1
|
Li G, Chen Y, Zhang X, Tang A, Yang H. Advances in Microfluidics-Enabled Dimensional Design of Micro-/Nanomaterials for Biomedical Applications: A Review. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19203-19229. [PMID: 40105107 DOI: 10.1021/acsami.4c22581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biomedical materials are of great significance for preventing and treating major diseases and protecting human health. At present, more stringent requirements have been put forward for the preparation methods and dimension control of biomedical materials based on the urgent demand for high-performance biomedical materials, especially the existence of various physiological size thresholds in vitro/in vivo. Microfluidic platforms break the limitations of traditional micro-/nanomaterial synthesis, which provide a miniaturized and highly controlled environment for size-dependent biomaterials. In this review, the basic conceptions and technical characteristics of microfluidics are first described. Then the syntheses of biomedical materials with different dimensions (0D, 1D, 2D, 3D) driven by microfluidics have been systematically summarized. Meanwhile, the applications of microfluidics-driven biomedical materials, including diagnosis, anti-inflammatory, drug delivery, antibacterial, and disease therapy, are discussed. Furthermore, the challenges and developments in the research field are further proposed. This work is expected to facilitate the convergence between the bioscience and engineering communities and continue to contribute to this emerging field.
Collapse
Affiliation(s)
- Guangyao Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Laboratory of Advanced Mineral Materials, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ying Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Laboratory of Advanced Mineral Materials, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xuming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Laboratory of Advanced Mineral Materials, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Laboratory of Advanced Mineral Materials, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Li JR, Li LY, Zhang HX, Zhong MQ, Zou ZM. Atramacronoid A induces the PANoptosis-like cell death of human breast cancer cells through the CASP-3/PARP-GSDMD-MLKL pathways. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1475-1488. [PMID: 38958645 DOI: 10.1080/10286020.2024.2368841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Breast cancer is the most common malignant tumor and a major cause of mortality among women worldwide. Atramacronoid A (AM-A) is a unique natural sesquiterpene lactone isolated from the rhizome of Atractylodes macrocephala Koidz (known as Baizhu in Chinese). Our study demonstrated that AM-A triggers a specific form of cell death resembling PANoptosis-like cell death. Further analysis indicated that AM-A-induced PANoptosis-like cell death is associated with the CASP-3/PARP-GSDMD-MLKL pathways, which are mediated by mitochondrial dysfunction. These results suggest the potential of AM-A as a lead compound and offer insights for the development of therapeutic agents for breast cancer from natural products.
Collapse
Affiliation(s)
- Jing-Rong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ling-Yu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hai-Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ming-Qin Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| |
Collapse
|
3
|
Long Y, Jia X, Chu L. Insight into the structure, function and the tumor suppression effect of gasdermin E. Biochem Pharmacol 2024; 226:116348. [PMID: 38852642 DOI: 10.1016/j.bcp.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Gasdermin E (GSDME), which is also known as DFNA5, was first identified as a deafness-related gene that is expressed in cochlear hair cells, and mutation of this gene causes autosomal dominant neurogenic hearing loss. Later studies revealed that GSDME is mostly expressed in the kidney, placenta, muscle and brain cells, but it is expressed at low levels in tumor cells. The GSDME gene encodes the GSDME protein, which is a member of the gasdermin (GSDM) family and has been shown to participate in the induction of apoptosis and pyroptosis. The current literature suggests that Caspase-3 and Granzyme B (Gzm B) can cleave GSDME to generate the active N-terminal fragment (GSDME-NT), which integrates with the cell membrane and forms pores in this membrane to induce pyroptosis. Furthermore, GSDME also forms pores in mitochondrial membranes to release apoptosis factors, such as cytochrome c (Cyt c) and high-temperature requirement protein A2 (HtrA2/Omi), and subsequently activates the intrinsic apoptosis pathway. In recent years, GSDME has been shown to exert tumor-suppressive effects, suggesting that it has potential therapeutic effects on tumors. In this review, we introduce the structure and function of GSDME and the mechanism by which it induces cell death, and we discuss its tumor suppressive effect.
