1
|
Yang X, Liu S, Liu Y, Wang Y, Cui D, Lan T, Zhu D, Su Z, Hao E, Qin L, Guo H. Total flavonoids of litchi seed inhibit breast cancer metastasis by regulating the PI3K/AKT/mTOR and MAPKs signaling pathways. PHARMACEUTICAL BIOLOGY 2025; 63:229-249. [PMID: 40231974 PMCID: PMC12001861 DOI: 10.1080/13880209.2025.2488135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/07/2025] [Accepted: 03/30/2025] [Indexed: 04/16/2025]
Abstract
CONTEXT Total flavonoids from Litchi chinensis Sonn. (Sapindaceae) seeds (TFLS) effectively attenuate stem cell-like properties in breast cancer cells. However, their pharmacological effects and mechanisms in suppressing breast cancer metastasis remain unclear. OBJECTIVE This study aimed to elucidate the inhibitory effects and underlying mechanisms of TFLS on breast cancer metastasis. MATERIALS AND METHODS The antiproliferative, migratory, and invasive activities of breast cancer cells following TFLS treatment were evaluated using CCK-8, wound-healing, and transwell assays. The epithelial-mesenchymal transition (EMT) biomarkers were evaluated via Western blot analysis. The anti-metastatic effects of TFLS were further validated in vivo using zebrafish and mouse models. Network pharmacology methodology was utilized to predict potential targets and signaling pathways, which were subsequently corroborated by Western blot. Potential active compounds were identified through molecular docking, and the chemical constituents of TFLS were analyzed and characterized using UPLC-QTOF/MS. RESULTS TFLS suppressed the proliferation of MDA-MB-231 and MDA-MB-468 cells, with IC50 values of 44.47 μg/mL and 37.35 μg/mL at 72 h, respectively. It effectively suppressed breast cancer metastasis in vitro, demonstrated by a marked reduction in cellular motility and invasiveness, alongside the reversal of EMT. Consistent with pathway enrichment analysis, network pharmacology revealed that TFLS reduced the phosphorylation levels of PI3K, AKT, mTOR, JNK, ERK, and p38 in breast cancer cells. Molecular docking identified seven potential active ingredients, and UPLC-MS/MS confirmed the presence of key compounds, including procyanidin A2. DISCUSSION AND CONCLUSION TFLS effectively inhibits breast cancer cell proliferation, migration, and invasion in vitro by reversing the EMT phenotype, while suppressing metastasis in vivo. These effects are likely mediated via the attenuation of the PI3K/AKT/mTOR and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Shoushi Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuanshuo Wang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Dianxin Cui
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Taijin Lan
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Lilan Qin
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Hu Y, Bian J, Chen W, Shi J, Wei X, Du Y, Zhang W. Androgen receptor-induced lncRNA SOX2-OT promotes triple-negative breast cancer tumorigenesis via targeting miR-320a-5p-CCR5 axis. J Biol Chem 2025; 301:108428. [PMID: 40118451 PMCID: PMC12017981 DOI: 10.1016/j.jbc.2025.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/13/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
Our previous study showed that androgen receptor (AR) promotes triple-negative breast cancer (TNBC) cell tumorigenesis, but the underlying mechanisms remain unclear. Herein, using microarray analysis of long noncoding RNA expression profiles, we identified an AR-related long noncoding RNA SOX2-OT in TNBC. We found that AR could promote TNBC tumorigenesis by acting as a transcription factor to activate the expression of SOX2-OT. Mechanistic analysis demonstrated that SOX2-OT serves as a molecular sponge for miR-320a-5p to regulate the expression of CCR5. In addition, SOX2-OT promotes TNBC cell proliferation and inhibits apoptosis in an miR-320a-5p-dependent manner. Using a xenograft mouse model, we found that SOX2-OT-CCR5 axis could promote TNBC tumorigenesis in vivo. Importantly, the AR-SOX2-OT-miR-320a-5p-CCR5 axis is manifested in the tissues of 165 TNBC patients. Collectively, our results suggest that SOX2-OT can regulate AR-induced TNBC tumorigenesis through the miR-320a-5p-CCR5 signaling axis and reveal the great potential of targeting SOX2-OT for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Yixuan Hu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Bian
- Department of Medical Oncology of PLA Cancer Center, Jinling Hospital, Nanjing, China
| | - Weiwei Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yueyao Du
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Solaimani M, Hosseinzadeh S, Abasi M. Non-coding RNAs, a double-edged sword in breast cancer prognosis. Cancer Cell Int 2025; 25:123. [PMID: 40170036 PMCID: PMC11959806 DOI: 10.1186/s12935-025-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Cancer is a rising issue worldwide, and numerous studies have focused on understanding the underlying reasons for its occurrence and finding proper ways to defeat it. By applying technological advances, researchers are continuously uncovering and updating treatments in cancer therapy. Their vast functions in the regulation of cell growth and proliferation and their significant role in the progression of diseases, including cancer. This review provides a comprehensive analysis of ncRNAs in breast cancer, focusing on long non-coding RNAs such as HOTAIR, MALAT1, and NEAT1, as well as microRNAs such as miR-21, miR-221/222, and miR-155. These ncRNAs are pivotal in regulating cell proliferation, metastasis, drug resistance, and apoptosis. Additionally, we discuss experimental approaches that are useful for studying them and highlight the advantages and challenges of each method. We then explain the results of these clinical trials and offer insights for future studies by discussing major existing gaps. On the basis of an extensive number of studies, this review provides valuable insights into the potential of ncRNAs in cancer therapy. Key findings show that even though the functions of ncRNAs are vast and undeniable in cancer, there are still complications associated with their therapeutic use. Moreover, there is an absence of sufficient experiments regarding their application in mouse models, which is an area to work on. By emphasizing the crucial role of ncRNAs, this review underscores the need for innovative approaches and further studies to explore their potential in cancer therapy.
Collapse
Affiliation(s)
- Maryam Solaimani
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Sahar Hosseinzadeh
- Faculty of Pharmacy and Medical Biotechnology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, PO Box: 48175/861, Sari, Iran.
| |
Collapse
|
4
|
Yang J, Tan F, Chen Y, Li X, Yuan C. The emerging role of long non-coding RNA SOX2-OT in cancers and non-malignant diseases. J Physiol Biochem 2025; 81:57-83. [PMID: 39702742 DOI: 10.1007/s13105-024-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024]
Abstract
SOX2 overlapping transcript (SOX2-OT) is a long non-coding RNA located at chromosome 3q26.33 in humans. Convincing data confirm that SOX2-OT is evolutionarily conserved and plays a significant role in various malignant and non-malignant diseases. In most cancers, the upregulation of SOX2-OT acts as an oncogenic factor, strongly correlating with tumor risk, adverse clinicopathological features, and poor prognosis. Mechanistically, SOX2-OT is regulated by seven transcription factors and influences cellular behavior by modulating SOX2 expression, competitively binding 20 types of miRNAs, stabilizing protein expression, or promoting protein ubiquitination. It also participates in epigenetic modifications and activates multiple signaling pathways to regulate cancer cell proliferation, apoptosis, migration, invasion, autophagy, immune evasion, and resistance to chemotherapy/targeted therapies. Additionally, SOX2-OT triggers apoptosis, oxidative stress, and inflammatory responses, contributing to neurodevelopmental disorders, cardiovascular diseases, and diabetes-related conditions. Genetic polymorphisms of SOX2-OT have also been linked to breast cancer, gastric cancer, recurrent miscarriage, sepsis, and eating disorders in patients with bipolar disorder. This review provides an overview of recent research progress on SOX2-OT in human diseases, highlights its substantial potential as a prognostic and diagnostic biomarker, and explores its future clinical applications.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Fangshun Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaohui Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiaolan Li
- The Second People's Hospital of China Three Gorges University, Yichang, 443002, China.
