1
|
Zhi L, Zhang G, He M, Ma Y, Qin Q, Huang X, Huang Y. Grouper FTR14 negatively regulates inflammatory response by targeting TRAF4 and TRAF6. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110306. [PMID: 40180201 DOI: 10.1016/j.fsi.2025.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Accumulated evidence indicates that tripartite motif (TRIM) family proteins play crucial roles in host antiviral defense. Notably, the functions of members of fish-specific TRIM (FTR, also known as finTRIM) subfamily remained largely unknown. Our recent results revealed that grouper FTR14 (EcFTR14) could negatively regulate interferon response by targeting TBK1-IRF3 axis. In this study, the regulatory mechanism underlying the action of EcFTR14 on host inflammatory response was elucidated. Using yeast two-hybrid screening, we found that EcFTR14 interacted with EcTRAF4 and EcTRAF6 which was further confirmed by Co-immunoprecipitation (Co-IP) assay. EcFTR14 could recruit the interacting proteins for their co-localization in vitro. Moreover, EcFTR14 hindered the activation of the NF-κB promoter induced by EcTRAF6, but enhanced the inhibitory effect of EcTRAF4. Consistently, overexpression of EcFTR14 significantly reduced the transcriptional levels of pro-inflammatory factors induced by EcTRAF6. Additionally, EcFTR14 degraded EcTRAF6 via the ubiquitin-proteasome pathway, leading to the abatement of EcTRAF6-induced antiviral effects. Conversely, overexpression of EcFTR14 enhanced the pro-viral effect of EcTRAF4. Together, our results suggested that EcFTR14 could negatively regulate the inflammatory response by targeting TRAF4/6, which might be an alternative mechanism for its function as a pro-viral factor.
Collapse
Affiliation(s)
- Linyong Zhi
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guimei Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Min He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yiting Ma
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
2
|
Li S, Jiang W, Chen F, Qian J, Yang J. The critical role of TRIM protein family in intervertebral disc degeneration: mechanistic insights and therapeutic perspectives. Front Cell Dev Biol 2025; 13:1525073. [PMID: 39981097 PMCID: PMC11839679 DOI: 10.3389/fcell.2025.1525073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of chronic back pain, contributing significantly to reduced quality of life and global public health burdens. The TRIM (Tripartite Motif-containing) protein family, with its diverse regulatory roles, has emerged as a key player in critical cellular processes such as inflammation, cell death, and extracellular matrix (ECM) metabolism. Recent findings underscore the involvement of TRIM proteins in IVDD pathogenesis, where they regulate stress responses, maintain cellular homeostasis, and influence the functional integrity of nucleus pulposus (NP) and annulus fibrosus (AF) cells. This review explores the multifaceted roles of TRIM proteins in IVDD, highlighting their contributions to pathological pathways and their potential as therapeutic targets. Advancing our understanding of TRIM protein-mediated mechanisms may pave the way for innovative and precise therapeutic strategies to combat IVDD.
Collapse
Affiliation(s)
- Shangze Li
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Fei Chen
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| | - Jiao Qian
- Department of Pharmacy, The First Affiliated Hospital (Shanghai Changhai Hospital), Naval Medical University, Shanghai, China
| | - Jun Yang
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Arfeen M, Dhaked DK, Mani V. Multipotent Effect of Clozapine on Lipopolysaccharide-Induced Acetylcholinesterase, Cyclooxygenase-2,5-Lipoxygenase, and Caspase-3: In Vivo and Molecular Modeling Studies. Molecules 2025; 30:266. [PMID: 39860136 PMCID: PMC11767763 DOI: 10.3390/molecules30020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD. Structure-based virtual screening of US-FDA-approved molecules from the ZINC15 database identified clozapine (CLOZ) as the dual inhibitor of COX-2 and AChE, with significant binding affinity. Further molecular docking of CLOZ in the active site of LOX and Caspase-3 also showed significant binding potential. Further, the results from molecular docking were validated using molecular dynamics simulation (MDS) studies, confirming the results from molecular docking. The results from MDS showed good binding potential and interactions with key residues. The CLOZ was further assessed using lipopolysaccharide (LPS)-challenged rats treated for thirty days at doses of 5 and 10 mg/kg, p.o. The results demonstrated modulation of COX-2, 5-LOX, AChE, Caspase-3, and MDA in LPS-induced brains. Additionally, the expression level of IL-10 was also measured. Our results showed a significant decrease in the levels of COX-2, 5-LOX, AChE, Caspase-3, and MDA. Our results also showed a significant decrement in the pro-inflammatory markers NF-κB, TNF-α, and IL-6 and an improvement in the levels of anti-inflammatory markers IL-10 and TGF-β1. Overall, the findings indicate that CLOZ has potential for neuroprotective effects against LPS-treated rats and can be explored.
