1
|
Ewing AG, Salamon S, Pretorius E, Joffe D, Fox G, Bilodeau S, Bar-Yam Y. Review of organ damage from COVID and Long COVID: a disease with a spectrum of pathology. MEDICAL REVIEW (2021) 2025; 5:66-75. [PMID: 39974559 PMCID: PMC11834749 DOI: 10.1515/mr-2024-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 02/21/2025]
Abstract
Long COVID, as currently defined by the World Health Organization (WHO) and other authorities, is a symptomatic condition that has been shown to affect an estimated 10 %-30 % of non-hospitalized patients after one infection. However, COVID-19 can also cause organ damage in individuals without symptoms, who would not fall under the current definition of Long COVID. This organ damage, whether symptomatic or not, can lead to various health impacts such as heart attacks and strokes. Given these observations, it is necessary to either expand the definition of Long COVID to include organ damage or recognize COVID-19-induced organ damage as a distinct condition affecting many symptomatic and asymptomatic individuals after COVID-19 infections. It is important to consider that many known adverse health outcomes, including heart conditions and cancers, can be asymptomatic until harm thresholds are reached. Many more medical conditions can be identified by testing than those that are recognized through reported symptoms. It is therefore important to similarly recognize that while Long COVID symptoms are associated with organ damage, there are many individuals that have organ damage without displaying recognized symptoms and to include this harm in the characterization of COVID-19 and in the monitoring of individuals after COVID-19 infections.
Collapse
Affiliation(s)
- Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- World Health Network, Cambridge, MA, USA
| | | | - Etheresia Pretorius
- World Health Network, Cambridge, MA, USA
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, WC, South Africa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - David Joffe
- World Health Network, Cambridge, MA, USA
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Greta Fox
- World Health Network, Cambridge, MA, USA
| | - Stephane Bilodeau
- World Health Network, Cambridge, MA, USA
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Yaneer Bar-Yam
- World Health Network, Cambridge, MA, USA
- New England Complex Systems Institute, Cambridge, MA, USA
| |
Collapse
|
2
|
Zhang Z, Xue P, Bendlin BB, Zetterberg H, De Felice F, Tan X, Benedict C. Melatonin: A potential nighttime guardian against Alzheimer's. Mol Psychiatry 2025; 30:237-250. [PMID: 39128995 PMCID: PMC11649572 DOI: 10.1038/s41380-024-02691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
In the context of the escalating global health challenge posed by Alzheimer's disease (AD), this comprehensive review considers the potential of melatonin in both preventive and therapeutic capacities. As a naturally occurring hormone and robust antioxidant, accumulating evidence suggests melatonin is a compelling candidate to consider in the context of AD-related pathologies. The review considers several mechanisms, including potential effects on amyloid-beta and pathologic tau burden, antioxidant defense, immune modulation, and regulation of circadian rhythms. Despite its promise, several gaps need to be addressed prior to clinical translation. These include conducting additional randomized clinical trials in patients with or at risk for AD dementia, determining optimal dosage and timing, and further determining potential side effects, particularly of long-term use. This review consolidates existing knowledge, identifies gaps, and suggests directions for future research to better understand the potential of melatonin for neuroprotection and disease mitigation within the landscape of AD.