Collapse
Affiliation(s)
- Yuge Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
4
|
Abstract
Apoptosis, necroptosis, and pyroptosis are genetically programmed cell death mechanisms that eliminate obsolete, damaged, infected, and self-reactive cells. Apoptosis fragments cells in a manner that limits immune cell activation, whereas the lytic death programs of necroptosis and pyroptosis release proinflammatory intracellular contents. Apoptosis fine-tunes tissue architecture during mammalian development, promotes tissue homeostasis, and is crucial for averting cancer and autoimmunity. All three cell death mechanisms are deployed to thwart the spread of pathogens. Disabling regulators of cell death signaling in mice has revealed how excessive cell death can fuel acute or chronic inflammation. Here we review strategies for modulating cell death in the context of disease. For example, BCL-2 inhibitor venetoclax, an inducer of apoptosis, is approved for the treatment of certain hematologic malignancies. By contrast, inhibition of RIPK1, NLRP3, GSDMD, or NINJ1 to limit proinflammatory cell death and/or the release of large proinflammatory molecules from dying cells may benefit patients with inflammatory diseases.
Collapse
Affiliation(s)
- Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, South San Francisco, California, USA;
| | - Joshua D Webster
- Pathology Department, Genentech, South San Francisco, California, USA
| | - Kim Newton
- Physiological Chemistry Department, Genentech, South San Francisco, California, USA;
| |
Collapse
|
5
|
Lin F, Jun Li, Ziqi Wang, Zhang T, Lu T, Jiang M, Yang K, Jia M, Zhang D, Wang L. Replication of previous autism-GWAS hits suggests the association between NAA1, SORCS3, and GSDME and autism in the Han Chinese population. Heliyon 2024; 10:e23677. [PMID: 38234914 PMCID: PMC10792458 DOI: 10.1016/j.heliyon.2023.e23677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 12/09/2023] [Indexed: 01/19/2024] Open
Abstract
Background Autism is a severe neurodevelopmental disorder characterized by social interaction deficits, impairments in communication, and restricted and repetitive stereotyped behavior and activities. Family and twin studies suggested an essential role of genetic factors in the etiology of autism spectrum disorder (ASD). Also, other studies found SORCS3 and GSDME (DFNA5) might be involved in brain development and susceptible to ASD. Methods In this study, 17 genome-wide significant SNPs reported in previous ASD genome-wide association studies (GWAS) and 7 SNPs in strong linkage disequilibrium with known ASD GWAS hits were selected to investigate the association between these SNPs and autism in the Han Chinese population. Then, 10 tagSNPs in SORCS3 and 11 tagSNPs in GSDME were selected to analyze the association between these SNPs and autism. The selected 24 SNPs and tagSNPs were genotyped using the Agena MassARRAY SNP genotyping assay in 757 Han Chinese autism trios. Results Rs1484144 in NAA11 was significantly associated with autism; significance remained after the Bonferroni correction (P < 0.0022). Also, rs79879286, rs12154597, and rs12540919 near GSDME, as well as rs9787523 and rs3750261 in SORCS3, were nominally associated with autism. Conclusion Our study suggests that rs1484144 in NAA11 is a significant SNP for autism in the Han Chinese population, while SORCS3 and GSDME might be the susceptibility genes for autism in this population.
