1
|
Vagiona AC, Notopoulou S, Zdráhal Z, Gonçalves-Kulik M, Petrakis S, Andrade-Navarro MA. Prediction of protein interactions with function in protein (de-)phosphorylation. PLoS One 2025; 20:e0319084. [PMID: 40029919 PMCID: PMC11875375 DOI: 10.1371/journal.pone.0319084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
Protein-protein interactions (PPIs) form a complex network called "interactome" that regulates many functions in the cell. In recent years, there is an increasing accumulation of evidence supporting the existence of a hyperbolic geometry underlying the network representation of complex systems such as the interactome. In particular, it has been shown that the embedding of the human Protein-Interaction Network (hPIN) in hyperbolic space (H2) captures biologically relevant information. Here we explore whether this mapping contains information that would allow us to predict the function of PPIs, more specifically interactions related to post-translational modification (PTM). We used a random forest algorithm to predict PTM-related directed PPIs, concretely, protein phosphorylation and dephosphorylation, based on hyperbolic properties and centrality measures of the hPIN mapped in H2. To evaluate the efficacy of our algorithm, we predicted PTM-related PPIs of ataxin-1, a protein which is responsible for Spinocerebellar Ataxia type 1 (SCA1). Proteomics analysis in a cellular model revealed that several of the predicted PTM-PPIs were indeed dysregulated in a SCA1-related disease network. A compact cluster composed of ataxin-1, its dysregulated PTM-PPIs and their common upstream regulators may represent critical interactions for disease pathology. Thus, our algorithm may infer phosphorylation activity on proteins through directed PPIs.
Collapse
Affiliation(s)
- Aimilia-Christina Vagiona
- Faculty of Biology, Insitute of Organismic and Molecular Evolution, Johannes Gutenberg University, Biozentrum I, Mainz, Germany
| | - Sofia Notopoulou
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mariane Gonçalves-Kulik
- Faculty of Biology, Insitute of Organismic and Molecular Evolution, Johannes Gutenberg University, Biozentrum I, Mainz, Germany
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Miguel A. Andrade-Navarro
- Faculty of Biology, Insitute of Organismic and Molecular Evolution, Johannes Gutenberg University, Biozentrum I, Mainz, Germany
| |
Collapse
|
2
|
Namikawa K, Pose-Méndez S, Köster RW. Genetic modeling of degenerative diseases and mechanisms of neuronal regeneration in the zebrafish cerebellum. Cell Mol Life Sci 2024; 82:26. [PMID: 39725709 DOI: 10.1007/s00018-024-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation. In the recent years, cerebellar research in zebrafish has contributed to understanding cerebellum development and function, since zebrafish larvae are not only molecularly tractable, but also accessible for high resolution in vivo imaging due to the transparency of the larvae and the ease of access to the zebrafish cerebellar cortex for microscopy approaches. Therefore, zebrafish is increasingly used for genetic modeling of human cerebellar neurodegenerative diseases and in particular of different types of Spinocerebellar Ataxias (SCAs). These models are well suited to address the underlying pathogenic mechanisms by means of in vivo cell biological studies. Furthermore, accompanying circuitry characterizations, physiological studies and behavioral analysis allow for unraveling molecular, structural and functional relationships. Moreover, unlike in mammals, zebrafish possess an astonishing ability to regenerate neuronal populations and their functional circuitry in the central nervous system including the cerebellum. Understanding the cellular and molecular processes of these regenerative processes could well serve to counteract acute and chronic loss of neurons in humans. Based on the high evolutionary conservation of the cerebellum these regeneration studies in zebrafish promise to open therapeutic avenues for counteracting cerebellar neuronal degeneration. The current review aims to provide an overview over currently existing genetic models of human cerebellar neurodegenerative diseases in zebrafish as well as neuroregeneration studies using the zebrafish cerebellum. Due to this solid foundation in cerebellar disease modeling and neuronal regeneration analysis, the zebrafish promises to become a popular model organism for both unraveling pathogenic mechanisms of human cerebellar diseases and providing entry points for therapeutic neuronal regeneration approaches.