Collapse
Affiliation(s)
- Zefan Zhang
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Barbara B Bendlin
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Fernanda De Felice
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen's University, Kingston, ON, K7L 3N6, Canada
- D'Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Mahmood NMS, Mahmud AM, Maulood IM. The vascular influence of melatonin on endothelial response to angiotensin II in diabetic rat aorta. J Bioenerg Biomembr 2024; 56:531-542. [PMID: 39083188 DOI: 10.1007/s10863-024-10032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/17/2024] [Indexed: 10/06/2024]
Abstract
The current study explored melatonin (MEL) and its receptors, including MEL type 1 receptor (MT1) receptor and MEL type 2 receptor (MT2), along with the angiotensin-converting enzyme 2 (ACE2), influence on vascular responses to angiotensin II (Ang II) in rat aortic segments of normal and diabetic rats. The isolated aortic segments were exposed to MEL, the MEL agonist; ramelteon (RAM), the MEL antagonist; luzindole (LUZ), and an ACE2 inhibitor (S, S)-2-(1-Carboxy-2-(3-(3,5-dichlorobenzyl)-3 H-imidazol-4-yl)-ethylamino)-4-methylpentanoic acid,) on Ang II-induced contractions in non-diabetic normal endothelium (non-DM E+), non-diabetic removed endothelium (non-DM E-), and streptozotocin-induced diabetic endothelium-intact (STZ-induced DM E+) rat aortic segments, as well as their combination in STZ-induced DM E + segments, were also included. The current results showed that MEL and RAM shifted Ang II dose-response curve (DRC) to the right side in non-DM E + and non-DM E- aorta but not in STZ-induced DM E + aorta. However, ACE2 inhibition abolished Ang II degradation only in STZ-induced DM E + segments, not in non-DM E + segments. Additionally, the combinations of MEL-LUZ and RAM-ACE2 inhibitor caused a rightward shift in Ang II response in STZ-induced DM E + segments, while the MEL-LUZ combination decreased Ang II DRC. The findings suggest that the effects of MEL and ACE2 inhibitor on Ang II responses depend on the condition of the endothelium and the distribution of the MEL receptors.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Almas Mr Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
5
|
Lempesis IG, Georgakopoulou VE, Reiter RJ, Spandidos DA. A mid‑pandemic night's dream: Melatonin, from harbinger of anti‑inflammation to mitochondrial savior in acute and long COVID‑19 (Review). Int J Mol Med 2024; 53:28. [PMID: 38299237 PMCID: PMC10852014 DOI: 10.3892/ijmm.2024.5352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Coronavirus disease 2019 (COVID‑19), a systemic illness caused by severe acute respiratory distress syndrome 2 (SARS‑CoV‑2), has triggered a worldwide pandemic with symptoms ranging from asymptomatic to chronic, affecting practically every organ. Melatonin, an ancient antioxidant found in all living organisms, has been suggested as a safe and effective therapeutic option for the treatment of SARS‑CoV‑2 infection due to its good safety characteristics and broad‑spectrum antiviral medication properties. Melatonin is essential in various metabolic pathways and governs physiological processes, such as the sleep‑wake cycle and circadian rhythms. It exhibits oncostatic, anti‑inflammatory, antioxidant and anti‑aging properties, exhibiting promise for use in the treatment of numerous disorders, including COVID‑19. The preventive and therapeutic effects of melatonin have been widely explored in a number of conditions and have been well‑established in experimental ischemia/reperfusion investigations, particularly in coronary heart disease and stroke. Clinical research evaluating the use of melatonin in COVID‑19 has shown various improved outcomes, including reduced hospitalization durations; however, the trials are small. Melatonin can alleviate mitochondrial dysfunction in COVID‑19, improve immune cell function and provide antioxidant properties. However, its therapeutic potential remains underexplored due to funding limitations and thus further investigations are required.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
6
|
Reyes-Ruiz JM, Bastida-González F, Del Ángel RM. Response to Letter to the Editor from Finsterer: "Encephalitis Associated With SARS-CoV-2 Infection in a Child With Chiari Malformation Type I". In Vivo 2023; 37:2859-2862. [PMID: 37905639 PMCID: PMC10621447 DOI: 10.21873/invivo.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 11/02/2023]
Affiliation(s)
- José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional Adolfo Ruiz Cortines, Instituto Mexicano del Seguro Social (IMSS), Veracruz, Mexico;
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz, Mexico
| | - Fernando Bastida-González
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, Toluca de Lerdo, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
7
|
Prévot V, Tena-Sempere M, Pitteloud N. New Horizons: Gonadotropin-Releasing Hormone and Cognition. J Clin Endocrinol Metab 2023; 108:2747-2758. [PMID: 37261390 DOI: 10.1210/clinem/dgad319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
Pulsatile secretion of gonadotropin-releasing hormone (GnRH) is essential for activating and maintaining the function of the hypothalamic-pituitary-gonadal axis, which controls the onset of puberty and fertility. Two recent studies suggest that, in addition to controlling reproduction, the neurons in the brain that produce GnRH are also involved in the control of postnatal brain maturation, odor discrimination, and adult cognition. This review will summarize the development and establishment of the GnRH system, with particular attention to the importance of its first postnatal activation, a phenomenon known as minipuberty, for later reproductive and nonreproductive functions. In addition, we will discuss the beneficial effects of restoring physiological (ie, pulsatile) GnRH levels on olfactory and cognitive alterations in preclinical Down syndrome and Alzheimer disease models, as well as the potential risks associated with long-term continuous (ie, nonphysiological) GnRH administration in certain disorders. Finally, this review addresses the intriguing possibility that pulsatile GnRH therapy may hold therapeutic potential for the management of some neurodevelopmental cognitive disorders and pathological aging in elderly people.
