1
|
Swiatczak B. Evolution within the body: the rise and fall of somatic Darwinism in the late nineteenth century. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:8. [PMID: 36862350 DOI: 10.1007/s40656-023-00566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Originating in the work of Ernst Haeckel and Wilhelm Preyer, and advanced by a Prussian embryologist, Wilhelm Roux, the idea of struggle for existence between body parts helped to establish a framework, in which population cell dynamics rather than a predefined harmony guides adaptive changes in an organism. Intended to provide a causal-mechanical view of functional adjustments in body parts, this framework was also embraced later by early pioneers of immunology to address the question of vaccine effectiveness and pathogen resistance. As an extension of these early efforts, Elie Metchnikoff established an evolutionary vision of immunity, development, pathology, and senescence, in which phagocyte-driven selection and struggle promote adaptive changes in an organism. Despite its promising start, the idea of somatic evolution lost its appeal at the turn of the twentieth century giving way to a vision, in which an organism operates as a genetically uniform, harmonious entity.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, 96 Jinzhai Rd. 230026, Hefei, P. R. China.
| |
Collapse
|
2
|
Kim JH, Hwang S, Son H, Kim D, Kim IB, Kim MH, Sim NS, Kim DS, Ha YJ, Lee J, Kang HC, Lee JH, Kim S. Analysis of low-level somatic mosaicism reveals stage and tissue-specific mutational features in human development. PLoS Genet 2022; 18:e1010404. [PMID: 36121845 PMCID: PMC9560606 DOI: 10.1371/journal.pgen.1010404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 10/13/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Most somatic mutations that arise during normal development are present at low levels in single or multiple tissues depending on the developmental stage and affected organs. However, the effect of human developmental stages or mutations of different organs on the features of somatic mutations is still unclear. Here, we performed a systemic and comprehensive analysis of low-level somatic mutations using deep whole-exome sequencing (average read depth ~500×) of 498 multiple organ tissues with matched controls from 190 individuals. Our results showed that early clone-forming mutations shared between multiple organs were lower in number but showed higher allele frequencies than late clone-forming mutations [0.54 vs. 5.83 variants per individual; 6.17% vs. 1.5% variant allele frequency (VAF)] along with less nonsynonymous mutations and lower functional impacts. Additionally, early and late clone-forming mutations had unique mutational signatures that were distinct from mutations that originated from tumors. Compared with early clone-forming mutations that showed a clock-like signature across all organs or tissues studied, late clone-forming mutations showed organ, tissue, and cell-type specificity in the mutation counts, VAFs, and mutational signatures. In particular, analysis of brain somatic mutations showed a bimodal occurrence and temporal-lobe-specific signature. These findings provide new insights into the features of somatic mosaicism that are dependent on developmental stage and brain regions. Most somatic mutations that arise during normal development are present at low levels in single or multiple tissues, and often show a degree of clonality depending on the time and origin of the mutation. Recent studies have identified the characteristics of postzygotic variants of somatic mutations at the single-cell or mono-clonal levels. However, the results may not be fully representative of the mutational processes involved. Here, we describe a comprehensive analysis of low-level somatic mutations identified after deep whole-exome sequencing in peripheral and brain tissues. We found that clone-forming mutations are uniquely defined by early and late-stage aspects in the mutational profiles. Thus, we identified reliable spatiotemporal characteristics of mosaic variants. Additionally, we found low-level clone-forming mosaic variants across multiple stages and tissues, and identified their intrinsic features.
Collapse
Affiliation(s)
- Ja Hye Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Shinwon Hwang
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Physician-Scientist Program, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeonju Son
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongsun Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Il Bin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Myeong-Heui Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- SoVarGen Inc., Daejeon, Republic of Korea
| | - Nam Suk Sim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Seok Kim
- Department of Neurosurgery, Pediatric Neurosurgery, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Jin Ha
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junehawk Lee
- Center for Supercomputing Applications, National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children’s Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- SoVarGen Inc., Daejeon, Republic of Korea
- * E-mail: (J.H.L.); (S.K.)
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail: (J.H.L.); (S.K.)
| |
Collapse
|
3
|
Zhu W, Deo RC, MacRae CA. Single Cell Biology: Exploring Somatic Cell Behaviors, Competition and Selection in Chronic Disease. Front Pharmacol 2022; 13:867431. [PMID: 35656307 PMCID: PMC9152313 DOI: 10.3389/fphar.2022.867431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The full range of cell functions is under-determined in most human diseases. The evidence that somatic cell competition and clonal imbalance play a role in non-neoplastic chronic disease reveal a need for a dedicated effort to explore single cell function if we are to understand the mechanisms by which cell population behaviors influence disease. It will be vital to document not only the prevalent pathologic behaviors but also those beneficial functions eliminated or suppressed by competition. An improved mechanistic understanding of the role of somatic cell biology will help to stratify chronic disease, define more precisely at an individual level the role of environmental factors and establish principles for prevention and potential intervention throughout the life course and across the trajectory from wellness to disease.
Collapse
Affiliation(s)
- Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rahul C Deo
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Calum A MacRae
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|