1
|
Pfister JA, Agostini L, Bournonville L, Perrier A, Sankaralingam P, Bell ZG, Hamel V, Guichard P, Biertümpfel C, Mizuno N, O'Connell KF. C. elegans SSNA-1 is required for the structural integrity of centrioles and bipolar spindle assembly. Nat Commun 2025; 16:5220. [PMID: 40473601 PMCID: PMC12141670 DOI: 10.1038/s41467-025-59939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 05/09/2025] [Indexed: 06/11/2025] Open
Abstract
Centrioles play key roles in mitotic spindle assembly. Once assembled, centrioles exhibit long-term stability, but how stability is achieved and how it is regulated are not completely understood. In this study we show that SSNA-1, the Caenorhabditis elegans ortholog of Sjogren's Syndrome Nuclear Antigen 1, is a constituent of centrioles and centriole satellite-like structures. A deletion of ssna-1 results in the formation of extra centrioles. We show that SSNA-1 genetically interacts with the centriole stability factor SAS-1 and is required post assembly for centriole structural integrity. In SSNA-1's absence, centrioles assemble but fracture leading to extra spindle poles. However, if the efficiency of cartwheel assembly is reduced, the absence of SSNA-1 results in daughter centriole loss and monopolar spindles, indicating that the cartwheel and SSNA-1 cooperate to stabilize centrioles during assembly. Our work thus shows that SSNA-1 contributes to centriole stability during and after assembly, thereby ensuring proper centriole number.
Collapse
Affiliation(s)
- Jason A Pfister
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lorenzo Agostini
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lorène Bournonville
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Aurélien Perrier
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zachary G Bell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Kevin F O'Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Fernandes-Mariano C, Bugalhão JN, Santos D, Bettencourt-Dias M. Centrosome biogenesis and maintenance in homeostasis and disease. Curr Opin Cell Biol 2025; 94:102485. [PMID: 39999675 DOI: 10.1016/j.ceb.2025.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Recent technological advances in proteomics and microscopy techniques, such as cryo-electron microscopy (cryoEM) and expansion microscopy (ExM), have enhanced our understanding of centrosome structure, biogenesis, and regulation. Here we discuss new insights into centrosome structure, highlight new regulatory mechanisms in centrosome biogenesis, and explore emerging concepts in centrosome maintenance and plasticity across different contexts. Furthermore, we review how centrosome biogenesis and homeostasis are dysregulated in various pathological conditions. We finalise by outlining outstanding questions in the field, how the mechanisms discussed are regulated across multiple contexts, the balance between centriole stability and plasticity, and the therapeutic potential of targeting centrosome dysfunction in disease.
Collapse
Affiliation(s)
- Camila Fernandes-Mariano
- Gulbenkian Institute of Molecular Medicine (GIMM), Portugal; Católica Biomedical Research Centre (CBR), Portugal
| | | | - Diana Santos
- Gulbenkian Institute of Molecular Medicine (GIMM), Portugal
| | | |
Collapse
|
3
|
Dominguez-Vigil IG, Banik K, Baro M, Contessa JN, Hayman TJ. PLK4 inhibition as a strategy to enhance non-small cell lung cancer radiosensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638860. [PMID: 40027806 PMCID: PMC11870518 DOI: 10.1101/2025.02.19.638860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer and comprises 85% of cases. Despite treatment advances, local control after curative-intent chemoradiation for NSCLC remains suboptimal. Polo-like kinase 4 (PLK4) is a serine-threonine kinase that plays a critical role in the regulation of centrosome duplication and cell cycle progression and is overexpressed in NSCLC, thus, making it a potential therapeutic target. CFI-400945 is an orally available PLK4 inhibitor currently undergoing clinical trial evaluation. As radiation causes cell death primarily by mitotic catastrophe, a process enhanced by alterations in centrosome amplification, we hypothesized that disruption of the mitotic machinery by inhibition of PLK4 would enhance the effects of radiation in NSCLC. PLK4 inhibition by CFI-400945 resulted in radiosensitization of NSCLC cell lines. In contrast, CFI-400945 had no effect on the radiosensitivity of normal lung fibroblasts. PLK4 inhibition did not affect cell-cycle phase distribution prior to radiation, but rather the combination of CFI-400945 and radiation resulted in increased G2/M cell cycle arrest, increased centrosome amplification, and a concomitant increase in cell death through mitotic catastrophe. Lastly, CFI-400945 treatment enhanced the radiation-induced tumor growth delay of NSCLC tumor xenografts. These data indicate that targeting PLK4 is a novel approach to enhance the radiation sensitivity of NSCLC in vitro and in vivo through potentiation of centrosome amplification and cell death through mitotic catastrophe.
