1
|
Zhu R, Zhang L, Wu L, Liu J, Zhang J, Li J, Song K, Han P. AOX Affects the Synthesis of Polysaccharides by Regulating the Reactive Oxygen Species in Ganoderma lucidum. Foods 2025; 14:826. [PMID: 40077530 PMCID: PMC11898911 DOI: 10.3390/foods14050826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Alternative oxidase (AOX) is a terminal oxidase in the mitochondrial electron transport chain that does not contribute to the generation of ATP. It plays a critical role in maintaining the balance between reactive oxygen species (ROS) production and intracellular redox homeostasis within the mitochondria. In the study, overexpression and knockdown approaches were employed to investigate the function of AOX. AOX-silenced strains (AOXi3 and AOXi25) and AOX-overexpressed strains (OE-AOX2 and OE-AOX21) were constructed. The ROS level and transcription level of the antioxidant-system-related genes, including phosphoglucomutase (pgm) and phosphomannose isomerase (pmi), were differentially upregulated in silenced strains, whereas the opposite effect was observed in the AOX-overexpressed strains. Compared with the wild type (WT), the polysaccharide production of AOXi25 was significantly increased by approximately 38%, while OE-AOX21 was significantly decreased by 80%. Six extracellular polysaccharides (EPSs) were extracted and purified from the WT, OE-AOX21, and AOXi25 strains. These EPSs, consisting of both neutral and acidic polysaccharides, were composed of five different monosaccharides in varying proportions. The average relative molecular masses were 1.68 × 103, 2.66 × 103, 1.67 × 103, 2.42 × 103, 1.12 × 103, and 2.35 × 103 kDa, respectively. Antioxidant assays demonstrated that all EPSs exhibited strong free radical scavenging activity with the acidic polysaccharide from AOXi25 showing the highest efficiency in ABTS+ scavenging. These findings highlight the significant role of AOX-derived ROS in regulating polysaccharide synthesis and accumulation in Ganoderma lucidum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peipei Han
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (R.Z.); (L.Z.); (L.W.); (J.L.); (J.Z.); (J.L.); (K.S.)
| |
Collapse
|
2
|
Otomaru D, Ooi N, Monden K, Suzuki T, Noguchi K, Nakagawa T, Hachiya T. Alternative Oxidase Alleviates Mitochondrial Oxidative Stress during Limited Nitrate Reduction in Arabidopsis thaliana. Biomolecules 2024; 14:989. [PMID: 39199377 PMCID: PMC11353033 DOI: 10.3390/biom14080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
The conversion of nitrate to ammonium, i.e., nitrate reduction, is a major consumer of reductants in plants. Previous studies have reported that the mitochondrial alternative oxidase (AOX) is upregulated under limited nitrate reduction conditions, including no/low nitrate or when ammonium is the sole nitrogen (N) source. Electron transfer from ubiquinone to AOX bypasses the proton-pumping complexes III and IV, thereby consuming reductants efficiently. Thus, upregulated AOX under limited nitrate reduction may dissipate excessive reductants and thereby attenuate oxidative stress. Nevertheless, so far there is no firm evidence for this hypothesis due to the lack of experimental systems to analyze the direct relationship between nitrate reduction and AOX. We therefore developed a novel culturing system for A. thaliana that manipulates shoot activities of nitrate reduction and AOX separately without causing N starvation, ammonium toxicity, or lack of nitrate signal. Using shoots processed with this system, we examined genome-wide gene expression and growth to better understand the relationship between AOX and nitrate reduction. The results showed that, only when nitrate reduction was limited, AOX deficiency significantly upregulated genes involved in mitochondrial oxidative stress, reductant shuttles, and non-phosphorylating bypasses of the respiratory chain, and inhibited growth. Thus, we conclude that AOX alleviates mitochondrial oxidative stress and sustains plant growth under limited nitrate reduction.
Collapse
Affiliation(s)
- Daisuke Otomaru
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (D.O.); (K.M.); (T.N.)
| | - Natsumi Ooi
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (D.O.); (K.M.); (T.N.)
- Division of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Nara, Japan
| | - Kota Monden
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (D.O.); (K.M.); (T.N.)
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Aichi, Japan;
| | - Ko Noguchi
- Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi Hachioji, Tokyo 192-0392, Japan;
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (D.O.); (K.M.); (T.N.)
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (D.O.); (K.M.); (T.N.)