Collapse
Affiliation(s)
- Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata 700054, India;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
4
|
Okada N, Oshima K, Maruko A, Sekine M, Ito N, Wakasugi A, Mori E, Odaguchi H, Kobayashi Y. Intron retention as an excellent marker for diagnosing depression and for discovering new potential pathways for drug intervention. Front Psychiatry 2024; 15:1450708. [PMID: 39364384 PMCID: PMC11446786 DOI: 10.3389/fpsyt.2024.1450708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background Peripheral inflammation is often associated with depressive disorders, and immunological biomarkers of depression remain a focus of investigation. Methods We performed RNA-seq analysis of RNA transcripts of human peripheral blood mononuclear cells from a case-control study including subjects with self-reported depression in the pre-symptomatic state of major depressive disorder and analyzed differentially expressed genes (DEGs) and the frequency of intron retention (IR) using rMATS. Results Among the statistically significant DEGs identified, the 651 upregulated DEGs were particularly enriched in the term "bacterial infection and phagocytosis", whereas the 820 downregulated DEGs were enriched in the terms "antigen presentation" and "T-cell proliferation and maturation". We also analyzed 158 genes for which the IR was increased (IncIR) and 211 genes for which the IR was decreased (DecIR) in the depressed subjects. Although the Gene Ontology terms associated with IncIR and DecIR were very similar to those of the up- and downregulated genes, respectively, IR genes appeared to be particularly enriched in genes with sensor functions, with a preponderance of the term "ciliary assembly and function". The observation that IR genes specifically interact with innate immunity genes suggests that immune-related genes, as well as cilia-related genes, may be excellent markers of depression. Re-analysis of previously published RNA-seq data from patients with MDD showed that common IR genes, particularly our predicted immune- and cilia-related genes, are commonly detected in populations with different levels of depression, providing validity for using IR to detect depression. Conclusion Depression was found to be associated with activation of the innate immune response and relative inactivation of T-cell signaling. The DEGs we identified reflect physiological demands that are controlled at the transcriptional level, whereas the IR results reflect a more direct mechanism for monitoring protein homeostasis. Accordingly, an alteration in IR, namely IncIR or DecIR, is a stress response, and intron-retained transcripts are sensors of the physiological state of the cytoplasm. The results demonstrate the potential of relative IR as a biomarker for the immunological stratification of depressed patients and the utility of IR for the discovery of novel pathways involved in recovery from depression.