Collapse
|
4
|
Flashner S, Azizkhan-Clifford J. Emerging Roles for Transcription Factors During Mitosis. Cells 2025; 14:263. [PMID: 39996736 PMCID: PMC11853531 DOI: 10.3390/cells14040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The genome is dynamically reorganized, partitioned, and divided during mitosis. Despite their role in organizing interphase chromatin, transcription factors were largely believed to be mitotic spectators evicted from chromatin during mitosis, only able to reestablish their position on DNA upon entry into G1. However, a panoply of evidence now contradicts this early belief. Numerous transcription factors are now known to remain active during mitosis to achieve diverse purposes, including chromosome condensation, regulation of the centromere/kinetochore function, and control of centrosome homeostasis. Inactivation of transcription factors during mitosis results in chromosome segregation errors, key features of cancer. Moreover, active transcription and the production of centromere-derived transcripts during mitosis are also known to play key roles in maintaining chromosomal stability. Finally, many transcription factors are associated with chromosomal instability through poorly defined mechanisms. Herein, we will review the emerging roles of transcription factors and transcription during mitosis with a focus on their role in promoting the faithful segregation of sister chromatids.
Collapse
Affiliation(s)
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
5
|
Hanna SM, Tavafoghi B, Chen JS, Howard I, Ren L, Willet AH, Gould KL. New mutations in the core Schizosaccharomyces pombe spindle pole body scaffold Ppc89 reveal separable functions in regulating cell division. G3 (BETHESDA, MD.) 2025; 15:jkae249. [PMID: 39471327 PMCID: PMC11708228 DOI: 10.1093/g3journal/jkae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and also serve as signaling platforms. In the fission yeast Schizosaccharomyces pombe, genetic ablation and high-resolution imaging indicate that the α-helical Ppc89 is central to SPB structure and function. Here, we developed and characterized conditional and truncation mutants of ppc89. Alleles with mutations in 2 predicted α-helices near the C-terminus were specifically defective in anchoring Sid4, the scaffold for the septation initiation network (SIN), and proteins dependent on Sid4 (Cdc11, Dma1, Mto1, and Mto2). Artificial tethering of Sid4 to the SPB fully rescued these ppc89 mutants. Another ppc89 allele had mutations located throughout the coding region. While this mutant was also defective in Sid4 anchoring, it displayed additional defects including fragmented SPBs and forming and constricting a second cytokinetic ring in 1 daughter cell. These defects were shared with a ppc89 allele truncated of the most C-terminal predicted α-helices that is still able to recruit Sid4 and the SIN. We conclude that Ppc89 not only tethers the SIN to the SPB but is also necessary for the integrity of the SPB and faithful coordination of cytokinesis with mitosis.
Collapse
Affiliation(s)
- Sarah M Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Bita Tavafoghi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Isaac Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Pfister JA, Agostini L, Bournonville L, Sankaralingam P, Bell ZG, Hamel V, Guichard P, Biertümpfel C, Mizuno N, O’Connell KF. The C. elegans homolog of Sjögren's Syndrome Nuclear Antigen 1 is required for the structural integrity of the centriole and bipolar mitotic spindle assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.616528. [PMID: 39803516 PMCID: PMC11722412 DOI: 10.1101/2024.10.03.616528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Centrioles play central roles in ciliogenesis and mitotic spindle assembly. Once assembled, centrioles exhibit long-term stability, a property essential for maintaining numerical control. How centriole stability is achieved and how it is lost in certain biological contexts are still not completely understood. In this study we show that SSNA-1, the Caenorhabditis elegans ortholog of Sjogren's Syndrome Nuclear Antigen 1, is a centriole constituent that localizes close to the microtubule outer wall, while also exhibiting a developmentally regulated association with centriole satellite-like structures. A complete deletion of the ssna-1 gene results in an embryonic lethal phenotype marked by the appearance of extra centrioles and spindle poles. We show that SSNA-1 genetically interacts with the centriole stability factor SAS-1 and is required post assembly for centriole structural integrity. In SSNA-1's absence, centrioles assemble but fracture leading to extra spindle poles. However, if the efficiency of cartwheel assembly is reduced, the absence of SSNA-1 results in daughter centriole loss and monopolar spindle formation, indicating that the cartwheel and SSNA-1 cooperate to stabilize the centriole during assembly. Our work thus shows that SSNA-1 contributes to centriole stability during and after assembly, thereby ensuring proper centriole number.