- The Second People's Hospital of Yichang, Hubei, China.
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
5
|
Ließem A, Leimer U, Germann GK, Köllensperger E. Adipokines in Breast Cancer: Decoding Genetic and Proteomic Mechanisms Underlying Migration, Invasion, and Proliferation. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:79-102. [PMID: 39882382 PMCID: PMC11776935 DOI: 10.2147/bctt.s491277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Background Adipokines, bioactive peptides secreted by adipose tissue, appear to contribute to breast cancer development and progression. While numerous studies suggest their role in promoting tumor growth, the exact mechanisms of their involvement are not yet completely understood. Methods In this project, varying concentrations of recombinant human adipokines (Leptin, Lipocalin-2, PAI-1, and Resistin) were used to study their effects on four selected breast cancer cell lines (EVSA-T, MCF-7, MDA-MB-231, and SK-Br-3). Over a five-day proliferation phase, linear growth was assessed by calculating doubling times and malignancy-associated changes in gene and protein expression were identified using quantitative TaqMan real-time PCR and multiplex protein analysis. Migration and invasion behaviors were quantified using specialized Boyden chamber assays. Results We found significant, adipokine-mediated genetic and proteomic alterations, with PCR showing an up to 6-fold increase of numerous malignancy-associated genes after adipokine-supplementation. Adipokines further altered protein secretion, such as raising the concentrations of different tumor-associated proteins up to 13-fold. Effects on proliferation varied, however, with most approaches showing significant enhancement in growth kinetics. A concentration-dependent increase in migration and invasion was generally observed, with no significant reductions in any approaches. Conclusion We could show a robust promoting effect of several adipokines on different breast cancer cells in vitro. Understanding the interaction between adipose tissue and breast cancer cells opens potential avenues for innovative breast cancer prevention and therapy strategies. Our findings indicate that antibodies against specific adipokines could become a beneficial component of clinical breast cancer treatment in the future.
Collapse
Affiliation(s)
- Anne Ließem
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Uwe Leimer
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Günter K Germann
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Eva Köllensperger
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| |
Collapse
|
6
|
Chen Z, Zhao Y. The mechanism underlying metastasis in triple-negative breast cancer: focusing on the interplay between ferroptosis, epithelial-mesenchymal transition, and non-coding RNAs. Front Pharmacol 2025; 15:1437022. [PMID: 39881868 PMCID: PMC11774878 DOI: 10.3389/fphar.2024.1437022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer with lack the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is the most aggressive breast cancer and the most difficult to treat due to its poor response to treatments and extremely invasive characteristics. The typical treatment for TNBC frequently results in relapse because of the lack of particular treatment choices. It is urgent to focus on identifying a workable and effective target for the treatment of TNBC. Cancer metastasis is significantly influenced by epithelial-mesenchymal transition (EMT). Ferroptosis is an iron-dependent cell death form, and changes its key factor to affect the proliferation and metastasis of TNBC. Several reports have established associations between EMT and ferroptosis in TNBC metastasis. Furthermore, non-coding RNA (ncRNA), which has been previously described, can also control cancer cell death and metastasis. Thus, in this review, we summarize the correlation and pathways among the ferroptosis, EMT, and ncRNAs in TNBC metastasis. Also, aim to find out a novel strategy for TNBC treatment through the ncRNA-ferroptosis-EMT axis.
Collapse
Affiliation(s)
- Ziyi Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Healthcare Hospital of Shandong Province Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
7
|
Yilmaz A, Ari Yuka S. The role of ceRNAs in breast cancer microenvironmental regulation and therapeutic implications. J Mol Med (Berl) 2025; 103:33-49. [PMID: 39641797 DOI: 10.1007/s00109-024-02503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
The tumor microenvironment, which is the tailored physiological milieu of heterogeneous cancer cell populations surrounded by stromal and immune cells as well as extracellular matrix components, is a leading modulator of critical cancer hallmarks and one of the most significant prognostic indicators in breast cancer. In the last few decades, with the discovery of the interactions of ncRNAs with diverse cellular molecules, considerable emphasis has been devoted to understanding their direct and indirect roles in specific functions in breast cancer. Collectively, all of these have revealed that the competitive action of protein-coding RNAs and ncRNAs such as circRNAs and lncRNAs, which have a shared affinity for miRNAs, play a vital role in the molecular regulation of breast cancer. This phenomenon, termed as competing endogenous RNAs (ceRNAs), facilitates modeling the microenvironment through intercellular shuttles. Microenvironment ceRNA interactions have emerged as a frontier in the deep understanding of the complex mechanisms of breast cancer. In this review, we first discuss cellular ceRNAs in four key biological processes critical for microenvironmental regulation in breast cancer tissues: hypoxia, angiogenesis, immune regulations, and ECM remodeling. Further, we draw a complete portrait of microenvironment regulation by cell-to-cell cross-talk of shuttled ceRNAs and offer a framework of potential applications and challenges in overcoming the aggressive phenotype of the breast cancer microenvironment.
Collapse
Affiliation(s)
- Alper Yilmaz
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Selcen Ari Yuka
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, 07425, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Yildiz Technical University, Istanbul, 34220, Turkey.
| |
Collapse
|
8
|
Hussen BM, Othman DI, Abdullah SR, Khudhur ZO, Samsami M, Taheri M. New insights of LncRNAs fingerprints in breast cancer progression: Tumorigenesis, drug resistance, and therapeutic opportunities. Int J Biol Macromol 2025; 287:138589. [PMID: 39662549 DOI: 10.1016/j.ijbiomac.2024.138589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is one of the common female cancers and it is characterized by considerable problems regarding its development and therapy. Long non-coding RNAs (lncRNAs) have been identified as significant modulators in BC development, especially, in tumorigenicity and chemoresistance. We therefore endeavor to present an up-to-date understanding of lncRNAs and their impact on BC progression and treatment, concerning molecular processes, treatment options, and use as a therapeutic opportunity. LncRNAs are novel regulators of genes that cause therapeutic resistance and directly impact the functioning of both coding and non-coding genes in BC patients, but little is known about their mechanisms of actions. Thus, additional study is required to have a deeper understanding of their modes of action and possible roles in BC disease. This study aims to investigate the functions of lncRNAs in the development of BC, with particular attention to their role in tumorigenesis, drug resistance mechanisms, and therapeutic targets. This will help to identify novel therapeutic targets and improve the effectiveness of BC treatment.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Diyar Idris Othman
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Qattan A, Al-Tweigeri T, Suleman K, Alkhayal W, Tulbah A. Advanced Insights into Competitive Endogenous RNAs (ceRNAs) Regulated Pathogenic Mechanisms in Metastatic Triple-Negative Breast Cancer (mTNBC). Cancers (Basel) 2024; 16:3057. [PMID: 39272915 PMCID: PMC11394539 DOI: 10.3390/cancers16173057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Triple-negative breast cancer is aggressive and challenging to treat because of a lack of targets and heterogeneity among tumors. A paramount factor in the mortality from breast cancer is metastasis, which is driven by genetic and phenotypic alterations that drive epithelial-mesenchymal transition, stemness, survival, migration and invasion. Many genetic and epigenetic mechanisms have been identified in triple-negative breast cancer that drive these metastatic phenotypes; however, this knowledge has not yet led to the development of effective drugs for metastatic triple-negative breast cancer (mTNBC). One that may not have received enough attention in the literature is post-translational regulation of broad sets of cancer-related genes through inhibitory microRNAs and the complex competitive endogenous RNA (ceRNA) regulatory networks they are influenced by. This field of study and the resulting knowledge regarding alterations in these networks is coming of age, enabling translation into clinical benefit for patients. Herein, we review metastatic triple-negative breast cancer (mTNBC), the role of ceRNA network regulation in metastasis (and therefore clinical outcomes), potential approaches for therapeutic exploitation of these alterations, knowledge gaps and future directions in the field.