Collapse
Affiliation(s)
- Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
3
|
Lee GB, Park SM, Jung UJ, Kim SR. The Potential of Mesenchymal Stem Cells in Treating Spinocerebellar Ataxia: Advances and Future Directions. Biomedicines 2024; 12:2507. [PMID: 39595073 PMCID: PMC11591855 DOI: 10.3390/biomedicines12112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous disorder characterized by impaired balance and coordination caused by cerebellar dysfunction. The absence of treatments approved by the U.S. Food and Drug Administration for SCA has driven the investigation of alternative therapeutic strategies, including stem cell therapy. Mesenchymal stem cells (MSCs), known for their multipotent capabilities, have demonstrated significant potential in treating SCA. This review examines how MSCs may promote neuronal growth, enhance synaptic connectivity, and modulate brain inflammation. Recent findings from preclinical and clinical studies are also reviewed, emphasizing the promise of MSC therapy in addressing the unmet needs of SCA patients. Furthermore, ongoing clinical trials and future directions are proposed to address the limitations of the current approaches.
Collapse
Affiliation(s)
- Gi Beom Lee
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Se Min Park
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
4
|
Shao YR, Yu JY, Ma Y, Dong Y, Wu ZY. CAT Interruption as a Protective Factor in Chinese Patients with Spinocerebellar Ataxia Type 1. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1211-1214. [PMID: 37491649 DOI: 10.1007/s12311-023-01586-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is the third most common type of spinocerebellar ataxias in China. CAT interruptions in the pathogenic alleles of SCA1 patients had only been reported by limited documents and there was a lack of data based on the Chinese population. In this study, we detected CAT interrupted pathogenic alleles in SCA1 patients from 4 out of 79 (5.1%) Chinese families. Their total CAG repeats were larger (median 58 vs. 47, p < 0.001) but ages at onset were later (median 46 vs. 38, p = 0.020). The longest uninterrupted CAG repeats could explain 65.4% of the AAO variance, making an increase of 28.0% compared to the total CAG repeats. The interruption pattern was greatly different between Chinese cohort and Caucasian cohort, indicating the effect of race.
Collapse
Affiliation(s)
- Ya-Ru Shao
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jin-Yang Yu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yin Ma
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yi Dong
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi-Ying Wu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
6
|
Soloveva EV, Skleimova MM, Minaycheva LI, Garaeva AF, Zhigalina DI, Churkin EO, Okkel YV, Timofeeva OS, Petrov IA, Seitova GN, Lebedev IN, Stepanov VA. PGT-M for spinocerebellar ataxia type 1: development of a STR panel and a report of two clinical cases. J Assist Reprod Genet 2024; 41:1273-1283. [PMID: 38578603 PMCID: PMC11143087 DOI: 10.1007/s10815-024-03105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE To present the developed preimplantation genetic testing (PGT) for spinocerebellar ataxia type 1 (SCA1) and the outcomes of IVF with PGT. METHODS PGT was performed for two unrelated couples from the Republic of Sakha (Yakutia) with the risk of SCA1 in one spouse. We have developed a system for PGT of a monogenic disease (PGT-M) for SCA1, which includes the analysis of a panel of 11 polymorphic STR markers linked to the ATXN1 gene and a pathogenic variant of the ATXN1 gene using nested PCR and fragment analysis. IVF/ICSI programs were performed according to standard protocols. Multiple displacement amplification (MDA) was used for whole genome amplification (WGA) and array comparative genomic hybridization (aCGH) for aneuploidy testing (PGT-A). RESULTS Eight STRs were informative for the first couple and ten for the second. Similarity of the haplotypes carrying pathogenic variants of the ATXN1 gene was noted. In the first case, during IVF/ICSI-PGT, three embryos reached the blastocyst stage and were biopsied. One embryo was diagnosed as normal by maternal STR haplotype and the ATXN1 allele. PGT-A revealed euploidy. The embryo transfer resulted in a singleton pregnancy, and a healthy boy was born. Postnatal diagnosis confirmed normal ATXN1. In the second case, two blastocysts were biopsied. Both were diagnosed as normal by PGT-M, but PGT-A revealed aneuploidy. CONCLUSION Birth of a healthy child after PGT for SCA1 was the first case of successful preimplantation prevention of SCA1 for the Yakut couple and the first case of successful PGT for SCA1 in Russia.