Collapse
Affiliation(s)
- Jason A. Pfister
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lorenzo Agostini
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lorène Bournonville
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zachary G. Bell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin F. O’Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Chen JS, Igarashi MG, Ren L, Hanna SM, Turner LA, McDonald NA, Beckley JR, Willet AH, Gould KL. The core spindle pole body scaffold Ppc89 links the pericentrin orthologue Pcp1 to the fission yeast spindle pole body via an evolutionarily conserved interface. Mol Biol Cell 2024; 35:ar112. [PMID: 38985524 PMCID: PMC11321043 DOI: 10.1091/mbc.e24-05-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and serve as cellular signaling platforms. Although centrosomes and SPBs differ in morphology, many mechanistic insights into centrosome function have been gleaned from SPB studies. In the fission yeast Schizosaccharomyces pombe, the α-helical protein Ppc89, identified based on its interaction with the septation initiation network scaffold Sid4, comprises the SPB core. High-resolution imaging has suggested that SPB proteins assemble on the Ppc89 core during SPB duplication, but such interactions are undefined. Here, we define a connection between Ppc89 and the essential pericentrin Pcp1. Specifically, we found that a predicted third helix within Ppc89 binds the Pcp1 pericentrin-AKAP450 centrosomal targeting (PACT) domain complexed with calmodulin. Ppc89 helix 3 contains similarity to present in the N-terminus of Cep57 (PINC) motifs found in the centrosomal proteins fly SAS-6 and human Cep57 and also to the S. cerevisiae SPB protein Spc42. These motifs bind pericentrin-calmodulin complexes and AlphaFold2 models suggest a homologous complex assembles in all four organisms. Mutational analysis of the S. pombe complex supports the importance of Ppc89-Pcp1 binding interface in vivo. Our studies provide insight into the core architecture of the S. pombe SPB and suggest an evolutionarily conserved mechanism of scaffolding pericentrin-calmodulin complexes for mitotic spindle formation.
Collapse
Affiliation(s)
- Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Sarah M. Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Janel R. Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
8
|
Zheng H, Zhang Q, Liu X, Shi F, Yang F, Xiang S, Jiang H. Aurora-A condensation mediated by BuGZ aids its mitotic centrosome functions. iScience 2024; 27:109785. [PMID: 38746663 PMCID: PMC11090908 DOI: 10.1016/j.isci.2024.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/30/2023] [Accepted: 04/16/2024] [Indexed: 03/17/2025] Open
Abstract
Centrosomes composed of centrioles and the pericentriolar material (PCM), serve as the platform for microtubule polymerization during mitosis. Despite some centriole and PCM proteins have been reported to utilize liquid-liquid phase separation (LLPS) to perform their mitotic functions, whether and how centrosomal kinases exert the coacervation in mitosis is still unknown. Here we reveal that Aurora-A, one key centrosomal kinase in regulating centrosome formation and functions, undergoes phase separation in vitro or in centrosomes from prophase, mediated by the conserved positive-charged residues inside its intrinsic disordered region (IDR) and the intramolecular interaction between its N- and C-terminus. Aurora-A condensation affects centrosome maturation, separation, initial spindle formation from the spindle pole and its kinase activity. Moreover, BuGZ interacts with Aurora-A to enhance its LLPS and centrosome functions. Thus, we propose that Aurora-A collaborates with BuGZ to exhibit the property of LLPS in centrosomes to control its centrosome-dependent functions from prophase.