Collapse
Affiliation(s)
- Fen Lin
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Jun Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Ziqi Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Tian Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Tianlan Lu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Kang Yang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Meixiang Jia
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Dai Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou, China
| | - Lifang Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| |
Collapse
|
6
|
Ramon J, Engelen Y, De Keersmaecker H, Goemaere I, Punj D, Mejía Morales J, Bonte C, Berx G, Hoste E, Stremersch S, Lentacker I, De Smedt SC, Raemdonck K, Braeckmans K. Laser-induced vapor nanobubbles for B16-F10 melanoma cell killing and intracellular delivery of chemotherapeutics. J Control Release 2024; 365:1019-1036. [PMID: 38065413 DOI: 10.1016/j.jconrel.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
The most lethal form of skin cancer is cutaneous melanoma, a tumor that develops in the melanocytes, which are found in the epidermis. The treatment strategy of melanoma is dependent on the stage of the disease and often requires combined local and systemic treatment. Over the years, systemic treatment of melanoma has been revolutionized and shifted toward immunotherapeutic approaches. Phototherapies like photothermal therapy (PTT) have gained considerable attention in the field, mainly because of their straightforward applicability in melanoma skin cancer, combined with the fact that these strategies are able to induce immunogenic cell death (ICD), linked with a specific antitumor immune response. However, PTT comes with the risk of uncontrolled heating of the surrounding healthy tissue due to heat dissipation. Here, we used pulsed laser irradiation of endogenous melanin-containing melanosomes to induce cell killing of B16-F10 murine melanoma cells in a non-thermal manner. Pulsed laser irradiation of the B16-F10 cells resulted in the formation of water vapor nanobubbles (VNBs) around endogenous melanin-containing melanosomes, causing mechanical cell damage. We demonstrated that laser-induced VNBs are able to kill B16-F10 cells with high spatial resolution. When looking more deeply into the cell death mechanism, we found that a large part of the B16-F10 cells succumbed rapidly after pulsed laser irradiation, reaching maximum cell death already after 4 h. Practically all necrotic cells demonstrated exposure of phosphatidylserine on the plasma membrane and caspase-3/7 activity, indicative of regulated cell death. Furthermore, calreticulin, adenosine triphosphate (ATP) and high-mobility group box 1 (HMGB1), three key damage-associated molecular patterns (DAMPs) in ICD, were found to be exposed from B16-F10 cells upon pulsed laser irradiation to an extent that exceeded or was comparable to the bona fide ICD-inducer, doxorubicin. Finally, we could demonstrate that VNB formation from melanosomes induced plasma membrane permeabilization. This allowed for enhanced intracellular delivery of bleomycin, an ICD-inducing chemotherapeutic, which further boosted cell death with the potential to improve the systemic antitumor immune response.
Collapse
Affiliation(s)
- Jana Ramon
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| | - Yanou Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Light Microscopy Core Facility, Ghent University, 9000 Ghent, Belgium.
| | - Ilia Goemaere
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium.
| | - Deep Punj
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium.
| | - Julián Mejía Morales
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium.
| | - Cédric Bonte
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium.
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium; Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| | - Esther Hoste
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| | - Stephan Stremersch
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Janssens S, Rennen S, Agostinis P. Decoding immunogenic cell death from a dendritic cell perspective. Immunol Rev 2024; 321:350-370. [PMID: 38093416 DOI: 10.1111/imr.13301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Dendritic cells (DCs) are myeloid cells bridging the innate and adaptive immune system. By cross-presenting tumor-associated antigens (TAAs) liberated upon spontaneous or therapy-induced tumor cell death to T cells, DCs occupy a pivotal position in the cancer immunity cycle. Over the last decades, the mechanisms linking cancer cell death to DC maturation, have been the focus of intense research. Growing evidence supports the concept that the mere transfer of TAAs during the process of cell death is insufficient to drive immunogenic DC maturation unless this process is coupled with the release of immunomodulatory signals by dying cancer cells. Malignant cells succumbing to a regulated cell death variant called immunogenic cell death (ICD), foster a proficient interface with DCs, enabling their immunogenic maturation and engagement of adaptive immunity against cancer. This property relies on the ability of ICD to exhibit pathogen-mimicry hallmarks and orchestrate the emission of a spectrum of constitutively present or de novo-induced danger signals, collectively known as damage-associated molecular patterns (DAMPs). In this review, we discuss how DCs perceive and decode danger signals emanating from malignant cells undergoing ICD and provide an outlook of the major signaling and functional consequences of this interaction for DCs and antitumor immunity.