Collapse
Affiliation(s)
- Amal Qattan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Taher Al-Tweigeri
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Kausar Suleman
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Wafa Alkhayal
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
10
|
Mehrtabar E, Khalaji A, Pandeh M, Farhoudian A, Shafiee N, Shafiee A, Ojaghlou F, Mahdavi P, Soleymani-Goloujeh M. Impact of microRNA variants on PI3K/AKT signaling in triple-negative breast cancer: comprehensive review. Med Oncol 2024; 41:222. [PMID: 39120634 DOI: 10.1007/s12032-024-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer (BC) is a significant cause of cancer-related mortality, and triple-negative breast cancer (TNBC) is a particularly aggressive subtype associated with high mortality rates, especially among younger females. TNBC poses a considerable clinical challenge due to its aggressive tumor behavior and limited therapeutic options. Aberrations within the PI3K/AKT pathway are prevalent in TNBC and correlate with increased therapeutic intervention resistance and poor outcomes. MicroRNAs (miRs) have emerged as crucial PI3K/AKT pathway regulators influencing various cellular processes involved in TNBC pathogenesis. The levels of miRs, including miR-193, miR-4649-5p, and miR-449a, undergo notable changes in TNBC tumor tissues, emphasizing their significance in cancer biology. This review explored the intricate interplay between miR variants and PI3K/AKT signaling in TNBC. The review focused on the molecular mechanisms underlying miR-mediated dysregulation of this pathway and highlighted specific miRs and their targets. In addition, we explore the clinical implications of miR dysregulation in TNBC, particularly its correlation with TNBC prognosis and therapeutic resistance. Elucidating the roles of miRs in modulating the PI3K/AKT signaling pathway will enhance our understanding of TNBC biology and unveil potential therapeutic targets. This comprehensive review aims to discuss current knowledge and open promising avenues for future research, ultimately facilitating the development of precise and effective treatments for patients with TNBC.
Collapse
Affiliation(s)
- Ehsan Mehrtabar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Pandeh
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Aram Farhoudian
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Shafiee
- Children's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefe Shafiee
- Board-Certified Cardiologist, Rajaie Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ojaghlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Mahdavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Soleymani-Goloujeh
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Li D, Min Z, Guo J, Chen Y, Zhang W. ExpOmics: a comprehensive web platform empowering biologists with robust multi-omics data analysis capabilities. Bioinformatics 2024; 40:btae507. [PMID: 39128019 PMCID: PMC11343375 DOI: 10.1093/bioinformatics/btae507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024] Open
Abstract
MOTIVATION High-throughput technologies yield a broad spectrum of multi-omics datasets, which offer unparalleled insights into complex biological systems. However, effectively analyzing this diverse array of data presents challenges, considering factors such as species diversity, data types, costs, and limitations of the available tools. RESULTS Herein, we present ExpOmics, a comprehensive web platform featuring 7 applications and 4 toolkits, with 28 customizable analysis functions spanning various analyses of differential expression, co-expression, Weighted Gene Co-expression Network Analysis (WGCNA), feature selection, and functional enrichment. ExpOmics allows users to upload and explore multi-omics data without organism restrictions, supporting various expression data, including genes, mRNAs, lncRNAs, miRNAs, circRNAs, piRNAs, and proteins and is compatible with diverse gene nomenclatures and expression values. Moreover, ExpOmics enables users to analyze 22 427 transcriptomic datasets of 196 cancer subtypes sourced from 63 projects of The Cancer Genome Atlas Program (TCGA) to identify cancer biomarkers. The analysis results from ExpOmics are presented in high-quality graphical formats suitable for publication and are available for free download. A case study using ExpOmics identified two potential oncogenes, SERPINE1 and SLC43A1, that may regulate colorectal cancer through distinct biological processes. In summary, ExpOmics can serves as a robust platform for global researchers to explore multi-omics data, gain biological insights, and formulate testable hypotheses. AVAILABILITY AND IMPLEMENTATION ExpOmics is available at http://www.biomedical-web.com/expomics.
Collapse
Affiliation(s)
- Douyue Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, People’s Republic of China
| | - Zhuochao Min
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jia Guo
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, People’s Republic of China
| | - Yubin Chen
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, People’s Republic of China
| | - Wenliang Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, People’s Republic of China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People’s Republic of China
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd-Shenzhen, Shenzhen 518026, People’s Republic of China
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, People’s Republic of China
| |
Collapse
|
12
|
Hushmandi K, Saadat SH, Mirilavasani S, Daneshi S, Aref AR, Nabavi N, Raesi R, Taheriazam A, Hashemi M. The multifaceted role of SOX2 in breast and lung cancer dynamics. Pathol Res Pract 2024; 260:155386. [PMID: 38861919 DOI: 10.1016/j.prp.2024.155386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Breast and lung cancers are leading causes of death among patients, with their global mortality and morbidity rates increasing. Conventional treatments often prove inadequate due to resistance development. The alteration of molecular interactions may accelerate cancer progression and treatment resistance. SOX2, known for its abnormal expression in various human cancers, can either accelerate or impede cancer progression. This review focuses on examining the role of SOX2 in breast and lung cancer development. An imbalance in SOX2 expression can promote the growth and dissemination of these cancers. SOX2 can also block programmed cell death, affecting autophagy and other cell death mechanisms. It plays a significant role in cancer metastasis, mainly by regulating the epithelial-to-mesenchymal transition (EMT). Additionally, an imbalanced SOX2 expression can cause resistance to chemotherapy and radiation therapy in these cancers. Genetic and epigenetic factors may affect SOX2 levels. Pharmacologically targeting SOX2 could improve the effectiveness of breast and lung cancer treatments.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Seyedalireza Mirilavasani
- Campus Venlo, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, The Netherlands
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University of Medical Sciences,Jiroft, the Islamic Republic of Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Rasoul Raesi
- Department of Health Services Management, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
13
|
Aji N, Wang L, Wang S, Pan T, Song J, Chen C, Wang L, Feng N, Tang X, Song Y. PAI-1 Deficiency Promotes NET-mediated Pyroptosis and Ferroptosis during Pseudomonas Aeruginosa-induced Acute Lung Injury by Regulating the PI3K/MAPK/AKT Axis. Inflammation 2024:10.1007/s10753-024-02102-6. [PMID: 39060815 DOI: 10.1007/s10753-024-02102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Circulating neutrophil extracellular trap (NET) formation is an adaptive process during acute lung injury (ALI). The important role of plasminogen activator inhibitor (PAI)-1 in NET formation during ALI remains unclear. This research intends to examine the impacts of the decrease in PAI-1 levels on NET formation and the underlying mechanism. We found a relative association between the increase in plasma NET levels and thromboinflammation-induced lung damage in patients with ARDS. PAI-1 knockout (KO) mice exhibited significant increases in Pseudomonas aeruginosa (PAO1 strain)-induced ALI, inflammation, inflammatory cell accumulation, and proinflammatory cytokine secretion, and wild-type mice exhibited the opposite changes. During PAO1-induced ALI, PAI-1 KO increased NET release and the levels of prothrombotic markers in mice. PAI-1 deficiency also promoted NET formation and NET-mediated pyroptosis and ferroptosis by activating the PI3K/MAPK/AKT pathway in a PAO1-induced ALI mouse model. In conclusion, PAI-1 KO exacerbated PAO1-induced pneumonia-associated injury and contributed to NET-mediated pyroptosis and ferroptosis through PI3K/MAPK/AKT pathway activation. Thus, targeting PAI-1 and NETs may be a promising therapeutic approach for ameliorating pneumonia and thromboinflammation-associated ALI.