Collapse
Affiliation(s)
- Hui Zheng
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Fan Shi
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
9
|
Song H, Kim EH, Hong J, Gwon D, Kim JW, Bae GU, Jang CY. Hornerin mediates phosphorylation of the polo-box domain in Plk1 by Chk1 to induce death in mitosis. Cell Death Differ 2023; 30:2151-2166. [PMID: 37596441 PMCID: PMC10482915 DOI: 10.1038/s41418-023-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 08/20/2023] Open
Abstract
The centrosome assembles a bipolar spindle for faithful chromosome segregation during mitosis. To prevent the inheritance of DNA damage, the DNA damage response (DDR) triggers programmed spindle multipolarity and concomitant death in mitosis through a poorly understood mechanism. We identified hornerin, which forms a complex with checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1) to mediate phosphorylation at the polo-box domain (PBD) of Plk1, as the link between the DDR and death in mitosis. We demonstrate that hornerin mediates DDR-induced precocious centriole disengagement through a dichotomous mechanism that includes sequestration of Sgo1 and Plk1 in the cytoplasm through phosphorylation of the PBD in Plk1 by Chk1. Phosphorylation of the PBD in Plk1 abolishes the interaction with Sgo1 and phosphorylation-dependent Sgo1 translocation to the centrosome, leading to precocious centriole disengagement and spindle multipolarity. Mechanistically, hornerin traps phosphorylated Plk1 in the cytoplasm. Furthermore, PBD phosphorylation inactivates Plk1 and disrupts Cep192::Aurora A::Plk1 complex translocation to the centrosome and concurrent centrosome maturation. Remarkably, hornerin depletion leads to chemoresistance against DNA damaging agents by attenuating DDR-induced death in mitosis. These results reveal how the DDR eradicates mitotic cells harboring DNA damage to ensure genome integrity during cell division.
Collapse
Affiliation(s)
- Haiyu Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Jihee Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Dasom Gwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Gyu-Un Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Chang-Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
10
|
Galletta BJ, Varadarajan R, Fagerstrom CJ, Yang B, Haase KP, McJunkin K, Rusan NM. The E3 ligase Poe promotes Pericentrin degradation. Mol Biol Cell 2023; 34:br15. [PMID: 37342879 PMCID: PMC10398894 DOI: 10.1091/mbc.e22-11-0534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Centrosomes are essential parts of diverse cellular processes, and precise regulation of the levels of their constituent proteins is critical for their function. One such protein is Pericentrin (PCNT) in humans and Pericentrin-like protein (PLP) in Drosophila. Increased PCNT expression and its protein accumulation are linked to clinical conditions including cancer, mental disorders, and ciliopathies. However, the mechanisms by which PCNT levels are regulated remain underexplored. Our previous study demonstrated that PLP levels are sharply down-regulated during early spermatogenesis and this regulation is essential to spatially position PLP on the proximal end of centrioles. We hypothesized that the sharp drop in PLP protein was a result of rapid protein degradation during the male germ line premeiotic G2 phase. Here, we show that PLP is subject to ubiquitin-mediated degradation and identify multiple proteins that promote the reduction of PLP levels in spermatocytes, including the UBR box containing E3 ligase Poe (UBR4), which we show binds to PLP. Although protein sequences governing posttranslational regulation of PLP are not restricted to a single region of the protein, we identify a region that is required for Poe-mediated degradation. Experimentally stabilizing PLP, via internal PLP deletions or loss of Poe, leads to PLP accumulation in spermatocytes, its mispositioning along centrioles, and defects in centriole docking in spermatids.