Collapse
Affiliation(s)
- Norihiro Okada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akiko Maruko
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Mariko Sekine
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Naoki Ito
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akino Wakasugi
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Eiko Mori
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
5
|
Hernández-Sarmiento LJ, Tamayo-Molina YS, Valdés-López JF, Urcuqui-Inchima S. Interleukin 27, Similar to Interferons, Modulates Gene Expression of Tripartite Motif (TRIM) Family Members and Interferes with Mayaro Virus Replication in Human Macrophages. Viruses 2024; 16:996. [PMID: 38932287 PMCID: PMC11209095 DOI: 10.3390/v16060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The Tripartite motif (TRIM) family includes more than 80 distinct human genes. Their function has been implicated in regulating important cellular processes, including intracellular signaling, transcription, autophagy, and innate immunity. During viral infections, macrophages are key components of innate immunity that produce interferons (IFNs) and IL27. We recently published that IL27 and IFNs induce transcriptional changes in various genes, including those involved in JAK-STAT signaling. Furthermore, IL27 and IFNs share proinflammatory and antiviral pathways in monocyte-derived macrophages (MDMs), resulting in both common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs) encoding antiviral proteins. Interestingly, many TRIM proteins have been recognized as ISGs in recent years. Although it is already very well described that TRIM expression is induced by IFNs, it is not fully understood whether TRIM genes are induced in macrophages by IL27. Therefore, in this study, we examined the effect of stimulation with IL27 and type I, II, and III IFNs on the mRNA expression profiles of TRIM genes in MDMs. METHODS We used bulk RNA-seq to examine the TRIM expression profile of MDMs treated with IFNs or IL27. Initially, we characterized the expression patterns of different TRIM subfamilies using a heatmap. Subsequently, a volcano plot was employed to identify commonly differentially expressed TRIM genes. Additionally, we conducted gene ontology analysis with ClueGO to explore the biological processes of the regulated TRIMs, created a gene-gene interaction network using GeneMANIA, and examined protein-protein interactions with the STRING database. Finally, RNA-seq data was validated using RT-qPCR. Furthermore, the effect of IL27 on Mayaro virus replication was also evaluated. RESULTS We found that IL27, similar to IFNs, upregulates several TRIM genes' expression in human macrophages. Specifically, we identified three common TRIM genes (TRIM19, 21, and 22) induced by IL27 and all types of human IFNs. Additionally, we performed the first report of transcriptional regulation of TRIM19, 21, 22, and 69 genes in response to IL27. The TRIMs involved a broad range of biological processes, including defense response to viruses, viral life cycle regulation, and negative regulation of viral processes. In addition, we observed a decrease in Mayaro virus replication in MDMs previously treated with IL27. CONCLUSIONS Our results show that IL27, like IFNs, modulates the transcriptional expression of different TRIM-family members involved in the induction of innate immunity and an antiviral response. In addition, the functional analysis demonstrated that, like IFN, IL27 reduced Mayaro virus replication in MDMs. This implies that IL27 and IFNs share many similarities at a functional level. Moreover, identifying distinct TRIM groups and their differential expressions in response to IL27 provides new insights into the regulatory mechanisms underlying the antiviral response in human macrophages.
Collapse
Affiliation(s)
| | | | | | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050001, Colombia; (L.J.H.-S.); (Y.S.T.-M.); (J.F.V.-L.)
| |
Collapse
|
6
|
Liu W, Yang L, Di C, Sun J, Liu P, Liu H. Nonstructural Protein A238L of the African Swine Fever Virus (ASFV) Enhances Antiviral Immune Responses by Activating the TBK1-IRF3 Pathway. Vet Sci 2024; 11:252. [PMID: 38921999 PMCID: PMC11209439 DOI: 10.3390/vetsci11060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
African swine fever virus (ASFV) is a double-stranded DNA virus with an envelope. ASFV has almost the largest genome among all DNA viruses, and its mechanisms of immune evasion are complex. Better understanding of the molecular mechanisms of ASFV genes will improve vaccine design. A238L, a nonstructural protein of ASFV, inhibits NF-κB activation by suppressing the HAT activity of p300. Whether A238L also affects the transcriptional activity of IRF3 remains unexplored. Here we first confirmed the ability of A238L to suppress NF-κB-activity in L929 cells. A238L inhibits the expression of proinflammatory cytokine genes. In contrast, A238L increased the phosphorylation levels of TBK1 and IRF3 in three different cell lines. A238L increases the IRF3-driven promoter activity and induces IRF3 nuclear translocation. Furthermore, A238L enhanced innate antiviral immunity in the absence or presence of poly d (A:T) or poly (I:C) stimulation, or herpes simplex virus type 1 (HSV-1) or Sendai virus (SeV) infection. This study reveals a previously unrecognized role of A238L in promoting antiviral immune responses by TBK1-IRF3 pathway activation.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Lanlan Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.L.)
| | - Chuanyuan Di
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.L.)
| | - Jing Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.L.)
| | - Penggang Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Huisheng Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.L.)