Collapse
Affiliation(s)
- Nurbiya Aji
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linlin Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sijiao Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ting Pan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Juan Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Department of Pulmonary Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Cuicui Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | | | - Nana Feng
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China.
| | - Xinjun Tang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Medicine Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Pulmonary Medicine, Jinshan Hospital of Fudan University, Shanghai, 201508, China.
| |
Collapse
|
14
|
Hashemi M, Mousavian Roshanzamir S, Orouei S, Daneii P, Raesi R, Zokaee H, Bikarannejad P, Salmani K, Khorrami R, Deldar Abad Paskeh M, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Shedding light on function of long non-coding RNAs (lncRNAs) in glioblastoma. Noncoding RNA Res 2024; 9:508-522. [PMID: 38511060 PMCID: PMC10950594 DOI: 10.1016/j.ncrna.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
The brain tumors and especially glioblastoma, are affecting life of many people worldwide and due to their high mortality and morbidity, their treatment is of importance and has gained attention in recent years. The abnormal expression of genes is commonly observed in GBM and long non-coding RNAs (lncRNAs) have demonstrated dysregulation in this tumor. LncRNAs have length more than 200 nucleotides and they have been located in cytoplasm and nucleus. The current review focuses on the role of lncRNAs in GBM. There two types of lncRNAs in GBM including tumor-promoting and tumor-suppressor lncRNAs and overexpression of oncogenic lncRNAs increases progression of GBM. LncRNAs can regulate proliferation, cell cycle arrest and metastasis of GBM cells. Wnt, STAT3 and EZH2 are among the molecular pathways affected by lncRNAs in GBM and for regulating metastasis of GBM cells, these RNA molecules mainly affect EMT mechanism. LncRNAs are involved in drug resistance and can induce resistance of GBM cells to temozolomide chemotherapy. Furthermore, lncRNAs stimulate radio-resistance in GBM cells. LncRNAs increase PD-1 expression to mediate immune evasion. LncRNAs can be considered as diagnostic and prognostic tools in GBM and researchers have developed signature from lncRNAs in GBM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haleh Zokaee
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Salmani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Bhatt U, Cucchiarini A, Luo Y, Evans CW, Mergny JL, Iyer KS, Smith NM. Preferential formation of Z-RNA over intercalated motifs in long noncoding RNA. Genome Res 2024; 34:217-230. [PMID: 38355305 PMCID: PMC10984386 DOI: 10.1101/gr.278236.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Secondary structure is a principal determinant of lncRNA function, predominantly regarding scaffold formation and interfaces with target molecules. Noncanonical secondary structures that form in nucleic acids have known roles in regulating gene expression and include G-quadruplexes (G4s), intercalated motifs (iMs), and R-loops (RLs). In this paper, we used the computational tools G4-iM Grinder and QmRLFS-finder to predict the formation of each of these structures throughout the lncRNA transcriptome in comparison to protein-coding transcripts. The importance of the predicted structures in lncRNAs in biological contexts was assessed by combining our results with publicly available lncRNA tissue expression data followed by pathway analysis. The formation of predicted G4 (pG4) and iM (piM) structures in select lncRNA sequences was confirmed in vitro using biophysical experiments under near-physiological conditions. We find that the majority of the tested pG4s form highly stable G4 structures, and identify many previously unreported G4s in biologically important lncRNAs. In contrast, none of the piM sequences are able to form iM structures, consistent with the idea that RNA is unable to form stable iMs. Unexpectedly, these C-rich sequences instead form Z-RNA structures, which have not been previously observed in regions containing cytosine repeats and represent an interesting and underexplored target for protein-RNA interactions. Our results highlight the prevalence and potential structure-associated functions of noncanonical secondary structures in lncRNAs, and show G4 and Z-RNA structure formation in many lncRNA sequences for the first time, furthering the understanding of the structure-function relationship in lncRNAs.
Collapse
Affiliation(s)
- Uditi Bhatt
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Yu Luo
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia;
| |
Collapse
|
16
|
Wang D, Zhao X, Li S, Guo H, Li S, Yu D. The impact of LncRNA-SOX2-OT/let-7c-3p/SKP2 Axis on head and neck squamous cell carcinoma progression: Insights from bioinformatics analysis and experimental validation. Cell Signal 2024; 115:111018. [PMID: 38110167 DOI: 10.1016/j.cellsig.2023.111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND LncRNA SRY-box transcription factor 2 overlapping transcript (SOX2-OT) is linked to multiple cancers, but its specific role and mechanism in head and neck squamous cell carcinoma (HNSCC) remain poorly understood. METHODS We harnessed clinical data and HNSCC transcriptome profiles from UCSC Xena, TCGA, and GEO databases. Employing various algorithms, we assessed the correlation between SOX2-OT expression and the HNSCC immune microenvironment. Differential expression analysis identified immune-enriched miRNAs (DEmiRNAs) and mRNAs (DEmRNAs). Utilizing miRanda, miRWalk, and Cytoscape, we constructed a ceRNA network encompassing SOX2-OT, DEmiRNAs, and DEmRNAs. A Sankey diagram visualized pivotal SOX2-OT-miRNA-mRNA-pathways. Functional assays validated SOX2-OT silencing effects in HNSCC cells. Luciferase reporter assays verified SOX2-OT/let-7c-3p/SKP2 relationships. Additionally, a xenograft mouse model revealed SOX2-OT's impact on xenograft growth and lung metastasis. RESULTS SOX2-OT expression demonstrated a predominantly positive correlation with B lineage and VTCN1, while manifesting a negative correlation with Neutrophil and CD47 in HNSCC tissues. We discerned a ceRNA network comprising 65 DEmiRNAs and 116 DEmRNAs, while a protein-protein interaction (PPI) network revealed 97 protein nodes among DEmRNAs. Notably, the Sankey diagram spotlighted six key DEmRNAs intricately linked to the SOX2-OT-regulated DEmiRNAs immune-related pathway. Experimental assays established that SOX2-OT silencing exerted inhibitory effects on cell proliferation, migration, tumor growth, and lung metastasis within HNSCC cells, both in vitro and in vivo. We identified let-7c-3p as a target miRNA of SOX2-OT and SKP2 as a target mRNA of let-7c-3p. CONCLUSIONS Our study establishes the critical SOX2-OT/let-7c-3p/SKP2 axis as a pivotal regulator of HNSCC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Di Wang
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, People's Republic of China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, People's Republic of China
| | - Shuang Li
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, People's Republic of China
| | - Haixian Guo
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, People's Republic of China
| | - Shaonan Li
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, People's Republic of China.