Collapse
Affiliation(s)
- Brian J. Galletta
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Ramya Varadarajan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Carey J. Fagerstrom
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Karen Plevock Haase
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| |
Collapse
|
11
|
Bürgy L, Weigert M, Hatzopoulos G, Minder M, Journé A, Rahi SJ, Gönczy P. CenFind: a deep-learning pipeline for efficient centriole detection in microscopy datasets. BMC Bioinformatics 2023; 24:120. [PMID: 36977999 PMCID: PMC10045196 DOI: 10.1186/s12859-023-05214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND High-throughput and selective detection of organelles in immunofluorescence images is an important but demanding task in cell biology. The centriole organelle is critical for fundamental cellular processes, and its accurate detection is key for analysing centriole function in health and disease. Centriole detection in human tissue culture cells has been achieved typically by manual determination of organelle number per cell. However, manual cell scoring of centrioles has a low throughput and is not reproducible. Published semi-automated methods tally the centrosome surrounding centrioles and not centrioles themselves. Furthermore, such methods rely on hard-coded parameters or require a multichannel input for cross-correlation. Therefore, there is a need for developing an efficient and versatile pipeline for the automatic detection of centrioles in single channel immunofluorescence datasets. RESULTS We developed a deep-learning pipeline termed CenFind that automatically scores cells for centriole numbers in immunofluorescence images of human cells. CenFind relies on the multi-scale convolution neural network SpotNet, which allows the accurate detection of sparse and minute foci in high resolution images. We built a dataset using different experimental settings and used it to train the model and evaluate existing detection methods. The resulting average F1-score achieved by CenFind is > 90% across the test set, demonstrating the robustness of the pipeline. Moreover, using the StarDist-based nucleus detector, we link the centrioles and procentrioles detected with CenFind to the cell containing them, overall enabling automatic scoring of centriole numbers per cell. CONCLUSIONS Efficient, accurate, channel-intrinsic and reproducible detection of centrioles is an important unmet need in the field. Existing methods are either not discriminative enough or focus on a fixed multi-channel input. To fill this methodological gap, we developed CenFind, a command line interface pipeline that automates cell scoring of centrioles, thereby enabling channel-intrinsic, accurate and reproducible detection across experimental modalities. Moreover, the modular nature of CenFind enables its integration in other pipelines. Overall, we anticipate CenFind to prove critical for accelerating discoveries in the field.
Collapse
Affiliation(s)
- Léo Bürgy
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, 1015, Lausanne, Switzerland
| | - Martin Weigert
- Interschool Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, 1015, Lausanne, Switzerland
| | - Georgios Hatzopoulos
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, 1015, Lausanne, Switzerland
| | - Matthias Minder
- Institute of Physics, Swiss Federal Institute of Technology Lausanne, 1015, Lausanne, Switzerland
- SBB Consulting, Hilfikerstrasse 1, 3000, Bern 65, Switzerland
| | - Adrien Journé
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, 1015, Lausanne, Switzerland
| | - Sahand Jamal Rahi
- Institute of Physics, Swiss Federal Institute of Technology Lausanne, 1015, Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
12
|
Hirai K, Inoue YH, Matsuda M. Mitotic progression and dual spindle formation caused by spindle association of de novo-formed microtubule-organizing centers in parthenogenetic embryos of Drosophila ananassae. Genetics 2022; 223:6896485. [PMID: 36516293 PMCID: PMC9910410 DOI: 10.1093/genetics/iyac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/17/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Facultative parthenogenesis occurs in many animal species that typically undergo sexual reproduction. In Drosophila, such development from unfertilized eggs involves diploidization after completion of meiosis, but the exact mechanism remains unclear. Here we used a laboratory stock of Drosophila ananassae that has been maintained parthenogenetically to cytologically examine the initial events of parthenogenesis. Specifically, we determined whether the requirements for centrosomes and diploidization that are essential for developmental success can be overcome. As a primal deviation from sexually reproducing (i.e. sexual) strains of the same species, free asters emerged from the de novo formation of centrosome-like structures in the cytosol of unfertilized eggs. Those microtubule-organizing centers had distinct roles in the earliest cycles of parthenogenetic embryos with respect to mitotic progression and arrangement of mitotic spindles. In the first cycle, an anastral bipolar spindle self-assembled around a haploid set of replicated chromosomes. Participation of at least one microtubule-organizing center in the spindle was necessary for mitotic progression into anaphase. In particular, the first mitosis involving a monastral bipolar spindle resulted in haploid daughter nuclei, one of which was associated with a microtubule-organizing center whereas the other was not. Remarkably, in the following cycle, biastral and anastral bipolar spindles formed that were frequently arranged in tandem by sharing an aster with bidirectional connections at their central poles. We propose that, for diploidization of haploid nuclei, unfertilized parthenogenetic embryos utilize dual spindles during the second mitosis, as occurs for the first mitosis in normal fertilized eggs.