Collapse
Affiliation(s)
- Elena V Soloveva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.
| | - Maria M Skleimova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Larisa I Minaycheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Anna F Garaeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Daria I Zhigalina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Egor O Churkin
- ART Center of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
| | - Yulia V Okkel
- ART Center of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
| | - Oksana S Timofeeva
- ART Center of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
- Department of Obstetrics and Gynecology of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
| | - Ilya A Petrov
- ART Center of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
- Department of Obstetrics and Gynecology of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
| | - Gulnara N Seitova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Vadim A Stepanov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
7
|
Tejwani L, Ravindra NG, Lee C, Cheng Y, Nguyen B, Luttik K, Ni L, Zhang S, Morrison LM, Gionco J, Xiang Y, Yoon J, Ro H, Haidery F, Grijalva RM, Bae E, Kim K, Martuscello RT, Orr HT, Zoghbi HY, McLoughlin HS, Ranum LPW, Shakkottai VG, Faust PL, Wang S, van Dijk D, Lim J. Longitudinal single-cell transcriptional dynamics throughout neurodegeneration in SCA1. Neuron 2024; 112:362-383.e15. [PMID: 38016472 PMCID: PMC10922326 DOI: 10.1016/j.neuron.2023.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Neal G Ravindra
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA
| | - Changwoo Lee
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yubao Cheng
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Billy Nguyen
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shupei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Logan M Morrison
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Gionco
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Yangfei Xiang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Hannah Ro
- Yale College, New Haven, CT 06510, USA
| | | | - Rosalie M Grijalva
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Kristen Kim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, College of Medicine, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - David van Dijk
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA.
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
8
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
9
|
Thompson LM, Orr HT. HD and SCA1: Tales from two 30-year journeys since gene discovery. Neuron 2023; 111:3517-3530. [PMID: 37863037 PMCID: PMC10842341 DOI: 10.1016/j.neuron.2023.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
One of the more transformative findings in human genetics was the discovery that the expansion of unstable nucleotide repeats underlies a group of inherited neurological diseases. A subset of these unstable repeat neurodegenerative diseases is due to the expansion of a CAG trinucleotide repeat encoding a stretch of glutamines, i.e., the polyglutamine (polyQ) repeat neurodegenerative diseases. Among the CAG/polyQ repeat diseases are Huntington's disease (HD) and spinocerebellar ataxia type 1 (SCA1), in which the expansions are within widely expressed proteins. Although both HD and SCA1 are autosomal dominantly inherited, and both typically cause mid- to late-life-onset movement disorders with cognitive decline, they each are characterized by distinct clinical characteristics and predominant sites of neuropathology. Importantly, the respective affected proteins, Huntingtin (HTT, HD) and Ataxin 1 (ATXN1, SCA1), have unique functions and biological properties. Here, we review HD and SCA1 with a focus on how their disease-specific and shared features may provide informative insights.