| |
Collapse
|
17
|
Qattan A. Genomic Alterations Affecting Competitive Endogenous RNAs (ceRNAs) and Regulatory Networks (ceRNETs) with Clinical Implications in Triple-Negative Breast Cancer (TNBC). Int J Mol Sci 2024; 25:2624. [PMID: 38473871 DOI: 10.3390/ijms25052624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The concept of competitive endogenous RNA regulation has brought on a change in the way we think about transcriptional regulation by miRNA-mRNA interactions. Rather than the relatively simple idea of miRNAs negatively regulating mRNA transcripts, mRNAs and other non-coding RNAs can regulate miRNAs and, therefore, broad networks of gene products through competitive interactions. While this concept is not new, its significant roles in and implications on cancer have just recently come to light. The field is now ripe for the extrapolation of technologies with a substantial clinical impact on cancer. With the majority of the genome consisting of non-coding regions encoding regulatory RNAs, genomic alterations in cancer have considerable effects on these networks that have been previously unappreciated. Triple-negative breast cancer (TNBC) is characterized by high mutational burden, genomic instability and heterogeneity, making this aggressive breast cancer subtype particularly relevant to these changes. In the past few years, much has been learned about the roles of competitive endogenous RNA network regulation in tumorigenesis, disease progression and drug response in triple-negative breast cancer. In this review, we present a comprehensive view of the new knowledge and future perspectives on competitive endogenous RNA networks affected by genomic alterations in triple-negative breast cancer. An overview of the competitive endogenous RNA (ceRNA) hypothesis and its bearing on cellular function and disease is provided, followed by a thorough review of the literature surrounding key competitive endogenous RNAs in triple-negative breast cancer, the genomic alterations affecting them, key disease-relevant molecular and functional pathways regulated by them and the clinical implications and significance of their dysregulation. New knowledge of the roles of these regulatory mechanisms and the current acceleration of research in the field promises to generate insights into the diagnosis, classification and treatment of triple-negative breast cancer through the elucidation of new molecular mechanisms, therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Amal Qattan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
18
|
Wang Z, Chen G, Yuan D, Wu P, Guo J, Lu Y, Wang Z. Caveolin-1 promotes glioma proliferation and metastasis by enhancing EMT via mediating PAI-1 activation and its correlation with immune infiltrates. Heliyon 2024; 10:e24464. [PMID: 38298655 PMCID: PMC10827802 DOI: 10.1016/j.heliyon.2024.e24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Glioma is typically characterized by a poor prognosis and is associated with a decline in the quality of life as the disease advances. However, the development of effective therapies for glioma has been inadequate. Caveolin-1 (CAV-1) is a membrane protein that plays a role in caveolae formation and interacts with numerous signaling proteins, compartmentalizing them in caveolae and frequently exerting direct control over their activity through binding to its scaffolding domain. Although CAV-1 is a vital regulator of tumour progression, its role in glioma remains unclear. Our findings indicated that the knockdown of CAV-1 significantly inhibits the proliferation and metastasis of glioma. Subsequent mechanistic investigations demonstrated that CAV-1 promotes proliferation and metastasis by activating the photoshatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Furthermore, we demonstrated that CAV-1 overexpression upregulates the expression of serpin peptidase inhibitor, class E, member 1 (SERPINE1, also known as PAI-1), which serves as a marker for the epithelial-mesenchymal transition (EMT) process. Further research showed that PAI-1 knockdown abolished the CAV-1 mediated activation of PI3K/Akt signaling pathway. In glioma tissues, CAV-1 expression exhibited a correlation with unfavorable prognosis and immune infiltration among glioma patients. In summary, our study provided evidence that CAV-1 activates the PI3K/Akt signaling pathway by upregulating PAI-1, thereby promoting the proliferation and metastasis of glioma through enhanced epithelial-mesenchymal transition (EMT) and angiogenesis, and CAV-1 is involved in the immune infiltration.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Gang Chen
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Debin Yuan
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Peizhang Wu
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Jun Guo
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Yisheng Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, 226001, China
| | - Zhenyu Wang
- Department of Pediatric General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, Shanghai, China
| |
Collapse
|
19
|
Li Y, Fan L, Yan A, Ren X, Zhao Y, Hua B. Exosomal miR-361-3p promotes the viability of breast cancer cells by targeting ETV7 and BATF2 to upregulate the PAI-1/ERK pathway. J Transl Med 2024; 22:112. [PMID: 38282047 PMCID: PMC10823750 DOI: 10.1186/s12967-024-04914-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Malignant progression is the major cause of poor prognosis in breast cancer (BC) patients. Plasma exosomal miRNAs have been reported to be involved in tumor progression, but their roles in BC remain unclear. METHODS We performed plasma exosomal miRNA sequencing on 45 individuals, including healthy controls and nonmetastatic and metastatic BC patients. We examined the correlation between miRNA expression in tumor tissues and plasma exosomes in BC patients by qRT‒PCR. The effects of exosomal miR-361-3p on BC cells were determined by CellTiter-Glo, migration and wound healing assays. The target genes of miR-361-3p and downstream pathways were explored by dual-luciferase reporter assay, RNA knockdown, rescue experiments, and western blotting. We utilized murine xenograft model to further assess the impact of plasma exosomal miR-361-3p on the malignant progression of BC. RESULTS We found that the expression level of plasma exosomal miR-361-3p gradually increased with malignant progression in BC patients, and the expression of miR-361-3p in plasma exosomes and BC tissues was positively correlated. Consistently, exosomal miR-361-3p enhanced the migration and proliferation of two BC cell lines, MDA-MB-231 and SK-BR-3. Furthermore, our data showed that miR-361-3p inhibited two novel target genes, ETV7 and BATF2, to activate the PAI-1/ERK pathway, leading to increased BC cell viability. Finally, the consistency of the in vivo experimental results supported that elevated plasma exosomal miR-361-3p promote the malignant progression of BC. CONCLUSIONS We found for the first time that plasma exosomal miR-361-3p was associated with malignant progression in BC patients. Mechanistically, exosomal miR-361-3p can enhance the migration and proliferation of BC cells by targeting the ETV7 and BATF2/PAI-1/ERK pathways. Our data suggest that plasma exosomal miR-361-3p has the potential to serve as a biomarker for predicting malignant progression in BC patients.
