1
|
Song SJ, Wu GC, Yi L, Liu X, Jiang MM, Zhang XC, Yin ZF, Gu W, Ruan Y. Heat shock proteins in hypothermia: a review. Front Mol Biosci 2025; 12:1564364. [PMID: 40417060 PMCID: PMC12098039 DOI: 10.3389/fmolb.2025.1564364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/08/2025] [Indexed: 05/27/2025] Open
Abstract
Hypothermia is a serious condition marked by a significant decrease in core body temperature, posing considerable risks to biological systems. In response to thermal stress, cells activate protective mechanisms, often synthesizing heat shock proteins (HSPs). These highly conserved proteins are crucial in cellular stress responses, primarily functioning as chaperones. HSPs facilitate correct protein folding and prevent misfolding and aggregation, thereby protecting cellular integrity during adverse conditions. This paper explains how HSPs alleviate stress responses related to low body temperature, focusing on energy metabolism, apoptosis, cellular membrane fluidity and stability, and stress signaling pathways. By enhancing cellular repair mechanisms, HSPs help maintain cellular balance and prevent further harm to the organism. Ultimately, the review emphasizes the complex relationship between cellular stress responses and HSPs in hypothermia, highlighting their potential as therapeutic targets for enhancing resistance to the harmful effects of extreme cold exposure. A deeper understanding of these mechanisms could lead to strategies that improve survival rates in hypothermic patients. It may also reveal ways to modulate HSPs' activity for enhanced cellular protection.
Collapse
Affiliation(s)
- Shang-Jin Song
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
- Xingcheng Special Duty Sanatorium of Joint Logistics Support Force, Xingcheng, Liaoning, China
| | - Guo-Cheng Wu
- Xingcheng Special Duty Sanatorium of Joint Logistics Support Force, Xingcheng, Liaoning, China
| | - Li Yi
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
- PLA Naval Medical Center, Shanghai, China
| | - Xin Liu
- Xingcheng Special Duty Sanatorium of Joint Logistics Support Force, Xingcheng, Liaoning, China
| | - Ming-Min Jiang
- Xingcheng Special Duty Sanatorium of Joint Logistics Support Force, Xingcheng, Liaoning, China
| | - Xiao-Chen Zhang
- Xingcheng Special Duty Sanatorium of Joint Logistics Support Force, Xingcheng, Liaoning, China
| | - Zi-Fei Yin
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Wei Gu
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Yi Ruan
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
- PLA Naval Medical Center, Shanghai, China
| |
Collapse
|
2
|
Cutrone L, Djupenström H, Peltonen J, Martinez Klimova E, Corso S, Giordano S, Sistonen L, Gramolelli S. Heat shock factor 2 regulates oncogenic gamma-herpesvirus gene expression by remodeling the chromatin at the ORF50 and BZLF1 promoter. PLoS Pathog 2025; 21:e1013108. [PMID: 40245053 PMCID: PMC12047821 DOI: 10.1371/journal.ppat.1013108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/02/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
The Human gamma-herpesviruses Kaposi's sarcoma herpesvirus (KSHV) and Epstein-Barr virus (EBV) are causally associated to a wide range of cancers. While the default infection program for these viruses is latent, sporadic lytic reactivation supports virus dissemination and oncogenesis. Despite its relevance, the repertoire of host factors governing the transition from latent to lytic phase is not yet complete, leaving much of this complex process unresolved. Here we show that heat shock factor 2 (HSF2), a transcription factor involved in regulation of stress responses and specific cell differentiation processes, promotes gamma-herpesvirus lytic gene expression. In lymphatic endothelial cells infected with KSHV and in gastric cancer cells positive for EBV, ectopic HSF2 enhances the expression of lytic genes; While knocking down HSF2 significantly decreases their expression. HSF2 overexpression is accompanied by decreased levels of repressive histone marks at the promoters of the lytic regulators KSHV ORF50 and EBV BZLF1, both characterized by poised chromatin features. Our results demonstrate that endogenous HSF2 binds to the promoters of KSHV ORF50 and EBV BZLF1 genes and shifts the bivalent chromatin state towards a more transcriptionally permissive state. We detected HSF2 binding to the ORF50 promoter in latent cells, in contrast, in lytic cells, HSF2 occupancy at the ORF50 promoter is lost in conjunction with its proteasomal degradation. These findings identify HSF2 as a regulator of gamma-herpesvirus lytic gene expression in latency and offer new insights on the function of this transcription factors at poised gene promoters, improving our understanding of its role in differentiation and development.