Collapse
Affiliation(s)
- Leslie M Thompson
- Department of Psychiatry and Human Behavior, Department of Neurobiology and Behavior, Department of Biological Chemistry, Institute of Memory Impairments and Neurological Disorders, Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis and Saint Paul, MN 55455, USA.
| |
Collapse
|
10
|
Edamakanti CR, Mohan V, Opal P. Reactive Bergmann glia play a central role in spinocerebellar ataxia inflammation via the JNK pathway. J Neuroinflammation 2023; 20:126. [PMID: 37237366 PMCID: PMC10214658 DOI: 10.1186/s12974-023-02801-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The spinocerebellar ataxias (SCAs) are devastating neurological diseases characterized by progressive cerebellar incoordination. While neurons bear the brunt of the pathology, a growing body of evidence suggests that glial cells are also affected. It has, however, been difficult to understand the role of glia, given the diversity of subtypes, each with their individual contributions to neuronal health. Using human SCA autopsy samples we have discovered that Bergmann glia-the radial glia of the cerebellum, which form intimate functional connections with cerebellar Purkinje neurons-display inflammatory JNK-dependent c-Jun phosphorylation. This phosphorylation defines a signaling pathway not observed in other activated glial populations, providing an opportunity to isolate the role of Bergmann glia in SCA inflammation. Turning to an SCA1 mouse model as a paradigmatic SCA, we demonstrate that inhibiting the JNK pathway reduces Bergmann glia inflammation accompanied by improvements in the SCA1 phenotype both behaviorally and pathologically. These findings demonstrate the causal role for Bergmann glia inflammation in SCA1 and point to a novel therapeutic strategy that could span several ataxic syndromes where Bergmann glia inflammation is a major feature.
Collapse
Affiliation(s)
- Chandrakanth Reddy Edamakanti
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward 10-332, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA.
| | - Vishwa Mohan
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward 10-332, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
| |
Collapse
|
11
|
Kerkhof LMC, van de Warrenburg BPC, van Roon-Mom WMC, Buijsen RAM. Therapeutic Strategies for Spinocerebellar Ataxia Type 1. Biomolecules 2023; 13:biom13050788. [PMID: 37238658 DOI: 10.3390/biom13050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that affects one or two individuals per 100,000. The disease is caused by an extended CAG repeat in exon 8 of the ATXN1 gene and is characterized mostly by a profound loss of cerebellar Purkinje cells, leading to disturbances in coordination, balance, and gait. At present, no curative treatment is available for SCA1. However, increasing knowledge on the cellular and molecular mechanisms of SCA1 has led the way towards several therapeutic strategies that can potentially slow disease progression. SCA1 therapeutics can be classified as genetic, pharmacological, and cell replacement therapies. These different therapeutic strategies target either the (mutant) ATXN1 RNA or the ataxin-1 protein, pathways that play an important role in downstream SCA1 disease mechanisms or which help restore cells that are lost due to SCA1 pathology. In this review, we will provide a summary of the different therapeutic strategies that are currently being investigated for SCA1.
Collapse
Affiliation(s)
- Laurie M C Kerkhof
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
12
|
Handler HP, Duvick L, Mitchell JS, Cvetanovic M, Reighard M, Soles A, Mather KB, Rainwater O, Serres S, Nichols-Meade T, Coffin SL, You Y, Ruis BL, O'Callaghan B, Henzler C, Zoghbi HY, Orr HT. Decreasing mutant ATXN1 nuclear localization improves a spectrum of SCA1-like phenotypes and brain region transcriptomic profiles. Neuron 2023; 111:493-507.e6. [PMID: 36577403 PMCID: PMC9957934 DOI: 10.1016/j.neuron.2022.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominant trinucleotide repeat neurodegenerative disease characterized by motor dysfunction, cognitive impairment, and premature death. Degeneration of cerebellar Purkinje cells is a frequent and prominent pathological feature of SCA1. We previously showed that transport of ATXN1 to Purkinje cell nuclei is required for pathology, where mutant ATXN1 alters transcription. To examine the role of ATXN1 nuclear localization broadly in SCA1-like disease pathogenesis, CRISPR-Cas9 was used to develop a mouse with an amino acid alteration (K772T) in the nuclear localization sequence of the expanded ATXN1 protein. Characterization of these mice indicates that proper nuclear localization of mutant ATXN1 contributes to many disease-like phenotypes including motor dysfunction, cognitive deficits, and premature lethality. RNA sequencing analysis of genes with expression corrected to WT levels in Atxn1175QK772T/2Q mice indicates that transcriptomic aspects of SCA1 pathogenesis differ between the cerebellum, brainstem, cerebral cortex, hippocampus, and striatum.