Collapse
Affiliation(s)
- Vincent Prévot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR S1172, Lille F-59000, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
- Faculty of Biology and Medicine, Université of Lausanne, Lausanne 1005, Switzerland
| |
Collapse
|
8
|
Sauve F, Nampoothiri S, Clarke SA, Fernandois D, Ferreira Coêlho CF, Dewisme J, Mills EG, Ternier G, Cotellessa L, Iglesias-Garcia C, Mueller-Fielitz H, Lebouvier T, Perbet R, Florent V, Baroncini M, Sharif A, Ereño-Orbea J, Mercado-Gómez M, Palazon A, Mattot V, Pasquier F, Catteau-Jonard S, Martinez-Chantar M, Hrabovszky E, Jourdain M, Deplanque D, Morelli A, Guarnieri G, Storme L, Robil C, Trottein F, Nogueiras R, Schwaninger M, Pigny P, Poissy J, Chachlaki K, Maurage CA, Giacobini P, Dhillo W, Rasika S, Prevot V. Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death. EBioMedicine 2023; 96:104784. [PMID: 37713808 PMCID: PMC10507138 DOI: 10.1016/j.ebiom.2023.104784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND We have recently demonstrated a causal link between loss of gonadotropin-releasing hormone (GnRH), the master molecule regulating reproduction, and cognitive deficits during pathological aging, including Down syndrome and Alzheimer's disease. Olfactory and cognitive alterations, which persist in some COVID-19 patients, and long-term hypotestosteronaemia in SARS-CoV-2-infected men are also reminiscent of the consequences of deficient GnRH, suggesting that GnRH system neuroinvasion could underlie certain post-COVID symptoms and thus lead to accelerated or exacerbated cognitive decline. METHODS We explored the hormonal profile of COVID-19 patients and targets of SARS-CoV-2 infection in post-mortem patient brains and human fetal tissue. FINDINGS We found that persistent hypotestosteronaemia in some men could indeed be of hypothalamic origin, favouring post-COVID cognitive or neurological symptoms, and that changes in testosterone levels and body weight over time were inversely correlated. Infection of olfactory sensory neurons and multifunctional hypothalamic glia called tanycytes highlighted at least two viable neuroinvasion routes. Furthermore, GnRH neurons themselves were dying in all patient brains studied, dramatically reducing GnRH expression. Human fetal olfactory and vomeronasal epithelia, from which GnRH neurons arise, and fetal GnRH neurons also appeared susceptible to infection. INTERPRETATION Putative GnRH neuron and tanycyte dysfunction following SARS-CoV-2 neuroinvasion could be responsible for serious reproductive, metabolic, and mental health consequences in long-COVID and lead to an increased risk of neurodevelopmental and neurodegenerative pathologies over time in all age groups. FUNDING European Research Council (ERC) grant agreements No 810331, No 725149, No 804236, the European Union Horizon 2020 research and innovation program No 847941, the Fondation pour la Recherche Médicale (FRM) and the Agence Nationale de la Recherche en Santé (ANRS) No ECTZ200878 Long Covid 2021 ANRS0167 SIGNAL, Agence Nationale de la recherche (ANR) grant agreements No ANR-19-CE16-0021-02, No ANR-11-LABEX-0009, No. ANR-10-LABEX-0046, No. ANR-16-IDEX-0004, Inserm Cross-Cutting Scientific Program HuDeCA, the CHU Lille Bonus H, the UK Medical Research Council (MRC) and National Institute of Health and care Research (NIHR).
