1
|
Nguyen A, Lugarini F, David C, Hosnani P, Alagöz Ç, Friedrich A, Schlütermann D, Knotkova B, Patel A, Parfentev I, Urlaub H, Meinecke M, Stork B, Faesen AC. Metamorphic proteins at the basis of human autophagy initiation and lipid transfer. Mol Cell 2023:S1097-2765(23)00321-0. [PMID: 37209685 DOI: 10.1016/j.molcel.2023.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Autophagy is a conserved intracellular degradation pathway that generates de novo double-membrane autophagosomes to target a wide range of material for lysosomal degradation. In multicellular organisms, autophagy initiation requires the timely assembly of a contact site between the ER and the nascent autophagosome. Here, we report the in vitro reconstitution of a full-length seven-subunit human autophagy initiation supercomplex built on a core complex of ATG13-101 and ATG9. Assembly of this core complex requires the rare ability of ATG13 and ATG101 to switch between distinct folds. The slow spontaneous metamorphic conversion is rate limiting for the self-assembly of the supercomplex. The interaction of the core complex with ATG2-WIPI4 enhances tethering of membrane vesicles and accelerates lipid transfer of ATG2 by both ATG9 and ATG13-101. Our work uncovers the molecular basis of the contact site and its assembly mechanisms imposed by the metamorphosis of ATG13-101 to regulate autophagosome biogenesis in space and time.
Collapse
Affiliation(s)
- Anh Nguyen
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Francesca Lugarini
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Céline David
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Pouya Hosnani
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Çağla Alagöz
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Barbora Knotkova
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Anoshi Patel
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Iwan Parfentev
- Max-Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Göttingen, Germany
| | - Henning Urlaub
- Max-Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Göttingen, Germany; University Medical Centre Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany
| | - Michael Meinecke
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alex C Faesen
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany.
| |
Collapse
|
2
|
Mavri M, Glišić S, Senćanski M, Vrecl M, Rosenkilde MM, Spiess K, Kubale V. Patterns of human and porcine gammaherpesvirus-encoded BILF1 receptor endocytosis. Cell Mol Biol Lett 2023; 28:14. [PMID: 36810008 PMCID: PMC9942385 DOI: 10.1186/s11658-023-00427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND The viral G-protein-coupled receptor (vGPCR) BILF1 encoded by the Epstein-Barr virus (EBV) is an oncogene and immunoevasin and can downregulate MHC-I molecules at the surface of infected cells. MHC-I downregulation, which presumably occurs through co-internalization with EBV-BILF1, is preserved among BILF1 receptors, including the three BILF1 orthologs encoded by porcine lymphotropic herpesviruses (PLHV BILFs). This study aimed to understand the detailed mechanisms of BILF1 receptor constitutive internalization, to explore the translational potential of PLHV BILFs compared with EBV-BILF1. METHODS A novel real-time fluorescence resonance energy transfer (FRET)-based internalization assay combined with dominant-negative variants of dynamin-1 (Dyn K44A) and the chemical clathrin inhibitor Pitstop2 in HEK-293A cells was used to study the effect of specific endocytic proteins on BILF1 internalization. Bioluminescence resonance energy transfer (BRET)-saturation analysis was used to study BILF1 receptor interaction with β-arrestin2 and Rab7. In addition, a bioinformatics approach informational spectrum method (ISM) was used to investigate the interaction affinity of BILF1 receptors with β-arrestin2, AP-2, and caveolin-1. RESULTS We identified dynamin-dependent, clathrin-mediated constitutive endocytosis for all BILF1 receptors. The observed interaction affinity between BILF1 receptors and caveolin-1 and the decreased internalization in the presence of a dominant-negative variant of caveolin-1 (Cav S80E) indicated the involvement of caveolin-1 in BILF1 trafficking. Furthermore, after BILF1 internalization from the plasma membrane, both the recycling and degradation pathways are proposed for BILF1 receptors. CONCLUSIONS The similarity in the internalization mechanisms observed for EBV-BILF1 and PLHV1-2 BILF1 provide a foundation for further studies exploring a possible translational potential for PLHVs, as proposed previously, and provides new information about receptor trafficking.
Collapse
Affiliation(s)
- Maša Mavri
- Institute for preclinical sciences, Veterinary Faculty, Ljubljana, Slovenia
| | - Sanja Glišić
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Milan Senćanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Milka Vrecl
- Institute for preclinical sciences, Veterinary Faculty, Ljubljana, Slovenia
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institute, Copenhagen, Denmark
| | - Valentina Kubale
- Institute for preclinical sciences, Veterinary Faculty, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Kozlov MM, Taraska JW. Generation of nanoscopic membrane curvature for membrane trafficking. Nat Rev Mol Cell Biol 2023; 24:63-78. [PMID: 35918535 DOI: 10.1038/s41580-022-00511-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.