Collapse
Affiliation(s)
- Hillary P Handler
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa Duvick
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason S Mitchell
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Molly Reighard
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alyssa Soles
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathleen B Mather
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Orion Rainwater
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shannah Serres
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tessa Nichols-Meade
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie L Coffin
- Program in Genetics & Genomics and Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Yun You
- Mouse Genetics Laboratory, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian L Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brennon O'Callaghan
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christine Henzler
- RISS Bioinformatics, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huda Y Zoghbi
- Departments of Molecular and Human Genetics, Pediatrics, and Howard Hughes Medical Institute, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Harry T Orr
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Putka AF, McLoughlin HS. Diverse regional mechanisms drive spinocerebellar ataxia type 1 phenotypes. Neuron 2023; 111:447-449. [PMID: 36796325 DOI: 10.1016/j.neuron.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In this issue of Neuron, a pair of studies (Handler et al.1 and Coffin et al.2) elucidate new insights into spinocerebellar ataxia type 1 (SCA1) pathogenesis by genetically assessing mechanistic drivers of regional vulnerability and their relationships to SCA1 phenotypes.
Collapse
Affiliation(s)
- Alexandra F Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
14
|
Cvetanovic M, Gray M. Contribution of Glial Cells to Polyglutamine Diseases: Observations from Patients and Mouse Models. Neurotherapeutics 2023; 20:48-66. [PMID: 37020152 PMCID: PMC10119372 DOI: 10.1007/s13311-023-01357-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 04/07/2023] Open
Abstract
Neurodegenerative diseases are broadly characterized neuropathologically by the degeneration of vulnerable neuronal cell types in a specific brain region. The degeneration of specific cell types has informed on the various phenotypes/clinical presentations in someone suffering from these diseases. Prominent neurodegeneration of specific neurons is seen in polyglutamine expansion diseases including Huntington's disease (HD) and spinocerebellar ataxias (SCA). The clinical manifestations observed in these diseases could be as varied as the abnormalities in motor function observed in those who have Huntington's disease (HD) as demonstrated by a chorea with substantial degeneration of striatal medium spiny neurons (MSNs) or those with various forms of spinocerebellar ataxia (SCA) with an ataxic motor presentation primarily due to degeneration of cerebellar Purkinje cells. Due to the very significant nature of the degeneration of MSNs in HD and Purkinje cells in SCAs, much of the research has centered around understanding the cell autonomous mechanisms dysregulated in these neuronal cell types. However, an increasing number of studies have revealed that dysfunction in non-neuronal glial cell types contributes to the pathogenesis of these diseases. Here we explore these non-neuronal glial cell types with a focus on how each may contribute to the pathogenesis of HD and SCA and the tools used to evaluate glial cells in the context of these diseases. Understanding the regulation of supportive and harmful phenotypes of glia in disease could lead to development of novel glia-focused neurotherapeutics.