Collapse
Affiliation(s)
- Lorenza Cutrone
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Hedvig Djupenström
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Jasmin Peltonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elena Martinez Klimova
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Silvia Gramolelli
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| |
Collapse
|
3
|
Kobzeva K, Ivenkov M, Gromov R, Bushueva O. HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis. Front Biosci (Schol Ed) 2024; 16:19. [PMID: 39736019 DOI: 10.31083/j.fbs1604019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies. AIM Our objective was to examine the potential correlation between single nucleotide polymorphisms (SNPs) in genes that encode members of the Heat shock protein 90 (HSP90), small heat shock proteins (HSPB), and heat shock factors (HSF) families, and the risk and clinical characteristics of IS. METHODS 953 IS patients and 1265 controls from Central Russia were genotyped for nine SNPs in genes encoding HSP90AA1, HSFs, and HSPBs using the MassArray-4 system and probe-based polymerase chain reaction (PCR). RESULTS In smokers, SNP rs1133026 HSPB8 increased the risk of IS (risk allele A, odds ratio (OR) = 1.43, 95% Confidence Interval (CI) 1.02-2.02, p = 0.035), and rs556439 HSF2 increased the brain infarct size (risk allele A, p = 0.02). In non-smokers, SNPs rs4279640 HSF1 (protective allele T, OR = 0.58, 95% CI 0.37-0.92, p = 0.02) and rs4264324 HSP90AA1 (protective allele C, OR = 0.11, 95% CI 0.01-0.78, p = 0.001) lowered the risk of recurrent stroke; SNP rs7303637 HSPB8 increased the age of onset of IS (protective allele T, p = 0.04). In patients with body mass index (BMI) ≥25, SNPs rs556439 HSF2 (risk allele A, OR = 1.33, 95% CI 1.04-1.69, p = 0.02) and rs549302 HSF2 (risk allele G, OR = 1.34, 95% CI 1.02-1.75, p = 0.03) were linked to a higher risk of IS. CONCLUSIONS The primary molecular mechanisms through which the studied SNPs contribute to IS pathogenesis were found to be the regulation of cell death, inflammatory and oxidative stress responses.
Collapse
Affiliation(s)
- Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Maxim Ivenkov
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Rostislav Gromov
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
4
|
Alasady MJ, Mendillo ML. The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience. Cell Stress Chaperones 2024; 29:735-749. [PMID: 39454718 PMCID: PMC11570959 DOI: 10.1016/j.cstres.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss "the heat shock factor code"-our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Pauciullo S, Riccio A, Santopolo S, Albecka A, Papa G, James LC, Piacentini S, Lanzilli G, Rossi A, Santoro MG. Human coronaviruses activate and hijack the host transcription factor HSF1 to enhance viral replication. Cell Mol Life Sci 2024; 81:386. [PMID: 39243335 PMCID: PMC11380654 DOI: 10.1007/s00018-024-05370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Organisms respond to proteotoxic-stress by activating the heat-shock response, a cellular defense mechanism regulated by a family of heat-shock factors (HSFs); among six human HSFs, HSF1 acts as a proteostasis guardian regulating severe stress-driven transcriptional responses. Herein we show that human coronaviruses (HCoV), both low-pathogenic seasonal-HCoVs and highly-pathogenic SARS-CoV-2 variants, are potent inducers of HSF1, promoting HSF1 serine-326 phosphorylation and triggering a powerful and distinct HSF1-driven transcriptional-translational response in infected cells. Despite the coronavirus-mediated shut-down of the host translational machinery, selected HSF1-target gene products, including HSP70, HSPA6 and AIRAP, are highly expressed in HCoV-infected cells. Using silencing experiments and a direct HSF1 small-molecule inhibitor we show that, intriguingly, HCoV-mediated activation of the HSF1-pathway, rather than representing a host defense response to infection, is hijacked by the pathogen and is essential for efficient progeny particles production. The results open new scenarios for the search of innovative antiviral strategies against coronavirus infections.