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Goyani S, Shinde A, Shukla S, Saranga MV, Currim F, Mane M, Singh J, Roy M, Gohel D, Chandak N, Vasiyani H, Singh R. Enhanced translocation of TRIM32 to mitochondria sensitizes dopaminergic neuronal cells to apoptosis during stress conditions in Parkinson's disease. FEBS J 2024; 291:2636-2655. [PMID: 38317520 DOI: 10.1111/febs.17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/29/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by progressive loss of dopamine-producing neurons from the substantia nigra region of the brain. Mitochondrial dysfunction is one of the major causes of oxidative stress and neuronal cell death in PD. E3 ubiquitin ligases such as Parkin (PRKN) modulate mitochondrial quality control in PD; however, the role of other E3 ligases associated with mitochondria in the regulation of neuronal cell death in PD has not been explored. The current study investigated the role of TRIM32, RING E3 ligase, in sensitization to oxidative stress-induced neuronal apoptosis. The expression of TRIM32 sensitizes SH-SY5Y dopaminergic cells to rotenone and 6-OHDA-induced neuronal death, whereas the knockdown increased cell viability under PD stress conditions. The turnover of TRIM32 is enhanced under PD stress conditions and is mediated by autophagy. TRIM32 translocation to mitochondria is enhanced under PD stress conditions and localizes on the outer mitochondrial membrane. TRIM32 decreases complex-I assembly and activity as well as mitochondrial reactive oxygen species (ROS) and ATP levels under PD stress. Deletion of the RING domain of TRIM32 enhanced complex I activity and rescued ROS levels and neuronal viability under PD stress conditions. TRIM32 decreases the level of XIAP, and co-expression of XIAP with TRIM32 rescued the PD stress-induced cell death and mitochondrial ROS level. In conclusion, turnover of TRIM32 increases during stress conditions and translocation to mitochondria is enhanced, regulating mitochondrial functions and neuronal apoptosis by modulating the level of XIAP in PD.
Collapse
Affiliation(s)
- Shanikumar Goyani
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - M V Saranga
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Fatema Currim
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Milton Roy
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dhruv Gohel
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nisha Chandak
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| |
Collapse
|
8
|
Shinde A, Tang X, Singh R, Brindley DN. Infliximab, a Monoclonal Antibody against TNF-α, Inhibits NF-κB Activation, Autotaxin Expression and Breast Cancer Metastasis to Lungs. Cancers (Basel) 2023; 16:52. [PMID: 38201482 PMCID: PMC10778319 DOI: 10.3390/cancers16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
An inflammatory milieu in the tumor microenvironment leads to immune evasion, resistance to cell death, metastasis and poor prognosis in breast cancer patients. TNF-α is a proinflammatory cytokine that regulates multiple aspects of tumor biology from initiation to progression. TNF-α-induced NF-κB activation initiates inflammatory pathways, which determine cell survival, death and tumor progression. One candidate pathway involves the increased secretion of autotaxin, which produces lysophosphatidate that signals through six G-protein-coupled receptors. Significantly, autotaxin is one of the 40-50 most upregulated genes in metastatic tumors. In this study, we investigated the effects of TNF-α by blocking its action with a monoclonal antibody, Infliximab, and studied the effects on autotaxin secretion and tumor progression. Infliximab had little effect on tumor growth, but it decreased lung metastasis by 60% in a syngeneic BALB/c mouse model using 4T1 breast cancer cells. Infliximab-treated mice also showed a decrease in proliferation and metastatic markers like Ki-67 and vimentin in tumors. This was accompanied by decreases in NF-κB activation, autotaxin expression and the concentrations of plasma and tumor cytokines/chemokines which are involved in metastasis. We also demonstrated a positive correlation of TNF-α -NF-κB and ATX expression in breast cancer patients using cancer databases. Studies in vitro showed that TNF-α-induced NF-κB activation increases autotaxin expression and the clone forming ability of 4T1 breast cancer cells. This report highlights the potential role of Infliximab as an additional approach to attenuate signaling through the autotaxin-lysophosphatidate-inflammatory cycle and decrease mortality from metastatic cancer.