Collapse
Affiliation(s)
- Yao Li
- Breast center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lei Fan
- Breast center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - An Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Xiaotian Ren
- Breast center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Bin Hua
- Breast center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
20
|
El-Ashmawy NE, Khedr EG, Abo-Saif MA, Hamouda SM. Long noncoding RNAs as regulators of epithelial mesenchymal transition in breast cancer: A recent review. Life Sci 2024; 336:122339. [PMID: 38097110 DOI: 10.1016/j.lfs.2023.122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
AIMS Breast cancer (BC) is the most frequently occurring cancer in women worldwide. BC patients are often diagnosed at advanced stages which are characterized by low survival rates. Distant metastasis is considered a leading cause of mortalities among BC patients. Epithelial-to-mesenchymal transition (EMT) is a transdifferentiation program that is necessary for cancer cells to acquire metastatic potential. In the last decade, long noncoding RNAs (lncRNAs) proved their significant contribution to different hallmarks of cancer, including EMT and metastasis. The primary aim of our review is to analyze recent studies concerning the molecular mechanisms of lncRNAs implicated in EMT regulation in BC. MATERIALS AND METHODS We adopted a comprehensive search on databases of PubMed, Web of Science, and Google Scholar using the following keywords: lncRNAs, EMT, breast cancer, and therapeutic targeting. KEY FINDINGS The different roles of lncRNAs in the mechanisms and signaling pathways governing EMT in BC were summarized. LncRNAs could induce or inhibit EMT through WNT/β-catenin, transforming growth factor-β (TGF-β), Notch, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways as well as via their interaction with histone modifying complexes and miRNAs. SIGNIFICANCE LncRNAs are key regulators of EMT and BC metastasis, presenting potential targets for therapeutic interventions. Further research is necessary to investigate the practical application of lncRNAs in clinical therapeutics.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Eman G Khedr
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Mariam A Abo-Saif
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Sara M Hamouda
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| |
Collapse
|
21
|
Wang R, Yang Y, Wang L, Shi Q, Ma H, He S, Feng L, Fang J. SOX2-OT Binds with ILF3 to Promote Head and Neck Cancer Progression by Modulating Crosstalk between STAT3 and TGF-β Signaling. Cancers (Basel) 2023; 15:5766. [PMID: 38136312 PMCID: PMC10742126 DOI: 10.3390/cancers15245766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Long non-coding RNA (lncRNA) is involved in the progression of head and neck squamous cell carcinoma (HNSCC). The molecular mechanism of lncRNA SOX2-OT in HNSCC remains unclear. Therefore, we aimed to elucidate the oncogenic role of SOX2-OT in HNSCC. QRT-PCR analysis was performed in 61 pairs of HNSCC cancer tissues, adjacent normal tissues, and 68 plasma samples confirmed that lncRNA SOX2-OT was overexpressed in cancer tissues and plasma samples, which served as a poor prognostic factor for HNSCC. The FISH assay demonstrated that SOX2-OT was localized in the nucleus and cytoplasm of HNSCC cell lines. Further, the cell function assay confirmed that SOX2-OT promoted cell proliferation and metastasis in vitro and in vivo. RNA pulldown and RIP assay results revealed that SOX2-OT bonds with ILF3 in HNSCC, and the rescue assay confirmed that SOX2-OT played an oncogenic role depending on ILF3 protein expression. Ingenuity pathway analysis and Western blotting indicated that SOX2-OT regulated HNSCC progression by promoting STAT3 phosphorylation and modulating the crosstalk between STAT3 and TGF-β signaling. These results reveal evidence for the role of SOX2-OT in HNSCC progression and metastasis by binding to ILF3, which may serve as a therapeutic target and prognostic biomarker in HNSCC.
Collapse
Affiliation(s)
- Ru Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, 1 Dongjiaominxiang Street, Beijing 100730, China; (R.W.); (Y.Y.); (L.W.); (Q.S.); (H.M.); (S.H.); (L.F.)
- Key Laboratory of Otorhinolaryngology, Head and Neck Surgery, Beijing Institute of Otorhinolaryngology, Beijing 100730, China
| | - Yifan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, 1 Dongjiaominxiang Street, Beijing 100730, China; (R.W.); (Y.Y.); (L.W.); (Q.S.); (H.M.); (S.H.); (L.F.)
- Key Laboratory of Otorhinolaryngology, Head and Neck Surgery, Beijing Institute of Otorhinolaryngology, Beijing 100730, China
| | - Lingwa Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, 1 Dongjiaominxiang Street, Beijing 100730, China; (R.W.); (Y.Y.); (L.W.); (Q.S.); (H.M.); (S.H.); (L.F.)
- Key Laboratory of Otorhinolaryngology, Head and Neck Surgery, Beijing Institute of Otorhinolaryngology, Beijing 100730, China
| | - Qian Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, 1 Dongjiaominxiang Street, Beijing 100730, China; (R.W.); (Y.Y.); (L.W.); (Q.S.); (H.M.); (S.H.); (L.F.)
- Key Laboratory of Otorhinolaryngology, Head and Neck Surgery, Beijing Institute of Otorhinolaryngology, Beijing 100730, China
| | - Hongzhi Ma
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, 1 Dongjiaominxiang Street, Beijing 100730, China; (R.W.); (Y.Y.); (L.W.); (Q.S.); (H.M.); (S.H.); (L.F.)
- Key Laboratory of Otorhinolaryngology, Head and Neck Surgery, Beijing Institute of Otorhinolaryngology, Beijing 100730, China
| | - Shizhi He
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, 1 Dongjiaominxiang Street, Beijing 100730, China; (R.W.); (Y.Y.); (L.W.); (Q.S.); (H.M.); (S.H.); (L.F.)
- Key Laboratory of Otorhinolaryngology, Head and Neck Surgery, Beijing Institute of Otorhinolaryngology, Beijing 100730, China
| | - Ling Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, 1 Dongjiaominxiang Street, Beijing 100730, China; (R.W.); (Y.Y.); (L.W.); (Q.S.); (H.M.); (S.H.); (L.F.)
- Key Laboratory of Otorhinolaryngology, Head and Neck Surgery, Beijing Institute of Otorhinolaryngology, Beijing 100730, China
| | - Jugao Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, 1 Dongjiaominxiang Street, Beijing 100730, China; (R.W.); (Y.Y.); (L.W.); (Q.S.); (H.M.); (S.H.); (L.F.)
- Key Laboratory of Otorhinolaryngology, Head and Neck Surgery, Beijing Institute of Otorhinolaryngology, Beijing 100730, China
| |
Collapse
|
22
|
Wang H, Sun D, Chen J, Li H, Chen L. Nectin-4 has emerged as a compelling target for breast cancer. Eur J Pharmacol 2023; 960:176129. [PMID: 38059449 DOI: 10.1016/j.ejphar.2023.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The incidence of breast cancer in women has increased year by year, becoming one of the most common malignant tumors in females worldwide. Most patients can be treated with surgery and endocrine drugs, but there are still some patients who lack effective treatment, such as triple-negative breast cancer (TNBC). Nectin-4, a protein encoded by poliovirus receptor-associated protein 4, is a Ca2+-independent immunoglobulin-like protein. It is mainly involved in the adhesion between cells. In recent years, studies have found that Nectin-4 is overexpressed in breast cancer and several other malignancies. Otherwise, several monoclonal antibodies and inhibitors targeting Nectin-4 have shown prosperous outcomes, so Nectin-4 has great potential to be a therapeutic target for breast cancer. The present review systematically describes the significance of Nectin-4 in each aspect of breast cancer, as well as the molecular mechanisms of these aspects mediated by Nectin-4. We further highlight ongoing or proposed therapeutic strategies for breast cancer specific to Nectin-4.
Collapse
Affiliation(s)
- Hui Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
23
|
Feng L, Li G, Li D, Duan G, Liu J. Cuproptosis-related gene SERPINE1 is a prognostic biomarker and correlated with immune infiltrates in gastric cancer. J Cancer Res Clin Oncol 2023; 149:10851-10865. [PMID: 37318594 PMCID: PMC10423162 DOI: 10.1007/s00432-023-04900-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/20/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE The serine protease inhibitor clade E member 1 (SERPINE1) has been studied as a potential biomarker in a variety of cancers, but poorly studied in gastric cancer (GC). The purpose of this study was to explore the prognostic value of SERPINE1 in GC and primarily analyze its functions. METHODS We analyzed the the prognostic value of SERPINE1 and studied the relationship with clinicopathologic biomarkers in gastric cancer. The expression of SERPINE1 was analyzed by GEO and TCGA databases. Moreover, we validated the results by immunohistochemistry. Next, the correlation analysis between SERPINE1 and the cuproptosis-related genes was analyzed by the "Spearman" method. CIBERSORT and TIMER algorithms were used to analyze the correlation of SERPINE1 with immune infiltration. Furthermore, GO and KEGG gene enrichment analyses were used to study the functions and pathways that SERPINE1 might be involved in. Then, drug sensitivity analysis was performed using CellMiner database. Finally, a cuproptosis-immune-related prognostic model was constructed using genes related to immune and cuproptosis, and verified against external datasets. RESULTS SERPINE1 was up-regulated in gastric cancer tissues, which tends toward poor prognosis. Using immunohistochemistry experiment, the expression and prognostic value of SERPINE1 were verified. Then, we found that SERPINE1 was negatively correlated with cuproptosis-related genes FDX1, LIAS, LIPT1, and PDHA1. On the contrary, SERPINE1 was positively correlated with APOE. This indicates the effect of SERPINE1 on the cuproptosis process. Furthermore, by conducting immune-related analyses, it was revealed that SERPINE1 may promote the inhibitory immune microenvironment. The infiltration level of resting NK cells, neutrophils, activated mast cells, and macrophages M2 was positively correlated with SERPINE1. However, B cell memory and plasma cells were negatively correlated with SERPINE1. Functional analysis showed that SERPINE1 was closely related to angiogenesis, apoptosis, and ECM degradation. The KEGG pathway analysis showed that SERPINE1 may be associated with P53, Pi3k/Akt, TGF-β, and other signaling pathways. Drug sensitivity analysis showed that SERPINE1 could be also seen as a potential treatment target. The risk model based on SERPINE1 co-expression genes could better predict the survival of GC patients than SERPINE1 alone. We also verified the prognostic value of the risk score by GEO external datasets. CONCLUSION SERPINE1 is highly expressed in gastric cancer and related to poor prognosis. SERPINE1 may regulate cuproptosis and the immune microenvironment by a series of pathways. Therefore, SERPINE1 as a prognostic biomarker and potential therapeutic target deserves further study.