Collapse
Affiliation(s)
- Silvia Pauciullo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Santopolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sara Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonio Rossi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
- Institute of Translational Pharmacology, CNR, Rome, Italy.
| |
Collapse
|
6
|
Lin F, Sun L, Zhang Y, Gao W, Chen Z, Liu Y, Tian K, Han X, Liu R, Li Y, Shen L. Mitochondrial stress response and myogenic differentiation. Front Cell Dev Biol 2024; 12:1381417. [PMID: 38681520 PMCID: PMC11055459 DOI: 10.3389/fcell.2024.1381417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Regeneration and repair are prerequisites for maintaining effective function of skeletal muscle under high energy demands, and myogenic differentiation is one of the key steps in the regeneration and repair process. A striking feature of the process of myogenic differentiation is the alteration of mitochondria in number and function. Mitochondrial dysfunction can activate a number of transcriptional, translational and post-translational programmes and pathways to maintain cellular homeostasis under different types and degrees of stress, either through its own signaling or through constant signaling interactions with the nucleus and cytoplasm, a process known as the mitochondrial stress responses (MSRs). It is now believed that mitochondrial dysfunction is closely associated with a variety of muscle diseases caused by reduced levels of myogenic differentiation, suggesting the possibility that MSRs are involved in messaging during myogenic differentiation. Also, MSRs may be involved in myogenesis by promoting bioenergetic remodeling and assisting myoblast survival during myogenic differentiation. In this review, we will take MSRs as an entry point to explore its concrete regulatory mechanisms during myogenic differentiation, with a perspective to provide a theoretical basis for the treatment and repair of related muscle diseases.
Collapse
Affiliation(s)
- Fu Lin
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yu Zhang
- Experimental Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weinan Gao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zihan Chen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Clinical Medical College of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Kai Tian
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Xuyu Han
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Ruize Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Luyan Shen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
7
|
Wang C, Zhang D, Wang L, Wang W. MicroRNA-455-3p inhibits osteosarcoma progression via HSF1 downregulation. J Orthop Sci 2023; 28:1157-1164. [PMID: 35989156 DOI: 10.1016/j.jos.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/26/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE This study was conducted to dissect the role and potential mechanism of microRNA (miR)-455-3p on osteosarcoma (OS) development. METHODS miR-455-3p and HSF1 expression in OS tissues were detected by RT-qPCR and western blot. Later, gain- and loss-of-function assays were implemented in OS cells U-2OS and MNNG. The expression of apoptosis-related genes was measured by RT-qPCR and western blot. MTT, Transwell, scratch test, and flow cytometry were utilized to test OS cell viability, invasion, migration, and apoptosis. The targeting relationship between miR-455-3p and HSF1 was assessed with a dual-luciferase reporter gene assay. The transplantation tumor experiment in nude mice was utilized for in vivo confirmation. RESULTS Downregulated miR-455-3p and upregulated HSF1 were displayed in OS tissues and cells. Mechanistically, miR-455-3p negatively targeted HSF1. MiR-455-3p inhibition or HSF1 overexpression increased MNNG and U-2OS cell proliferative, invasive, and migrating capabilities, while diminishing U-2OS cell apoptosis. Moreover, HSF1 overexpression negated the impacts of miR-455-3p upregulation on OS cell proliferative, invasive, migrating, and apoptotic abilities. Likewise, overexpressing miR-455-3p curtailed the growth of transplanted OS tumors through HSF1 repression. CONCLUSION MiR-455-3p inhibits the development of OS cells by downregulating HSF1, highlighting the possibility of miR-455-3p as an innovative indicator of prognosis and a therapeutic target for OS.