Collapse
Affiliation(s)
- Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
15
|
Targeting mGlu1 Receptors in the Treatment of Motor and Cognitive Dysfunctions in Mice Modeling Type 1 Spinocerebellar Ataxia. Cells 2022; 11:cells11233916. [PMID: 36497172 PMCID: PMC9738505 DOI: 10.3390/cells11233916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Type 1 spinocerebellar ataxia (SCA1) is a progressive neurodegenerative disorder with no effective treatment to date. Using mice modeling SCA1, it has been demonstrated that a drug that amplifies mGlu1 receptor activation (mGlu1 receptor PAM, Ro0711401) improves motor coordination without the development of tolerance when cerebellar dysfunction manifests (i.e., in 30-week-old heterozygous ataxin-1 [154Q/2Q] transgenic mice). SCA1 is also associated with cognitive dysfunction, which may precede cerebellar motor signs. Here, we report that otherwise healthy, 8-week-old SCA1 mice showed a defect in spatial learning and memory associated with reduced protein levels of mGlu1α receptors, the GluN2B subunit of NMDA receptors, and cannabinoid CB1 receptors in the hippocampus. Systemic treatment with Ro0711401 (10 mg/kg, s.c.) partially corrected the learning deficit in the Morris water maze and restored memory retention in the SCA1 mice model. This treatment also enhanced hippocampal levels of the endocannabinoid, anandamide, without changing the levels of 2-arachidonylglycerol. These findings suggest that mGlu1 receptor PAMs may be beneficial in the treatment of motor and nonmotor signs associated with SCA1 and encourage further studies in animal models of SCA1 and other types of SCAs.
Collapse
|
16
|
Johnson SL, Tsou WL, Prifti MV, Harris AL, Todi SV. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front Mol Neurosci 2022; 15:974167. [PMID: 36187346 PMCID: PMC9515312 DOI: 10.3389/fnmol.2022.974167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 01/20/2023] Open
Abstract
The presence and aggregation of misfolded proteins has deleterious effects in the nervous system. Among the various diseases caused by misfolded proteins is the family of the polyglutamine (polyQ) disorders. This family comprises nine members, all stemming from the same mutation—the abnormal elongation of a polyQ repeat in nine different proteins—which causes protein misfolding and aggregation, cellular dysfunction and disease. While it is the same type of mutation that causes them, each disease is distinct: it is influenced by regions and domains that surround the polyQ repeat; by proteins with which they interact; and by posttranslational modifications they receive. Here, we overview the role of non-polyQ regions that control the pathogenicity of the expanded polyQ repeat. We begin by introducing each polyQ disease, the genes affected, and the symptoms experienced by patients. Subsequently, we provide a survey of protein-protein interactions and posttranslational modifications that regulate polyQ toxicity. We conclude by discussing shared processes and pathways that bring some of the polyQ diseases together and may serve as common therapeutic entry points for this family of incurable disorders.
Collapse
Affiliation(s)
- Sean L. Johnson
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Matthew V. Prifti
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Autumn L. Harris
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
- *Correspondence: Sokol V. Todi,
| |
Collapse
|
17
|
Luttik K, Tejwani L, Ju H, Driessen T, Smeets CJLM, Edamakanti CR, Khan A, Yun J, Opal P, Lim J. Differential effects of Wnt-β-catenin signaling in Purkinje cells and Bergmann glia in spinocerebellar ataxia type 1. Proc Natl Acad Sci U S A 2022; 119:e2208513119. [PMID: 35969780 PMCID: PMC9407543 DOI: 10.1073/pnas.2208513119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia and degeneration of specific neuronal populations, including Purkinje cells (PCs) in the cerebellum. Previous studies have demonstrated a critical role for various evolutionarily conserved signaling pathways in cerebellar patterning, such as the Wnt-β-catenin pathway; however, the roles of these pathways in adult cerebellar function and cerebellar neurodegeneration are largely unknown. In this study, we found that Wnt-β-catenin signaling activity was progressively enhanced in multiple cell types in the adult SCA1 mouse cerebellum, and that activation of this signaling occurs in an ataxin-1 polyglutamine (polyQ) expansion-dependent manner. Genetic manipulation of the Wnt-β-catenin signaling pathway in specific cerebellar cell populations revealed that activation of Wnt-β-catenin signaling in PCs alone was not sufficient to induce SCA1-like phenotypes, while its activation in astrocytes, including Bergmann glia (BG), resulted in gliosis and disrupted BG localization, which was replicated in SCA1 mouse models. Our studies identify a mechanism in which polyQ-expanded ataxin-1 positively regulates Wnt-β-catenin signaling and demonstrate that different cell types have distinct responses to the enhanced Wnt-β-catenin signaling in the SCA1 cerebellum, underscoring an important role of BG in SCA1 pathogenesis.