Collapse
Affiliation(s)
- Florent Sauve
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Sophie A Clarke
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | | | - Julie Dewisme
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France
| | - Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Gaetan Ternier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | | | - Helge Mueller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Neurology, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Romain Perbet
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France
| | - Vincent Florent
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Marc Baroncini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - June Ereño-Orbea
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Maria Mercado-Gómez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Asis Palazon
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Virginie Mattot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Neurology, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Gynecology and Obstetrics, Jeanne de Flandres Hospital, F-59000, Lille, France
| | - Maria Martinez-Chantar
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mercé Jourdain
- Univ. Lille, Inserm, CHU Lille, Service de Médecine Intensive Réanimation, U1190, EGID, F-59000 Lille, France
| | - Dominique Deplanque
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; University Lille, Inserm, CHU Lille, Centre d'investigation Clinique (CIC) 1403, F-59000, Lille, France; LICORNE Study Group, CHU Lille, Lille, France
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Laurent Storme
- CHU Lille, Department of Neonatology, Hôpital Jeanne de Flandre, FHU 1000 Days for Health, F-59000, France
| | - Cyril Robil
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Trottein
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Pascal Pigny
- CHU Lille, Service de Biochimie et Hormonologie, Centre de Biologie Pathologie, Lille, France
| | - Julien Poissy
- LICORNE Study Group, CHU Lille, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Pôle de Réanimation, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France; LICORNE Study Group, CHU Lille, Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Waljit Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France.
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France.
| |
Collapse
|
9
|
Bekheit MS, Panda SS, Kariuki BM, Mahmoud SH, Mostafa A, Girgis AS. Spiroindole-containing compounds bearing phosphonate group of potential M pro-SARS-CoV-2 inhibitory properties. Eur J Med Chem 2023; 258:115563. [PMID: 37329713 DOI: 10.1016/j.ejmech.2023.115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Microwave-assisted reaction of 3,5-bis((E)-ylidene)-1-phosphonate-4-piperidones 3a‒g with azomethine ylide (produced through interaction of isatins 4 and sarcosine 5) cycloaddition afforded the corresponding (dispiro[indoline-3,2'-pyrrolidine-3',3″-piperidin]-1″-yl)phosphonates 6a‒l in excellent yields (80-95%). Structure of the synthesized agents was evidenced by single crystal X-ray studies of 6d, 6i and 6l. Some of the synthesized agents revealed promising anti-SARS-CoV-2 properties in the viral infected Vero-E6 cell technique with noticeable selectivity indices. Compounds 6g and 6b are the most promising agents synthesized (R = 4-BrC6H4, Ph; R' = H, Cl, respectively) with considerable selectivity index values. Mpro-SARS-CoV-2 inhibitory properties supported the anti-SARS-CoV-2 observations of the potent analogs synthesized. Molecular docking studies (PDB ID: 7C8U) are consistent with the Mpro inhibitory properties. The presumed mode of action was supported by both experimentally investigated Mpro-SARS-CoV-2 inhibitory properties and explained by docking observations.
Collapse
Affiliation(s)
- Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Siva S Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30912, USA
| | - Benson M Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
10
|
Boutin JA, Kennaway DJ, Jockers R. Melatonin: Facts, Extrapolations and Clinical Trials. Biomolecules 2023; 13:943. [PMID: 37371523 DOI: 10.3390/biom13060943] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Melatonin is a fascinating molecule that has captured the imagination of many scientists since its discovery in 1958. In recent times, the focus has changed from investigating its natural role as a transducer of biological time for physiological systems to hypothesized roles in virtually all clinical conditions. This goes along with the appearance of extensive literature claiming the (generally) positive benefits of high doses of melatonin in animal models and various clinical situations that would not be receptor-mediated. Based on the assumption that melatonin is safe, high doses have been administered to patients, including the elderly and children, in clinical trials. In this review, we critically review the corresponding literature, including the hypotheses that melatonin acts as a scavenger molecule, in particular in mitochondria, by trying not only to contextualize these interests but also by attempting to separate the wheat from the chaff (or the wishful thinking from the facts). We conclude that most claims remain hypotheses and that the experimental evidence used to promote them is limited and sometimes flawed. Our review will hopefully encourage clinical researchers to reflect on what melatonin can and cannot do and help move the field forward on a solid basis.