Collapse
Affiliation(s)
- Chao Wang
- Department of Bone and Joint Surgery, Guang'an People's Hospital, Guang'an, Sichuan 638000, PR China.
| | - Dagang Zhang
- Department of Bone and Joint Surgery, Guang'an People's Hospital, Guang'an, Sichuan 638000, PR China
| | - Leidi Wang
- Department of Bone and Joint Surgery, Guang'an People's Hospital, Guang'an, Sichuan 638000, PR China
| | - Weilin Wang
- Department of Bone and Joint Surgery, Guang'an People's Hospital, Guang'an, Sichuan 638000, PR China
| |
Collapse
|
8
|
Piacentini S, Riccio A, Santopolo S, Pauciullo S, La Frazia S, Rossi A, Rossignol JF, Santoro MG. The FDA-approved drug nitazoxanide is a potent inhibitor of human seasonal coronaviruses acting at postentry level: effect on the viral spike glycoprotein. Front Microbiol 2023; 14:1206951. [PMID: 37705731 PMCID: PMC10497118 DOI: 10.3389/fmicb.2023.1206951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Coronaviridae is recognized as one of the most rapidly evolving virus family as a consequence of the high genomic nucleotide substitution rates and recombination. The family comprises a large number of enveloped, positive-sense single-stranded RNA viruses, causing an array of diseases of varying severity in animals and humans. To date, seven human coronaviruses (HCoV) have been identified, namely HCoV-229E, HCoV-NL63, HCoV-OC43 and HCoV-HKU1, which are globally circulating in the human population (seasonal HCoV, sHCoV), and the highly pathogenic SARS-CoV, MERS-CoV and SARS-CoV-2. Seasonal HCoV are estimated to contribute to 15-30% of common cold cases in humans; although diseases are generally self-limiting, sHCoV can sometimes cause severe lower respiratory infections and life-threatening diseases in a subset of patients. No specific treatment is presently available for sHCoV infections. Herein we show that the anti-infective drug nitazoxanide has a potent antiviral activity against three human endemic coronaviruses, the Alpha-coronaviruses HCoV-229E and HCoV-NL63, and the Beta-coronavirus HCoV-OC43 in cell culture with IC50 ranging between 0.05 and 0.15 μg/mL and high selectivity indexes. We found that nitazoxanide does not affect HCoV adsorption, entry or uncoating, but acts at postentry level and interferes with the spike glycoprotein maturation, hampering its terminal glycosylation at an endoglycosidase H-sensitive stage. Altogether the results indicate that nitazoxanide, due to its broad-spectrum anti-coronavirus activity, may represent a readily available useful tool in the treatment of seasonal coronavirus infections.
Collapse
Affiliation(s)
- Sara Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Santopolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Pauciullo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Rossi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | | | - M. Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
9
|
Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2022; 289:7710-7725. [PMID: 34478606 DOI: 10.1111/febs.16178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
10
|
Tokunaga Y, Otsuyama KI, Kakuta S, Hayashida N. Heat Shock Transcription Factor 2 Is Significantly Involved in Neurodegenerative Diseases, Inflammatory Bowel Disease, Cancer, Male Infertility, and Fetal Alcohol Spectrum Disorder: The Novel Mechanisms of Several Severe Diseases. Int J Mol Sci 2022; 23:ijms232213763. [PMID: 36430241 PMCID: PMC9691173 DOI: 10.3390/ijms232213763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
HSF (heat shock transcription factor or heat shock factor) was discovered as a transcription factor indispensable for heat shock response. Although four classical HSFs were discovered in mammals and two major HSFs, HSF1 and HSF2, were cloned in the same year of 1991, only HSF1 was intensively studied because HSF1 can give rise to heat shock response through the induction of various HSPs' expression. On the other hand, HSF2 was not well studied for some time, which was probably due to an underestimate of HSF2 itself. Since the beginning of the 21st century, HSF2 research has progressed and many biologically significant functions of HSF2 have been revealed. For example, the roles of HSF2 in nervous system protection, inflammation, maintenance of mitosis and meiosis, and cancer cell survival and death have been gradually unveiled. However, we feel that the fact HSF2 has a relationship with various factors is not yet widely recognized; therefore, the biological significance of HSF2 has been underestimated. We strongly hope to widely communicate the significance of HSF2 to researchers and readers in broad research fields through this review. In addition, we also hope that many readers will have great interest in the molecular mechanism in which HSF2 acts as an active transcription factor and gene bookmarking mechanism of HSF2 during cell cycle progression, as is summarized in this review.