Collapse
Affiliation(s)
- Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Hyoungseok Ju
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | - Terri Driessen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | | | | | | | - Joy Yun
- Yale College, New Haven, CT 06510
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
18
|
Orengo JP, Nitschke L, van der Heijden ME, Ciaburri NA, Orr HT, Zoghbi HY. Reduction of mutant ATXN1 rescues premature death in a conditional SCA1 mouse model. JCI Insight 2022; 7:e154442. [PMID: 35290244 PMCID: PMC9089789 DOI: 10.1172/jci.insight.154442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disorder. As disease progresses, motor neurons are affected, and their dysfunction contributes toward the inability to maintain proper respiratory function, a major driving force for premature death in SCA1. To investigate the isolated role of motor neurons in SCA1, we created a conditional SCA1 (cSCA1) mouse model. This model suppresses expression of the pathogenic SCA1 allele with a floxed stop cassette. cSCA1 mice crossed to a ubiquitous Cre line recapitulate all the major features of the original SCA1 mouse model; however, they took twice as long to develop. We found that the cSCA1 mice produced less than half of the pathogenic protein compared with the unmodified SCA1 mice at 3 weeks of age. In contrast, restricted expression of the pathogenic SCA1 allele in motor neurons only led to a decreased distance traveled of mice in the open field assay and did not affect body weight or survival. We conclude that a 50% or greater reduction of the mutant protein has a dramatic effect on disease onset and progression; furthermore, we conclude that expression of polyglutamine-expanded ATXN1 at this level specifically in motor neurons is not sufficient to cause premature lethality.
Collapse
Affiliation(s)
- James P. Orengo
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
- Department of Neuroscience and
| | - Larissa Nitschke
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Meike E. van der Heijden
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Nicholas A. Ciaburri
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Harry T. Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Huda Y. Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
- Department of Neuroscience and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Howard Hughes Medical Institute, Houston, Texas, USA
| |
Collapse
|
19
|
Costantino I, Nicodemus J, Chun J. Genomic Mosaicism Formed by Somatic Variation in the Aging and Diseased Brain. Genes (Basel) 2021; 12:1071. [PMID: 34356087 PMCID: PMC8305509 DOI: 10.3390/genes12071071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past 20 years, analyses of single brain cell genomes have revealed that the brain is composed of cells with myriad distinct genomes: the brain is a genomic mosaic, generated by a host of DNA sequence-altering processes that occur somatically and do not affect the germline. As such, these sequence changes are not heritable. Some processes appear to occur during neurogenesis, when cells are mitotic, whereas others may also function in post-mitotic cells. Here, we review multiple forms of DNA sequence alterations that have now been documented: aneuploidies and aneusomies, smaller copy number variations (CNVs), somatic repeat expansions, retrotransposons, genomic cDNAs (gencDNAs) associated with somatic gene recombination (SGR), and single nucleotide variations (SNVs). A catch-all term of DNA content variation (DCV) has also been used to describe the overall phenomenon, which can include multiple forms within a single cell's genome. A requisite step in the analyses of genomic mosaicism is ongoing technology development, which is also discussed. Genomic mosaicism alters one of the most stable biological molecules, DNA, which may have many repercussions, ranging from normal functions including effects of aging, to creating dysfunction that occurs in neurodegenerative and other brain diseases, most of which show sporadic presentation, unlinked to causal, heritable genes.
Collapse
Affiliation(s)
- Isabel Costantino
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juliet Nicodemus
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
| |
Collapse
|