, we describe recent findings on the multiple pathways leading to bipolar spindle formation in fission yeast and discuss these results from a broader perspective. The roles of three mitotic kinesins (Kinesin-5, Kinesin-6 and Kinesin-14) in spindle assembly are depicted, and how a group of microtubule-associated proteins, sister chromatid cohesion and the kinetochore collaborate with these motors is shown. We have paid special attention to the molecular pathways that render otherwise essential Kinesin-5 to become non-essential: how cells build bipolar mitotic spindles without the need for Kinesin-5 and where the alternate forces come from are considered. We highlight the force balance for bipolar spindle assembly and explain how outward and inward forces are generated by various ways, in which the proper fine-tuning of microtubule dynamics plays a crucial role. Overall, these new pathways have illuminated the remarkable plasticity and adaptability of spindle mechanics. Kinesin molecules are regarded as prospective targets for cancer chemotherapy and many specific inhibitors have been developed. However, several hurdles have arisen against their clinical implementation. This review provides insight into possible strategies to overcome these challenges.
Collapse
|