Collapse
Affiliation(s)
- Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara 390002, Gujarat, India;
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara 390002, Gujarat, India;
- Department of Molecular and Human Genetics, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
9
|
Establishment of Epithelial Inflammatory Injury Model Using Intestinal Organoid Cultures. Stem Cells Int 2023; 2023:3328655. [PMID: 36926182 PMCID: PMC10014157 DOI: 10.1155/2023/3328655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Intestinal epithelial dysfunction is critical in the development of inflammatory bowel disease (IBD). However, most cellular experiments related to epithelial barrier studies in IBD have been based on tumor cell line that lack a variety of intestinal epithelial cell types. Thus, intestinal organoids can present the three-dimensional structure and better simulate the physiological structure and function of the intestinal epithelium in vitro. Here, the crypts were isolated from the small intestine of mice; with the participation of major cytokines (EGF, Noggin, and R-Spondin 1 included), the intestinal organoids were established at a density of 100 crypts per well, containing intestinal stem cells (ISC), Paneth cells, goblet cells, and intestinal endocrine cells. We found that tumor necrosis factor-alpha (TNF-α) could induce the inflammatory response of intestinal organoids, and a dose of 10 ng/mL could maintain stable passaging of organoids for dynamic observation. After stimulation with TNF-α, the intestinal organoid cultures showed lower expression of the cell proliferation-related protein identified by monoclonal antibody Ki 67 (Ki67), the ISC marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5), and the intestinal tight junction proteins occludin (Ocln) and claudin-1 (Cldn1) while higher expression of the inflammatory cytokine interleukin- (IL-) 15 and the chemokines C-X-C motif ligand 2 (Cxcl2) and Cxcl10 significantly. In this study, we successfully established an epithelial inflammatory injury model of intestinal organoids, which provides an effective in vitro model for studying the pathogenesis and treatment of IBD.
Collapse
|
10
|
Hou L, Wang D, Yin K, Zhang Y, Lu H, Guo T, Li J, Zhao H, Xing M. Polystyrene microplastics induce apoptosis in chicken testis via crosstalk between NF-κB and Nrf2 pathways. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109444. [PMID: 36007826 DOI: 10.1016/j.cbpc.2022.109444] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
Microplastics (MPs) are a new type of pollutants that are widespread in nature, and their toxic effects on humans or animals are receiving attention. Birds are in a higher ecological niche in nature, and MPs may have potential bioaccumulation and biomagnification risks to birds. The mechanisms underlying the reproductive toxicity of MPs to birds are mainly unknown. To study the reproductive toxicity of MPs to birds, we randomly divided chickens into six groups and exposed polystyrene microplastics (PS-MPs) through drinking water (0, 1, and 100 mg/L) for 28 and 42 days. We found that PS-MPs caused testicular inflammatory infiltration and interstitial hemorrhage, resulting in testicular tissue damage; the expression of Claudin3 and Occludin in the blood-testis barrier (BTB) decreased and may damage the integrity of the BTB. PS-MPs exposure inhibited the expression of the Nrf2-Keap1 pathway, which in turn reduced HO-1 and NQO1, simultaneous GSH and T-AOC were also reduced, resulting in an imbalance of the redox system; in addition, the NF-κB signaling pathway was activated, increasing the expression of TNF-α, COX-2 and iNOS. Under redox system imbalance and inflammatory stress, exposure to PS-MPs led to decreased expression of Bcl-2 and increased Bax, cytc, caspase-8, and caspase-3, etc., activating apoptosis, and ultimately causing testicular damage. These results suggested that PS-MPs exposure led to an imbalance of the redox system and an inflammatory response, inducing both endogenous and exogenous apoptosis, resulting in testicular tissue damage. Our study provides a theoretical basis for reproductive injury mechanisms in chicken.