Collapse
Affiliation(s)
- Sophie Janssens
- Laboratory for ER Stress and Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie Rennen
- Laboratory for ER Stress and Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Dondelinger Y, Priem D, Huyghe J, Delanghe T, Vandenabeele P, Bertrand MJM. NINJ1 is activated by cell swelling to regulate plasma membrane permeabilization during regulated necrosis. Cell Death Dis 2023; 14:755. [PMID: 37980412 PMCID: PMC10657445 DOI: 10.1038/s41419-023-06284-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Plasma membrane permeabilization (PMP) is a defining feature of regulated necrosis. It allows the extracellular release of damage-associated molecular patterns (DAMPs) that trigger sterile inflammation. The pore forming molecules MLKL and GSDMs drive PMP in necroptosis and pyroptosis, respectively, but the process of PMP remains unclear in many other forms of regulated necrosis. Here, we identified NINJ1 as a crucial regulator of PMP and consequent DAMP release during ferroptosis, parthanatos, H2O2-induced necrosis and secondary necrosis. Importantly, the membrane-permeabilizing function of NINJ1 takes place after the metabolic death of the cells and is independent of the pore-forming molecules MLKL, GSDMD and GSDME. During ferroptosis, NINJ1 acts downstream of lipid peroxidation, which suggested a role for reactive oxygen species (ROS) in NINJ1 activation. Reactive oxygen species were however neither sufficient nor required to trigger NINJ1-dependent PMP. Instead, we found that NINJ1 oligomerization is induced by the swelling of the cell and that its permeabilizing potential still requires an addition, and yet to be discovered, activation mechanism.
Collapse
Affiliation(s)
- Yves Dondelinger
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
| | - Dario Priem
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Jon Huyghe
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Tom Delanghe
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Mathieu J M Bertrand
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
| |
Collapse
|
9
|
Cadena C, Kornfeld OS, Lee BL, Kayagaki N. Epigenetic and transcriptional control of gasdermins. Semin Immunol 2023; 70:101841. [PMID: 37703611 DOI: 10.1016/j.smim.2023.101841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Cells undergo an inflammatory programmed lytic cell death called 'pyroptosis' (with the Greek roots 'fiery'), often featuring morphological hallmarks such as large ballooning protrusions and subsequent bursting. Originally described as a caspase-1-dependent cell death in response to bacterial infection, pyroptosis has since been re-defined in 2018 as a cell death dependent on plasma membrane pores by a gasdermin (GSDM) family member [1,2]. GSDMs form pores in the plasma membrane as well as organelle membranes, thereby initiating membrane destruction and the rapid and lytic demise of a cell. The gasdermin family plays a profound role in the execution of pyroptosis in the context of infection, inflammation, tumor pathogenesis, and anti-tumor therapy. More recently, cell-death-independent functions for some of the GSDMs have been proposed. Therefore, a comprehensive understanding of gasdermin gene regulation, including mechanisms in both homeostatic conditions and during inflammation, is essential. In this review, we will summarize the role of gasdermins in pyroptosis and focus our discussion on the transcriptional and epigenetic mechanisms controlling the expression of GSDMs.