Collapse
Affiliation(s)
- J A Boutin
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandy, INSERM U1239, 76000 Rouen, France
| | - D J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Science Building, North Terrace, Adelaide, SA 5006, Australia
| | - R Jockers
- Institut Cochin, Université Paris Cité, INSERM, CNRS, 75014 Paris, France
| |
Collapse
|
11
|
Gorman S. The inhibitory and inactivating effects of visible light on SARS-CoV-2: A narrative update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023; 15:100187. [PMID: 37288364 PMCID: PMC10207839 DOI: 10.1016/j.jpap.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Prior to the coronavirus disease-19 (COVID-19) pandemic, the germicidal effects of visible light (λ = 400 - 700 nm) were well known. This review provides an overview of new findings that suggest there are direct inactivating effects of visible light - particularly blue wavelengths (λ = 400 - 500 nm) - on exposed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions, and inhibitory effects on viral replication in infected cells. These findings complement emerging evidence that there may be clinical benefits of orally administered blue light for limiting the severity of COVID-19. Possible mechanisms of action of blue light (e.g., regulation of reactive oxygen species) and important mediators (e.g., melatonin) are discussed.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, PO Box 855, Perth, Western Australia 6872, Australia
| |
Collapse
|
12
|
Kitidee K, Samutpong A, Pakpian N, Wisitponchai T, Govitrapong P, Reiter RJ, Wongchitrat P. Antiviral effect of melatonin on Japanese encephalitis virus infection involves inhibition of neuronal apoptosis and neuroinflammation in SH-SY5Y cells. Sci Rep 2023; 13:6063. [PMID: 37055489 PMCID: PMC10099015 DOI: 10.1038/s41598-023-33254-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes high mortality rates in humans and it is the most clinically important and common cause of viral encephalitis in Asia. To date, there is no specific treatment for JEV infection. Melatonin, a neurotropic hormone, is reported to be effective in combating various bacterial and viral infections. However, the effects of melatonin on JEV infection have not yet been studied. The investigation tested the antiviral effects of melatonin against JEV infection and elucidated the possible molecular mechanisms of inhibition. Melatonin inhibited the viral production in JEV-infected SH-SY5Y cells in a time- and dose-dependent manner. Time-of-addition assays demonstrated a potent inhibitory effect of melatonin at the post-entry stage of viral replication. Molecular docking analysis revealed that melatonin negatively affected viral replication by interfering with physiological function and/or enzymatic activity of both JEV nonstructural 3 (NS3) and NS5 protein, suggesting a possible underlying mechanism of JEV replication inhibition. Moreover, treatment with melatonin reduced neuronal apoptosis and inhibited neuroinflammation induced by JEV infection. The present findings reveal a new property of melatonin as a potential molecule for the further development of anti-JEV agents and treatment of JEV infection.