Collapse
Affiliation(s)
- Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Junbo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
11
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
12
|
Jiao F, Tan Z, Yu Z, Zhou B, Meng L, Shi X. The phytochemical and pharmacological profile of taraxasterol. Front Pharmacol 2022; 13:927365. [PMID: 35991893 PMCID: PMC9386448 DOI: 10.3389/fphar.2022.927365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Taraxasterol is one of the bioactive triterpenoids found in dandelion, a member of the family Asteraceae. In the animal or cellular models of several ailments, including liver damage, gastritis, colitis, arthritis, pneumonia, tumors, and immune system diseases, taraxasterol has been shown to have significant preventive and therapeutic effects. This review aims to evaluate the current state of research and provide an overview of the possible applications of taraxasterol in various diseases. The reported phytochemical properties and pharmacological actions of taraxasterol, including anti-inflammatory, anti-oxidative, and anti-carcinogenic properties, and its potential molecular mechanisms in developing these diseases are highlighted. Finally, we further explored whether taraxasterol has protective effects on neuronal death in neurodegenerative diseases. In addition, more animal and clinical studies are also required on the metabolism, bioavailability, and safety of taraxasterol to support its applications in pharmaceuticals and medicine.
Collapse
Affiliation(s)
- Fengjuan Jiao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
- *Correspondence: Fengjuan Jiao,
| | - Zengyue Tan
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Zhonghua Yu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Bojie Zhou
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Lingyan Meng
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xinyue Shi
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
13
|
Hu W, Liu D, Li R, Qian H, Qiu W, Ye Q, Kong F. Comprehensive Analysis of TRIM Family Genes in Hepatitis Virus B-Related Hepatoma Carcinoma. Front Genet 2022; 13:913743. [PMID: 35873464 PMCID: PMC9301387 DOI: 10.3389/fgene.2022.913743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background: As significant components of E3 ligases, the tripartite motif (TRIM) proteins participate in various biological processes and facilitate the development of several diseases. Nevertheless, the correlations of TIRMs with hepatitis B virus (HBV)-positive hepatoma carcinoma (HCC) are not well elaborated. Methods: The expression profile of TRIM genes in HBV-associated HCC and related clinical information were extracted from the Cancer Genome Atla (TCGA) database and the International Cancer Genome Consortium (ICGC) database. Dependent on the ConsensusPathDB and STRING databases, the gene ontology, Reactome pathways, and protein-protein interaction were assessed. Relied on TIMER 2.0 database, the relationship of the TRIMs with immune infiltration was investigated. Using multivariate analysis and Kaplan Meier analysis, the association between TRIM genes and the prognostic value was examined. Results: A total of 17 TRIM genes, including TRIM16, TRIM17, and TRIM31 with fold change no less than 1.5, were discovered to upregulate in HBV-associated HCC in both TCGA and ICGC cohorts. Relied on gene enrichment analysis, the identified TRIMs were observed to not only be related to the interferon and cytokine signaling but also linked to the adaptive immune system. Particularly, the co-expression patterns of identified TRIMs with other E3 ligase genes and many innate immune genes that are associated with Toll-like receptor signaling, apoptosis, and SUMOylation. Besides, some of identified TRIM expressions were also linked to the infiltration levels of T cells and B cells. Additionally, several TRIM genes were associated with various clinical factors and relevant to the poor survival of HBV-associated HCC. Conclusion: Our findings could deepen our understanding of TRIMs and their correlations with HBV-associated HCC. Furthermore, some of these TRIMs may be utilized as new prognostic markers of HBV-related HCC prognosis, or act as potential molecular targets for the disease.
Collapse
Affiliation(s)
- Wei Hu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Dongsheng Liu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Renjie Li
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Hong Qian
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Wei Qiu
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Qingwang Ye
- NanJing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Fanyun Kong,
| |
Collapse
|