Collapse
Affiliation(s)
- Cristhian Cadena
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Opher S Kornfeld
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bettina L Lee
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
10
|
Patel K, Nguyen J, Shaha S, Brightwell A, Duan W, Zubkowski A, Domingo IK, Riddell M. Loss of polarity regulators initiates gasdermin-E-mediated pyroptosis in syncytiotrophoblasts. Life Sci Alliance 2023; 6:e202301946. [PMID: 37468163 PMCID: PMC10355286 DOI: 10.26508/lsa.202301946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
The syncytiotrophoblast is a human epithelial cell that is bathed in maternal blood on the maternal-facing surface of the human placenta. It therefore acts as a barrier and exchange interface between the mother and fetus. Syncytiotrophoblast dysfunction is a feature of pregnancy pathologies, like preeclampsia. Dysfunctional syncytiotrophoblasts display a loss of microvilli, which is a marker of aberrant apical-basal polarization, but little data exist about the regulation of syncytiotrophoblast polarity. Atypical PKC isoforms are conserved polarity regulators. Thus, we hypothesized that aPKC isoforms regulate syncytiotrophoblast polarity. Using human placental explant culture and primary trophoblasts, we found that loss of aPKC activity or expression induces syncytiotrophoblast gasdermin-E-dependent pyroptosis, a form of programmed necrosis. We also establish that TNF-α induces an isoform-specific decrease in aPKC expression and gasdermin-E-dependent pyroptosis. Therefore, aPKCs are homeostatic regulators of the syncytiotrophoblast function and a pathogenically relevant pro-inflammatory cytokine leads to the induction of programmed necrosis at the maternal-fetal interface. Hence, our results have important implications for the pathobiology of placental disorders like preeclampsia.
Collapse
Affiliation(s)
- Khushali Patel
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
| | - Jasmine Nguyen
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Sumaiyah Shaha
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Amy Brightwell
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Wendy Duan
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Ashley Zubkowski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Ivan K Domingo
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
| | - Meghan Riddell
- Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Inflammation: A New Look at an Old Problem. Int J Mol Sci 2022; 23:ijms23094596. [PMID: 35562986 PMCID: PMC9100490 DOI: 10.3390/ijms23094596] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory stress is inherent in any cells that are subject to damage or threat of damage. It is defined by a number of universal components, including oxidative stress, cellular response to DNA damage, unfolded protein response to mitochondrial and endoplasmic reticulum stress, changes in autophagy, inflammasome formation, non-coding RNA response, formation of an inducible network of signaling pathways, and epigenetic changes. The presence of an inducible receptor and secretory phenotype in many cells is the cause of tissue pro-inflammatory stress. The key phenomenon determining the occurrence of a classical inflammatory focus is the microvascular inflammatory response (exudation, leukocyte migration to the alteration zone). This same reaction at the systemic level leads to the development of life-critical systemic inflammation. From this standpoint, we can characterize the common mechanisms of pathologies that differ in their clinical appearance. The division of inflammation into alternative variants has deep evolutionary roots. Evolutionary aspects of inflammation are also described in the review. The aim of the review is to provide theoretical arguments for the need for an up-to-date theory of the relationship between key human pathological processes based on the integrative role of the molecular mechanisms of cellular and tissue pro-inflammatory stress.
Collapse
|
12
|
Demarco B, Danielli S, Fischer FA, Bezbradica JS. How Pyroptosis Contributes to Inflammation and Fibroblast-Macrophage Cross-Talk in Rheumatoid Arthritis. Cells 2022; 11:1307. [PMID: 35455985 PMCID: PMC9028325 DOI: 10.3390/cells11081307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
About thirty years ago, a new form of pro-inflammatory lytic cell death was observed and termed pyroptosis. Only in 2015, gasdermins were defined as molecules that create pores at the plasma membrane and drive pyroptosis. Today, we know that gasdermin-mediated death is an important antimicrobial defence mechanism in bacteria, yeast and mammals as it destroys the intracellular niche for pathogen replication. However, excessive and uncontrolled cell death also contributes to immunopathology in several chronic inflammatory diseases, including arthritis. In this review, we discuss recent findings where pyroptosis contributes to tissue damage and inflammation with a main focus on injury-induced and autoimmune arthritis. We also review novel functions and regulatory mechanisms of the pyroptotic executors gasdermins. Finally, we discuss possible models of how pyroptosis may contribute to the cross-talk between fibroblast and macrophages, and also how this cross-talk may regulate inflammation by modulating inflammasome activation and pyroptosis induction.
Collapse
Affiliation(s)
- Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (S.D.); (F.A.F.)
| | | | | | - Jelena S. Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (S.D.); (F.A.F.)
| |
Collapse
|