Collapse
Affiliation(s)
- Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Yang C, Colosi P, Hugelier S, Zabezhinsky D, Lakadamyali M, Svitkina T. Actin polymerization promotes invagination of flat clathrin-coated lattices in mammalian cells by pushing at lattice edges. Nat Commun 2022; 13:6127. [PMID: 36253374 PMCID: PMC9576739 DOI: 10.1038/s41467-022-33852-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) requires energy input from actin polymerization in mechanically challenging conditions. The roles of actin in CME are poorly understood due to inadequate knowledge of actin organization at clathrin-coated structures (CCSs). Using platinum replica electron microscopy of mammalian cells, we show that Arp2/3 complex-dependent branched actin networks, which often emerge from microtubule tips, assemble along the CCS perimeter, lack interaction with the apical clathrin lattice, and have barbed ends oriented toward the CCS. This structure is hardly compatible with the widely held "apical pulling" model describing actin functions in CME. Arp2/3 complex inhibition or epsin knockout produce large flat non-dynamic CCSs, which split into invaginating subdomains upon recovery from Arp2/3 inhibition. Moreover, epsin localization to CCSs depends on Arp2/3 activity. We propose an "edge pushing" model for CME, wherein branched actin polymerization promotes severing and invagination of flat CCSs in an epsin-dependent manner by pushing at the CCS boundary, thus releasing forces opposing the intrinsic curvature of clathrin lattices.
Collapse
Affiliation(s)
- Changsong Yang
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Patricia Colosi
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Siewert Hugelier
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Daniel Zabezhinsky
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Melike Lakadamyali
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Tatyana Svitkina
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
5
|
Xiao Z, Huang X, Wu J, Liu T, Zhao L, Wang Q, Wang M, Shen M, Miao S, Guo D, Li H. The endocytosis of nano-Pt into non-small cell lung cancer H1299 cells and intravital therapeutic effect in vivo. Biochem Biophys Res Commun 2022; 606:80-86. [PMID: 35339756 DOI: 10.1016/j.bbrc.2022.03.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer remains the most common fatal malignant disease, and the 5-year survival rate of patients with metastasis is merely 6%. In this research, the platinum nanocluster (short for nano-Pt) was used for optical imaging without the help of other fluorescent probes and possess targeted antitumor activity as well as low systemic toxicity. The endocytic pathway and distribution of nano-Pt in non-small cell lung cancer NSCLC H1299 cells was explored by the means of quantitative and qualitative tests. Furthermore, the targeting capability and antitumor efficiency of nano-Pt was detected by intravital imaging experiment and antitumor experiment. The research implies that nano-Pt entered H1299 cells dominatingly through macropinocytosis and clathrin-dependent endocytosis pathway, and has significant antitumor efficiency, targeting properties and reliable safety for mouse tumor, indicating this nano-Pt has great potential for clinical diagnosis and therapy of NSCLC H1299 cells.
Collapse
Affiliation(s)
- Zhongqing Xiao
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Huang
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Jie Wu
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ting Liu
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710002, China
| | - Lingyun Zhao
- Department of Endocrinology of People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450008, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Minyu Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Meng Shen
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaoyi Miao
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Di Guo
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongyun Li
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Schiano Lomoriello I, Sigismund S, Day KJ. Biophysics of endocytic vesicle formation: A focus on liquid–liquid phase separation. Curr Opin Cell Biol 2022; 75:102068. [DOI: 10.1016/j.ceb.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
|
7
|
Tarasenko D, Meinecke M. Protein-dependent membrane remodeling in mitochondrial morphology and clathrin-mediated endocytosis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:295-306. [PMID: 33527201 PMCID: PMC8071792 DOI: 10.1007/s00249-021-01501-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
Cellular membranes can adopt a plethora of complex and beautiful shapes, most of which are believed to have evolved for a particular physiological reason. The closely entangled relationship between membrane morphology and cellular physiology is strikingly seen in membrane trafficking pathways. During clathrin-mediated endocytosis, for example, over the course of a minute, a patch of the more or less flat plasma membrane is remodeled into a highly curved clathrin-coated vesicle. Such vesicles are internalized by the cell to degrade or recycle plasma membrane receptors or to take up extracellular ligands. Other, steadier, membrane morphologies can be observed in organellar membranes like the endoplasmic reticulum or mitochondria. In the case of mitochondria, which are double membrane-bound, ubiquitous organelles of eukaryotic cells, especially the mitochondrial inner membrane displays an intricated ultrastructure. It is highly folded and consequently has a much larger surface than the mitochondrial outer membrane. It can adopt different shapes in response to cellular demands and changes of the inner membrane morphology often accompany severe diseases, including neurodegenerative- and metabolic diseases and cancer. In recent years, progress was made in the identification of molecules that are important for the aforementioned membrane remodeling events. In this review, we will sum up recent results and discuss the main players of membrane remodeling processes that lead to the mitochondrial inner membrane ultrastructure and in clathrin-mediated endocytosis. We will compare differences and similarities between the molecular mechanisms that peripheral and integral membrane proteins use to deform membranes.
Collapse
Affiliation(s)
- Daryna Tarasenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, 37077, Göttingen, Germany.
| |
Collapse
|