Collapse
Affiliation(s)
- Yasuko Tokunaga
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan
| | - Ken-Ichiro Otsuyama
- Department of Clinical Laboratory Science, Faculty of Health Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Hayashida
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Correspondence: ; Tel.: +81-836-22-2359
| |
Collapse
|
11
|
Oroń M, Grochowski M, Jaiswar A, Legierska J, Jastrzębski K, Nowak-Niezgoda M, Kołos M, Kaźmierczak W, Olesiński T, Lenarcik M, Cybulska M, Mikula M, Żylicz A, Miączyńska M, Zettl K, Wiśniewski JR, Walerych D. The molecular network of the proteasome machinery inhibition response is orchestrated by HSP70, revealing vulnerabilities in cancer cells. Cell Rep 2022; 40:111428. [PMID: 36170818 DOI: 10.1016/j.celrep.2022.111428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Proteasome machinery is a major proteostasis control system in human cells, actively compensated upon its inhibition. To understand this compensation, we compared global protein landscapes upon the proteasome inhibition with carfilzomib, in normal fibroblasts, cells of multiple myeloma, and cancers of lung, colon, and pancreas. Molecular chaperones, autophagy, and endocytosis-related proteins are the most prominent vulnerabilities in combination with carfilzomib, while targeting of the HSP70 family chaperones HSPA1A/B most specifically sensitizes cancer cells to the proteasome inhibition. This suggests a central role of HSP70 in the suppression of the proteasome downregulation, allowing to identify pathways impinging on HSP70 upon the proteasome inhibition. HSPA1A/B indeed controls proteasome-inhibition-induced autophagy, unfolded protein response, and endocytic flux, and directly chaperones the proteasome machinery. However, it does not control the NRF1/2-driven proteasome subunit transcriptional bounce-back. Consequently, targeting of NRF1 proves effective in decreasing the viability of cancer cells with the inhibited proteasome and HSP70.
Collapse
Affiliation(s)
- Magdalena Oroń
- Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | | | | | | | - Kamil Jastrzębski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Małgorzata Kołos
- Central Clinical Hospital of Ministry of Interior and Administration, Warsaw, Poland
| | | | | | | | | | | | - Alicja Żylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Miączyńska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | - Dawid Walerych
- Mossakowski Medical Research Institute PAS, Warsaw, Poland.
| |
Collapse
|
12
|
Riccio A, Santopolo S, Rossi A, Piacentini S, Rossignol JF, Santoro MG. Impairment of SARS-CoV-2 spike glycoprotein maturation and fusion activity by nitazoxanide: an effect independent of spike variants emergence. Cell Mol Life Sci 2022; 79:227. [PMID: 35391601 PMCID: PMC8989121 DOI: 10.1007/s00018-022-04246-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2, the causative agent of COVID-19, has caused an unprecedented global health crisis. The SARS-CoV-2 spike, a surface-anchored trimeric class-I fusion glycoprotein essential for viral entry, represents a key target for developing vaccines and therapeutics capable of blocking virus invasion. The emergence of SARS-CoV-2 spike variants that facilitate virus spread and may affect vaccine efficacy highlights the need to identify novel antiviral strategies for COVID-19 therapy. Here, we demonstrate that nitazoxanide, an antiprotozoal agent with recognized broad-spectrum antiviral activity, interferes with SARS-CoV-2 spike maturation, hampering its terminal glycosylation at an endoglycosidase H-sensitive stage. Engineering multiple SARS-CoV-2 variant-pseudoviruses and utilizing quantitative cell–cell fusion assays, we show that nitazoxanide-induced spike modifications hinder progeny virion infectivity as well as spike-driven pulmonary cell–cell fusion, a critical feature of COVID-19 pathology. Nitazoxanide, being equally effective against the ancestral SARS-CoV-2 Wuhan-spike and different emerging variants, including the Delta variant of concern, may represent a useful tool in the fight against COVID-19 infections.