Collapse
Affiliation(s)
- Leiran Feng
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Guixin Li
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Dongbin Li
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Guoqiang Duan
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Jin Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| |
Collapse
|
24
|
Guo F, Ma J, Li C, Liu S, Wu W, Li C, Wang J, Wang J, Li Z, Zhai J, Sun F, Zhou Y, Guo C, Qian H, Xu B. PRR15 deficiency facilitates malignant progression by mediating PI3K/Akt signaling and predicts clinical prognosis in triple-negative rather than non-triple-negative breast cancer. Cell Death Dis 2023; 14:272. [PMID: 37072408 PMCID: PMC10113191 DOI: 10.1038/s41419-023-05746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast neoplasms with a higher risk of recurrence and metastasis than non-TNBC. Nevertheless, the factors responsible for the differences in the malignant behavior between TNBC and non-TNBC are not fully explored. Proline rich 15 (PRR15) is a protein involved in the progression of several tumor types, but its mechanisms are still controversial. Therefore, this study aimed to investigate the biological role and clinical applications of PRR15 on TNBC. PRR15 gene was differentially expressed between TNBC and non-TNBC patients, previously described as an oncogenic factor in breast cancer. However, our results showed a decreased expression of PRR15 that portended a favorable prognosis in TNBC rather than non-TNBC. PRR15 knockdown facilitated the proliferation, migration, and invasive ability of TNBC cells in vitro and in vivo, which was abolished by PRR15 restoration, without remarkable effects on non-TNBC. High-throughput drug sensitivity revealed that PI3K/Akt signaling was involved in the aggressive properties of PRR15 silencing, which was confirmed by the PI3K/Akt signaling activation in the tumors of PRR15Low patients, and PI3K inhibitor reversed the metastatic capacity of TNBC in mice. The reduced PRR15 expression in TNBC patients was positively correlated with more aggressive clinicopathological characteristics, enhanced metastasis, and poor disease-free survival. Collectively, PRR15 down-regulation promotes malignant progression through the PI3K/Akt signaling in TNBC rather than in non-TNBC, affects the response of TNBC cells to antitumor agents, and is a promising indicator of disease outcomes in TNBC.
Collapse
Affiliation(s)
- Fengzhu Guo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jialu Ma
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Graduate School, Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Cong Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuning Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weizheng Wu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Chunxiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiani Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijun Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fangzhou Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changyuan Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
25
|
Yang S, Wang X, Zhou X, Hou L, Wu J, Zhang W, Li H, Gao C, Sun C. ncRNA-mediated ceRNA regulatory network: Transcriptomic insights into breast cancer progression and treatment strategies. Biomed Pharmacother 2023; 162:114698. [PMID: 37060661 DOI: 10.1016/j.biopha.2023.114698] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
With the rapid development of next-generation sequencing technology, several studies have shown that ncRNAs can act as competitive endogenous RNAs (ceRNAs) and are involved in various biological processes, such as proliferation, differentiation, apoptosis, and migration of breast cancer (BC) cells, and plays an important role in BC progression as a molecular target for its diagnosis, treatment, prognosis, and differentiation of subtypes and age groups of BC patients. Based on the description of ceRNA-related biological functions, this study screened and sorted the sequencing analysis and experimental verification conclusions of BC-related ceRNAs and found that the ncRNAs mediated ceRNA networks can promote the development of BC by promoting the expression of genes related to BC proliferation, drug resistance, and apoptosis, inducing the production of epithelial-mesenchymal transition (EMT) to promote metastasis and activating cancer-related signaling pathways.
Collapse
Affiliation(s)
- Shu Yang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Xiaomin Wang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Hou
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, China
| | - Huayao Li
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China; College of Chinese Medicine, Weifang Medical University, Weifang, China.
| |
Collapse
|
26
|
Stevanovic M, Kovacevic-Grujicic N, Petrovic I, Drakulic D, Milivojevic M, Mojsin M. Crosstalk between SOX Genes and Long Non-Coding RNAs in Glioblastoma. Int J Mol Sci 2023; 24:ijms24076392. [PMID: 37047365 PMCID: PMC10094781 DOI: 10.3390/ijms24076392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Glioblastoma (GBM) continues to be the most devastating primary brain malignancy. Despite significant advancements in understanding basic GBM biology and enormous efforts in developing new therapeutic approaches, the prognosis for most GBM patients remains poor with a median survival time of 15 months. Recently, the interplay between the SOX (SRY-related HMG-box) genes and lncRNAs (long non-coding RNAs) has become the focus of GBM research. Both classes of molecules have an aberrant expression in GBM and play essential roles in tumor initiation, progression, therapy resistance, and recurrence. In GBM, SOX and lncRNAs crosstalk through numerous functional axes, some of which are part of the complex transcriptional and epigenetic regulatory mechanisms. This review provides a systematic summary of current literature data on the complex interplay between SOX genes and lncRNAs and represents an effort to underscore the effects of SOX/lncRNA crosstalk on the malignant properties of GBM cells. Furthermore, we highlight the significance of this crosstalk in searching for new biomarkers and therapeutic approaches in GBM treatment.