Collapse
Affiliation(s)
| | - Yoshihiro H Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Kyoto 606-8585, Japan
| | - Muneo Matsuda
- Department of Biology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
13
|
Phan TP, Boatwright CA, Drown CG, Skinner MW, Strong MA, Jordan PW, Holland AJ. Upstream open reading frames control PLK4 translation and centriole duplication in primordial germ cells. Genes Dev 2022; 36:718-736. [PMID: 35772791 PMCID: PMC9296005 DOI: 10.1101/gad.349604.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
Centrosomes are microtubule-organizing centers comprised of a pair of centrioles and the surrounding pericentriolar material. Abnormalities in centriole number are associated with cell division errors and can contribute to diseases such as cancer. Centriole duplication is limited to once per cell cycle and is controlled by the dosage-sensitive Polo-like kinase 4 (PLK4). Here, we show that PLK4 abundance is translationally controlled through conserved upstream open reading frames (uORFs) in the 5' UTR of the mRNA. Plk4 uORFs suppress Plk4 translation and prevent excess protein synthesis. Mice with homozygous knockout of Plk4 uORFs (Plk4 Δu/Δu ) are viable but display dramatically reduced fertility because of a significant depletion of primordial germ cells (PGCs). The remaining PGCs in Plk4 Δu/Δu mice contain extra centrioles and display evidence of increased mitotic errors. PGCs undergo hypertranscription and have substantially more Plk4 mRNA than somatic cells. Reducing Plk4 mRNA levels in mice lacking Plk4 uORFs restored PGC numbers and fully rescued fertility. Together, our data uncover a specific requirement for uORF-dependent control of PLK4 translation in counterbalancing the increased Plk4 transcription in PGCs. Thus, uORF-mediated translational suppression of PLK4 has a critical role in preventing centriole amplification and preserving the genomic integrity of future gametes.
Collapse
Affiliation(s)
- Thao P Phan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Christina A Boatwright
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
14
|
Ryniawec JM, Rogers GC. Balancing the scales: fine-tuning Polo-like kinase 4 to ensure proper centriole duplication. Genes Dev 2022; 36:647-649. [PMID: 35835509 PMCID: PMC9296006 DOI: 10.1101/gad.349815.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polo-like kinase 4 (Plk4) is the master regulator of centriole assembly. Several evolutionarily conserved mechanisms strictly regulate Plk4 abundance and activity to ensure cells maintain a proper number of centrioles. In this issue of Genes & Development, Phan et al. (pp. 718-736) add to this growing list by describing a new mechanism of control that restricts Plk4 translation through competitive ribosome binding at upstream open reading frames (uORFs) in the mature Plk4 mRNA. Fascinatingly, this mechanism is especially critical in the development of primordial germ cells in mice that are transcriptionally hyperactive and thus exquisitely sensitive to Plk4 mRNA regulation.
Collapse
Affiliation(s)
- John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
15
|
Yan X, Liu SM, Liu C. Clinical Applications of Aneuploidies in Evolution of NSCLC Patients: Current Status and Application Prospect. Onco Targets Ther 2022; 15:1355-1368. [PMID: 36388157 PMCID: PMC9662021 DOI: 10.2147/ott.s380016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022] Open
Abstract
As one of the first characteristics of cancer cells, chromosomal aberrations during cell division have been well documented. Aneuploidy is a feature of most cancer cells accompanied by an elevated rate of mis-segregation of chromosomes, called chromosome instability (CIN). Aneuploidy causes ongoing karyotypic changes that contribute to tumor heterogeneity, drug resistance, and treatment failure, which are considered predictors of poor prognosis. Lung cancer (LC) is the leading cause of cancer-related deaths worldwide, and its genome map shows extensive aneuploid changes. Elucidating the role of aneuploidy in the pathogenesis of LC will reveal information about the key factors of tumor occurrence and development, help to predict the prognosis of cancer, clarify tumor evolution, metastasis, and drug response, and may promote the development of precision oncology. In this review, we describe many possible causes of aneuploidy and provide evidence of the role of aneuploidy in the evolution of LC, providing a basis for future biological and clinical research.
Collapse
Affiliation(s)
- Xing Yan
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Shan Mei Liu
- Inner Mongolia Medical University, Hohhot, 150110, People's Republic of China
| | - Changhong Liu
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, People's Republic of China
| |
Collapse
|