Collapse
Affiliation(s)
- Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Santopolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Rossi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Sara Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy. .,Institute of Translational Pharmacology, CNR, Rome, Italy.
| |
Collapse
|
13
|
Smith RS, Takagishi SR, Amici DR, Metz K, Gayatri S, Alasady MJ, Wu Y, Brockway S, Taiberg SL, Khalatyan N, Taipale M, Santagata S, Whitesell L, Lindquist S, Savas JN, Mendillo ML. HSF2 cooperates with HSF1 to drive a transcriptional program critical for the malignant state. SCIENCE ADVANCES 2022; 8:eabj6526. [PMID: 35294249 PMCID: PMC8926329 DOI: 10.1126/sciadv.abj6526] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/25/2022] [Indexed: 05/14/2023]
Abstract
Heat shock factor 1 (HSF1) is well known for its role in the heat shock response (HSR), where it drives a transcriptional program comprising heat shock protein (HSP) genes, and in tumorigenesis, where it drives a program comprising HSPs and many noncanonical target genes that support malignancy. Here, we find that HSF2, an HSF1 paralog with no substantial role in the HSR, physically and functionally interacts with HSF1 across diverse types of cancer. HSF1 and HSF2 have notably similar chromatin occupancy and regulate a common set of genes that include both HSPs and noncanonical transcriptional targets with roles critical in supporting malignancy. Loss of either HSF1 or HSF2 results in a dysregulated response to nutrient stresses in vitro and reduced tumor progression in cancer cell line xenografts. Together, these findings establish HSF2 as a critical cofactor of HSF1 in driving a cancer cell transcriptional program to support the anabolic malignant state.
Collapse
Affiliation(s)
- Roger S. Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Seesha R. Takagishi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158, USA
- Tetrad Graduate Program, UCSF, San Francisco, CA 94143, USA
| | - David R. Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kyle Metz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sitaram Gayatri
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Milad J. Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yaqi Wu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Master of Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Sonia Brockway
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephanie L. Taiberg
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Natalia Khalatyan
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Molecular Architecture of Life Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Jeffrey N. Savas
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Murugan NJ, Voutsadakis IA. Proteasome regulators in pancreatic cancer. World J Gastrointest Oncol 2022; 14:38-54. [PMID: 35116102 PMCID: PMC8790418 DOI: 10.4251/wjgo.v14.i1.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal cancers with rising incidence. Despite progress in its treatment, with the introduction of more effective chemotherapy regimens in the last decade, prognosis of metastatic disease remains inferior to other cancers with long term survival being the exception. Molecular characterization of pancreatic cancer has elucidated the landscape of the disease and has revealed common lesions that contribute to pancreatic carcinogenesis. Regulation of proteostasis is critical in cancers due to increased protein turnover required to support the intense metabolism of cancer cells. The proteasome is an integral part of this regulation and is regulated, in its turn, by key transcription factors, which induce transcription of proteasome structural units. These include FOXO family transcription factors, NFE2L2, hHSF1 and hHSF2, and NF-Y. Networks that encompass proteasome regulators and transduction pathways dysregulated in pancreatic cancer such as the KRAS/ BRAF/MAPK and the Transforming growth factor beta/SMAD pathway contribute to pancreatic cancer progression. This review discusses the proteasome and its transcription factors within the pancreatic cancer cellular micro-environment. We also consider the role of stemness in carcinogenesis and the use of proteasome inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Biology, Algoma University, Sault Sainte Marie P6A3T6, ON, Canada
| | - Ioannis A Voutsadakis
- Department of Medical Oncology, Sault Area Hospital, Sault Sainte Marie P6A3T6, ON, Canada
| |
Collapse
|
15
|
Chen F, Fan Y, Liu X, Zhang J, Shang Y, Zhang B, Liu B, Hou J, Cao P, Tan K. Pan-Cancer Integrated Analysis of HSF2 Expression, Prognostic Value and Potential Implications for Cancer Immunity. Front Mol Biosci 2022; 8:789703. [PMID: 35087869 PMCID: PMC8787226 DOI: 10.3389/fmolb.2021.789703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