Collapse
|
27
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
28
|
Expression analysis of novel long non-coding RNAs for invasive ductal and invasive lobular breast carcinoma cases. Pathol Res Pract 2023; 244:154391. [PMID: 36868097 DOI: 10.1016/j.prp.2023.154391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
AIM Long non-coding RNAs (LncRNAs) serve as important regulatory molecules of gene expression and protein functionality at multiple biological levels, and their deregulation plays a key role in tumorigenesis including in breast cancer metastasis. Therefore, in this study, we aim to compare the expression of novel lncRNAs in the landscape of invasive ductal carcinoma (IDC) and invasive lobular (ILC) carcinoma of breast. MAIN METHODS We have designed an in-silico approach to find the lncRNAs that regulate the breast cancer. Then, we used the clinical samples to carry out the verification of our in silico finding. In the present study, the tissues of breast cancer were deparaffinized. RNA was extracted by the TRIzole method. After synthesizing cDNA from the extracted RNA, expression levels of lncRNAs were analyzed by qPCR using primers specifically designed and validated for the targeted lncRNAs. In this study, breast biopsy materials from 41 female patients with IDC and 10 female patients with ILC were examined histopathological and expression changes of candidate lncRNAs were investigated in line with the findings. The results were analyzed using IBM SPSS Statistics 25 version. RESULTS The mean age of the cases was 53.78 ± 14.96. The minimum age was 29, while the maximum age was 87. While 27 of the cases were pre-menopausal, 24 cases were post-menopausal. The number of hormone receptor-positive cases was found to be 40, 35, and 27 for ER, PR, and cerb2/neu, respectively. While the expressions of LINC00501, LINC00578, LINC01209, LINC02015, LINC02584, ABCC5-AS1, PEX5L-AS2, SHANK2-AS3 and SOX2-OT showed significant differences (p < 0.05), the expressions of LINC01206, LINC01994, SHANK2-AS1, and TPRG1-AS2 showed no significant differences (p > 0.05). In addition, it was determined that the regulation of all lncRNAs could be able to involve in the development of cancer such as the NOTCH1, NFKB, and estrogen receptor signalings. CONCLUSION As a result, it was thought that the discovery of novel lncRNAs might be an important player in the diagnosis, prognosis and therapeutic development of breast cancer.
Collapse
|
29
|
Singh DD, Lee HJ, Yadav DK. Recent Clinical Advances on Long Non-Coding RNAs in Triple-Negative Breast Cancer. Cells 2023; 12:cells12040674. [PMID: 36831341 PMCID: PMC9955037 DOI: 10.3390/cells12040674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a more aggressive type of breast cancer due to its heterogeneity and complex molecular mechanisms. TNBC has a high risk for metastasis, and it is difficult to manage clinical conditions of the patients. Various investigations are being conducted to overcome these challenges using RNA, DNA, and proteins for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) have emerged as a novel target to treat the multistep process of TNBC. LncRNAs regulate epigenetic expression levels, cell proliferation and apoptosis, and tumour invasiveness and metastasis. Thus, lncRNA-based early diagnosis and treatment options could be helpful, especially for patients with severe TNBC. lncRNAs are expressed in a highly specific manner in cells and tissues and are involved in TNBC progression and development. lncRNAs could be used as sensitive and specific targets for diagnosis, treatment, and monitoring of patients with TNBC. Therefore, the exploration of novel diagnostic and prognostic biomarkers is of extreme importance. Here, we discuss the molecular advances on lncRNA regulation of TNBC and lncRNA-based early diagnosis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
- Correspondence: (H.-J.L.); (D.K.Y.)
| | | |
Collapse
|
30
|
Alfieri M, Meo L, Ragno P. Posttranscriptional Regulation of the Plasminogen Activation System by Non-Coding RNA in Cancer. Int J Mol Sci 2023; 24:ijms24020962. [PMID: 36674481 PMCID: PMC9860977 DOI: 10.3390/ijms24020962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
Various species of non-coding RNAs (ncRNAs) may act as functional molecules regulating diverse biological processes. In cancer cell biology, ncRNAs include RNAs that regulate the expression of oncogenes and tumor suppressor genes through various mechanisms. The urokinase (uPA)-mediated plasminogen activation system (PAS) includes uPA, its inhibitors PAI-1 and PAI-2 and its specific cellular receptor uPAR; their increased expression represents a negative prognostic factor in several cancers. Here, we will briefly describe the main uPA-mediated PAS components and ncRNA species; then, we will review more recent evidence of the roles that ncRNAs may play in regulating the expression and functions of uPA-mediated PAS components in cancer.
Collapse
Affiliation(s)
- Mariaevelina Alfieri
- Clinical Pathology, Pausilipon Hospital, A.O.R.N Santobono-Pausilipon, 80123 Naples, Italy
| | - Luigia Meo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Correspondence: ; Tel.: +39-089-969456
| |
Collapse
|
31
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|
32
|
Wu Y, Li X, Li Q, Cheng C, Zheng L. Adipose tissue-to-breast cancer crosstalk: Comprehensive insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188800. [PMID: 36103907 DOI: 10.1016/j.bbcan.2022.188800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The review focuses on mechanistic evidence for the link between obesity and breast cancer. According to the IARC study, there is sufficient evidence that obesity is closely related to a variety of cancers. Among them, breast cancer is particularly disturbed by adipose tissue due to the unique histological structure of the breast. The review introduces the relationship between obesity and breast cancer from two aspects, including factors that promote tumorigenesis or metastasis. We summarize alterations in adipokines and metabolic pathways that contribute to breast cancer development. Breast cancer metastasis is closely related to obesity-induced pro-inflammatory microenvironment, adipose stem cells, and miRNAs. Based on the mechanism by which obesity causes breast cancer, we list possible therapeutic directions, including reducing the risk of breast cancer and inhibiting the progression of breast cancer. We also discussed the risk of autologous breast remodeling and fat transplantation. Finally, the causes of the obesity paradox and the function of enhancing immunity are discussed. Evaluating the balance between obesity-induced inflammation and enhanced immunity warrants further study.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chienshan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
33
|
Dome A, Dymova M, Richter V, Stepanov G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. Int J Mol Sci 2022; 23:9272. [PMID: 36012529 PMCID: PMC9408889 DOI: 10.3390/ijms23169272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
This review is devoted to changes in the post-transcriptional maturation of RNA in human glioblastoma cells, which leads to disruption of the normal course of apoptosis in them. The review thoroughly highlights the latest information on both post-transcriptional modifications of certain regulatory RNAs, associated with the process of apoptosis, presents data on the features of apoptosis in glioblastoma cells, and shows the relationship between regulatory RNAs and the apoptosis in tumor cells. In conclusion, potential target candidates are presented that are necessary for the development of new drugs for the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Maya Dymova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
34
|
Wang W, Bai N, Li X. Comprehensive Analysis of the Prognosis and Drug Sensitivity of Differentiation-Related lncRNAs in Papillary Thyroid Cancer. Cancers (Basel) 2022; 14:1353. [PMID: 35267662 PMCID: PMC8909347 DOI: 10.3390/cancers14051353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Dedifferentiation is the main concern associated with radioactive iodine (RAI) refractoriness in patients with papillary thyroid cancer (PTC), and the underlying mechanisms of PTC dedifferentiation remain unclear. The present work aimed to identify a useful signature to indicate dedifferentiation and further explore its role in prognosis and susceptibility to chemotherapy drugs. A total of five prognostic-related DR-lncRNAs were selected to establish a prognostic-predicting model, and corresponding risk scores were closely associated with the infiltration of immune cells and immune checkpoint blockade. Moreover, we built an integrated nomogram based on DR-lncRNAs and age that showed a strong ability to predict the 3- and 5-year overall survival. Interestingly, drug sensitivity analysis revealed that the low-risk group was more sensitive to Bendamustine and TAS-6417 than the high-risk group. In addition, knockdown of DR-lncRNAs (DPH6-DT) strongly promoted cell proliferation, invasion, and migration via PI3K-AKT signal pathway in vitro. Furthermore, DPH6-DT downregulation also increased the expression of vimentin and N-cadherin during epithelial-mesenchymal transition. This study firstly confirms that DR-lncRNAs play a vital role in the prognosis and immune cells infiltration in patients with PTC, as well as a predictor of the drugs' chemosensitivity. Based on our results, DR-lncRNAs can serve as a promising prognostic biomarkers and treatment targets.
Collapse
Affiliation(s)
- Wenlong Wang
- Thyroid Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ning Bai
- Thyroid Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Xinying Li
- Thyroid Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|