Collapse
Affiliation(s)
- Kuntida Kitidee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Arisara Samutpong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nattaporn Pakpian
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Tanchanok Wisitponchai
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
13
|
Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin 2023; 44:695-709. [PMID: 36253560 PMCID: PMC9574180 DOI: 10.1038/s41401-022-00998-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022]
Abstract
The fight against coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is still raging. However, the pathophysiology of acute and post-acute manifestations of COVID-19 (long COVID-19) is understudied. Endothelial cells are sentinels lining the innermost layer of blood vessel that gatekeep micro- and macro-vascular health by sensing pathogen/danger signals and secreting vasoactive molecules. SARS-CoV-2 infection primarily affects the pulmonary system, but accumulating evidence suggests that it also affects the pan-vasculature in the extrapulmonary systems by directly (via virus infection) or indirectly (via cytokine storm), causing endothelial dysfunction (endotheliitis, endothelialitis and endotheliopathy) and multi-organ injury. Mounting evidence suggests that SARS-CoV-2 infection leads to multiple instances of endothelial dysfunction, including reduced nitric oxide (NO) bioavailability, oxidative stress, endothelial injury, glycocalyx/barrier disruption, hyperpermeability, inflammation/leukocyte adhesion, senescence, endothelial-to-mesenchymal transition (EndoMT), hypercoagulability, thrombosis and many others. Thus, COVID-19 is deemed as a (micro)vascular and endothelial disease. Of translational relevance, several candidate drugs which are endothelial protective have been shown to improve clinical manifestations of COVID-19 patients. The purpose of this review is to provide a latest summary of biomarkers associated with endothelial cell activation in COVID-19 and offer mechanistic insights into the molecular basis of endothelial activation/dysfunction in macro- and micro-vasculature of COVID-19 patients. We envisage further development of cellular models and suitable animal models mimicking endothelial dysfunction aspect of COVID-19 being able to accelerate the discovery of new drugs targeting endothelial dysfunction in pan-vasculature from COVID-19 patients.
Collapse
Affiliation(s)
- Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
14
|
Chauhan J, Cecon E, Labani N, Gbahou F, Real F, Bomsel M, Dubey KD, Das R, Dam J, Jockers R, Sen S. Development of indolealkylamine derivatives as potential multi-target agents for COVID-19 treatment. Eur J Med Chem 2023; 249:115152. [PMID: 36724633 PMCID: PMC9882955 DOI: 10.1016/j.ejmech.2023.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023]
Abstract
COVID-19 is a complex disease with short-term and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. As many drugs targeting single targets showed only limited effectiveness against COVID-19, here, we aimed to explore a multi-target strategy. We synthesized a focused compound library based on C2-substituted indolealkylamines (tryptamines and 5-hydroxytryptamines) with activity for three potential COVID-19-related proteins, namely melatonin receptors, calmodulin and human angiotensin converting enzyme 2 (hACE2). Two molecules from the library, 5e and h, exhibit affinities in the high nanomolar range for melatonin receptors, inhibit the calmodulin-dependent calmodulin kinase II activity and the interaction of the SARS-CoV-2 Spike protein with hACE2 at micromolar concentrations. Both compounds inhibit SARS-CoV-2 entry into host cells and 5h decreases SARS-CoV-2 replication and MPro enzyme activity in addition. In conclusion, we provide a proof-of-concept for the successful design of multi-target compounds based on the tryptamine scaffold. Optimization of these preliminary hit compounds could potentially provide drug candidates to treat COVID-19 and other coronavirus diseases.
Collapse
Affiliation(s)
- Jyoti Chauhan
- Department of Chemistry, School of Natural Sciences, Dadri, Chithera, Gautam Buddha Nagar, UP, 201314, India
| | - Erika Cecon
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, PARIS, France
| | - Nedjma Labani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, PARIS, France
| | - Florence Gbahou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, PARIS, France
| | - Fernando Real
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, PARIS, France
| | - Morgane Bomsel
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, PARIS, France
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Dadri, Chithera, Gautam Buddha Nagar, UP, 201314, India
| | - Ranajit Das
- Department of Chemistry, School of Natural Sciences, Dadri, Chithera, Gautam Buddha Nagar, UP, 201314, India
| | - Julie Dam
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, PARIS, France
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, PARIS, France.