Heat shock factor 2 (HSF2), a transcription factor, plays significant roles in corticogenesis and spermatogenesis by regulating various target genes and signaling pathways. However, its expression, clinical significance and correlation with tumor-infiltrating immune cells across cancers have rarely been explored. In the present study, we comprehensively investigated the expression dysregulation and prognostic significance of HSF2, and the relationship with clinicopathological parameters and immune infiltration across cancers. The mRNA expression status of HSF2 was analyzed by TCGA, GTEx, and CCLE. Kaplan-Meier analysis and Cox regression were applied to explore the prognostic significance of HSF2 in different cancers. The relationship between HSF2 expression and DNA methylation, immune infiltration of different immune cells, immune checkpoints, tumor mutation burden (TMB), and microsatellite instability (MSI) were analyzed using data directly from the TCGA database. HSF2 expression was dysregulated in the human pan-cancer dataset. High expression of HSF2 was associated with poor overall survival (OS) in BRCA, KIRP, LIHC, and MESO but correlated with favorable OS in LAML, KIRC, and PAAD. The results of Cox regression and nomogram analyses revealed that HSF2 was an independent factor for KIRP, ACC, and LIHC prognosis. GO, KEGG, and GSEA results indicated that HSF2 was involved in various oncogenesis- and immunity-related signaling pathways. HSF2 expression was associated with TMB in 9 cancer types and associated with MSI in 5 cancer types, while there was a correlation between HSF2 expression and DNA methylation in 27 types of cancer. Additionally, HSF2 expression was correlated with immune cell infiltration, immune checkpoint genes, and the tumor immune microenvironment in various cancers, indicating that HSF2 could be a potential therapeutic target for immunotherapy. Our findings revealed the important roles of HSF2 across different cancer types.
Collapse
Affiliation(s)
- Fei Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaopeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianhua Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanan Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Bo Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Bing Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiajie Hou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Ke Tan,
| |
Collapse
|
16
|
Brockway S, Wang G, Jackson JM, Amici DR, Takagishi SR, Clutter MR, Bartom ET, Mendillo ML. Quantitative and multiplexed chemical-genetic phenotyping in mammalian cells with QMAP-Seq. Nat Commun 2020; 11:5722. [PMID: 33184288 PMCID: PMC7661543 DOI: 10.1038/s41467-020-19553-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Chemical-genetic interaction profiling in model organisms has proven powerful in providing insights into compound mechanism of action and gene function. However, identifying chemical-genetic interactions in mammalian systems has been limited to low-throughput or computational methods. Here, we develop Quantitative and Multiplexed Analysis of Phenotype by Sequencing (QMAP-Seq), which leverages next-generation sequencing for pooled high-throughput chemical-genetic profiling. We apply QMAP-Seq to investigate how cellular stress response factors affect therapeutic response in cancer. Using minimal automation, we treat pools of 60 cell types—comprising 12 genetic perturbations in five cell lines—with 1440 compound-dose combinations, generating 86,400 chemical-genetic measurements. QMAP-Seq produces precise and accurate quantitative measures of acute drug response comparable to gold standard assays, but with increased throughput at lower cost. Moreover, QMAP-Seq reveals clinically actionable drug vulnerabilities and functional relationships involving these stress response factors, many of which are activated in cancer. Thus, QMAP-Seq provides a broadly accessible and scalable strategy for chemical-genetic profiling in mammalian cells. Identifying chemical-genetic interactions in mammalian cells is limited to low-throughput or computational methods. Here, the authors present QMAP-Seq, a broadly accessible and scalable approach that uses NGS for pooled high-throughput chemical-genetic profiling in mammalian cells.
Collapse
Affiliation(s)
- Sonia Brockway
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Geng Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jasen M Jackson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David R Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Seesha R Takagishi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthew R Clutter
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|