| |
Collapse
|
3
|
Ji J, Lin S, Xin X, Li Y, He J, Xu X, Zhao Y, Su G, Lu X, Yin G. Effects of OsAOX1a Deficiency on Mitochondrial Metabolism at Critical Node of Seed Viability in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2284. [PMID: 37375909 DOI: 10.3390/plants12122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Mitochondrial alternative oxidase 1a (AOX1a) plays an extremely important role in the critical node of seed viability during storage. However, the regulatory mechanism is still poorly understood. The aim of this study was to identify the regulatory mechanisms by comparing OsAOX1a-RNAi and wild-type (WT) rice seed during artificial aging treatment. Weight gain and time for the seed germination percentage decreased to 50% (P50) in OsAOX1a-RNAi rice seed, indicating possible impairment in seed development and storability. Compared to WT seeds at 100%, 90%, 80%, and 70% germination, the NADH- and succinate-dependent O2 consumption, the activity of mitochondrial malate dehydrogenase, and ATP contents all decreased in the OsAOX1a-RNAi seeds, indicating that mitochondrial status in the OsAOX1a-RNAi seeds after imbibition was weaker than in the WT seeds. In addition, the reduction in the abundance of Complex I subunits showed that the capacity of the mitochondrial electron transfer chain was significantly inhibited in the OsAOX1a-RNAi seeds at the critical node of seed viability. The results indicate that ATP production was impaired in the OsAOX1a-RNAi seeds during aging. Therefore, we conclude that mitochondrial metabolism and alternative pathways were severely inhibited in the OsAOX1a-RNAi seeds at critical node of viability, which could accelerate the collapse of seed viability. The precise regulatory mechanism of the alternative pathway at the critical node of viability needs to be further analyzed. This finding might provide the basis for developing monitoring and warning indicators when seed viability declines to the critical node during storage.
Collapse
Affiliation(s)
- Jing Ji
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuangshuang Lin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyue Xu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunxia Zhao
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gefei Su
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Wang X, Geng X, Bi X, Li R, Chen Y, Lu C. Genome-wide identification of AOX family genes in Moso bamboo and functional analysis of PeAOX1b_2 in drought and salinity stress tolerance. PLANT CELL REPORTS 2022; 41:2321-2339. [PMID: 36063182 DOI: 10.1007/s00299-022-02923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Five PeAOX genes from Moso bamboo genome were identified. PeAOX1b_2-OE improved tolerance to drought and salinity stress in Arabidopsis, indicating it is involved in positive regulation of abiotic stress response. Mitochondrial alternative oxidase (AOX), the important respiratory terminal oxidase in organisms, catalyzes the energy wasteful cyanide (CN)-resistant respiration, which can improve abiotic stresses tolerance and is considered as one of the functional markers for plant resistance breeding. Here, a total of five putative AOX genes (PeAOXs) were identified and characterized in a monocotyledonous woody grass Moso bamboo (Phyllostachys edulis). Phylogenetic analysis revealed that PeAOXs belonged to AOX1 subfamily, and were named PeAOX1a_1, PeAOX1a_2, PeAOX1b_1, PeAOX1b_2 and PeAOX1c, respectively. Evolutionary and divergence patterns analysis revealed that the PeAOX, OsAOX, and BdAOX families experienced positive purifying selection and may have undergone a large-scale duplication event roughly 1.35-155.90 million years ago. Additionally, the organ-specific expression analysis showed that 80% of PeAOX members were mainly expressed in leaf. Promoter sequence analysis of PeAOXs revealed cis-acting regulatory elements (CAREs) responding to abiotic stress. Most PeAOX genes were significantly upregulated after methyl jasmonate (MeJA) and abscisic acid (ABA) treatment. Moreover, under salinity and drought stresses, the ectopic overexpression of PeAOX1b_2 in Arabidopsis enhanced seed germination and seedling establishment, increased the total respiratory rate and the proportion of AOX respiratory pathway in leaf, and enhanced antioxidant ability, suggesting that PeAOX1b_2 is crucial for abiotic stress resistance in Moso bamboo.
Collapse
Affiliation(s)
- Xiaojing Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xin Geng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaorui Bi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Rongchen Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuzhen Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Cunfu Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Khan K, Van Aken O. The colonization of land was a likely driving force for the evolution of mitochondrial retrograde signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7182-7197. [PMID: 36055768 PMCID: PMC9675596 DOI: 10.1093/jxb/erac351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Most retrograde signalling research in plants was performed using Arabidopsis, so an evolutionary perspective on mitochondrial retrograde regulation (MRR) is largely missing. Here, we used phylogenetics to track the evolutionary origins of factors involved in plant MRR. In all cases, the gene families can be traced to ancestral green algae or earlier. However, the specific subfamilies containing factors involved in plant MRR in many cases arose during the transition to land. NAC transcription factors with C-terminal transmembrane domains, as observed in the key regulator ANAC017, can first be observed in non-vascular mosses, and close homologs to ANAC017 can be found in seed plants. Cyclin-dependent kinases (CDKs) are common to eukaryotes, but E-type CDKs that control MRR also diverged in conjunction with plant colonization of land. AtWRKY15 can be traced to the earliest land plants, while AtWRKY40 only arose in angiosperms and AtWRKY63 even more recently in Brassicaceae. Apetala 2 (AP2) transcription factors are traceable to algae, but the ABI4 type again only appeared in seed plants. This strongly suggests that the transition to land was a major driver for developing plant MRR pathways, while additional fine-tuning events have appeared in seed plants or later. Finally, we discuss how MRR may have contributed to meeting the specific challenges that early land plants faced during terrestrialization.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
6
|
Mechanisms Regulating Energy Homeostasis in Plant Cells and Their Potential to Inspire Electrical Microgrids Models. Biomimetics (Basel) 2022; 7:biomimetics7020083. [PMID: 35735599 PMCID: PMC9221007 DOI: 10.3390/biomimetics7020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.
Collapse
|