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Dadri, Chithera, Gautam Buddha Nagar, UP, 201314, India.
| |
Collapse
|
15
|
Taner N, Haskologlu IC, Erdag E, Mercan M, Chuckwunyere U, Ulker D, Sehirli AO, Abacioglu N. Chronobiological Efficacy of Combined Therapy of Pelargonium Sidoides and Melatonin in Acute and Persistent Cases of COVID-19: A Hypothetical Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:427-442. [PMID: 37378781 DOI: 10.1007/978-3-031-28012-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since the outbreak of the first SARS-CoV-2 epidemic in China, pharmacists have rapidly engaged and developed strategies for pharmaceutical care and supply. According to the guidelines of the International Pharmaceutical Federation (FIP), clinical pharmacists/hospital pharmacists, as members of care teams, play one of the most important roles in the pharmaceutical care of patients with COVID-19. During this pandemic, many immuno-enhancing adjuvant agents have become critical in addition to antivirals and vaccines in order to overcome the disease more easily. The liquid extract obtained from the Pelargonium sidoides plant is used for many indications such as colds, coughs, upper respiratory tract infections, sore throat, and acute bronchitis. The extract obtained from the roots of the plant has been observed to have antiviral and immunomodulatory activity. In addition to its anti-inflammatory and antioxidant effects, melatonin plays a role in suppressing the cytokine storm that can develop during COVID-19 infection. Knowing that the severity and duration of COVID-19 symptoms vary within 24 hours and/or in different time periods indicates that COVID-19 requires a chronotherapeutic approach. Our goal in the management of acute and long COVID is to synchronize the medication regimen with the patient's biological rhythm. This chapter provides a comprehensive review of the existing and emerging literature on the chronobiological use of Pelargonium sidoides and melatonin during acute and prolonged COVID-19 episodes.
Collapse
Affiliation(s)
- Neda Taner
- Istanbul Medipol University, School of Pharmacy, Department of Clinical Pharmacy, Istanbul, Turkey
| | - Ismail Celil Haskologlu
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Emine Erdag
- Near East University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Nicosia, Mersin 10, Turkey
| | - Merve Mercan
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Ugochukwu Chuckwunyere
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Damla Ulker
- Near East University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Nicosia, Mersin 10, Turkey
| | - Ahmet Ozer Sehirli
- Near East University, Faculty of Dentistry, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Nurettin Abacioglu
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| |
Collapse
|
16
|
Adesse D, Gladulich L, Alvarez-Rosa L, Siqueira M, Marcos AC, Heider M, Motta CS, Torices S, Toborek M, Stipursky J. Role of aging in Blood-Brain Barrier dysfunction and susceptibility to SARS-CoV-2 infection: impacts on neurological symptoms of COVID-19. Fluids Barriers CNS 2022; 19:63. [PMID: 35982454 PMCID: PMC9386676 DOI: 10.1186/s12987-022-00357-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
COVID-19, which is caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), has resulted in devastating morbidity and mortality worldwide due to lethal pneumonia and respiratory distress. In addition, the central nervous system (CNS) is well documented to be a target of SARS-CoV-2, and studies detected SARS-CoV-2 in the brain and the cerebrospinal fluid of COVID-19 patients. The blood-brain barrier (BBB) was suggested to be the major route of SARS-CoV-2 infection of the brain. Functionally, the BBB is created by an interactome between endothelial cells, pericytes, astrocytes, microglia, and neurons, which form the neurovascular units (NVU). However, at present, the interactions of SARS-CoV-2 with the NVU and the outcomes of this process are largely unknown. Moreover, age was described as one of the most prominent risk factors for hospitalization and deaths, along with other comorbidities such as diabetes and co-infections. This review will discuss the impact of SARS-CoV-2 on the NVU, the expression profile of SARS-CoV-2 receptors in the different cell types of the CNS and the possible role of aging in the neurological outcomes of COVID-19. A special emphasis will be placed on mitochondrial functions because dysfunctional mitochondria are also a strong inducer of inflammatory reactions and the "cytokine storm" associated with SARS-CoV-2 infection. Finally, we will discuss possible drug therapies to treat neural endothelial function in aged patients, and, thus, alleviate the neurological symptoms associated with COVID-19.
Collapse
Affiliation(s)
- Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Luis Gladulich
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Liandra Alvarez-Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michele Siqueira
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anne Caroline Marcos
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Marialice Heider
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Caroline Soares Motta
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Joice Stipursky
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|