1
|
Lämmerhirt L, Kappelmann-Fenzl M, Fischer S, Meier P, Staebler S, Kuphal S, Bosserhoff AK. Loss of miR-101-3p in melanoma stabilizes genomic integrity, leading to cell death prevention. Cell Mol Biol Lett 2024; 29:29. [PMID: 38431560 PMCID: PMC10909299 DOI: 10.1186/s11658-024-00552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Malignant melanoma remains the most lethal form of skin cancer, exhibiting poor prognosis after forming distant metastasis. Owing to their potential tumor-suppressive properties by regulating oncogenes and tumor suppressor genes, microRNAs are important player in melanoma development and progression. We defined the loss of miR-101-3p expression in melanoma cells compared with melanocytes and melanoblast-related cells as an early event in tumor development and aimed to understand the tumor suppressive role of miR-101-3p and its regulation of important cellular processes. Reexpression of miR-101-3p resulted in inhibition of proliferation, increase in DNA damage, and induction of apoptosis. We further determined the nuclear structure protein Lamin B1, which influences nuclear processes and heterochromatin structure, ATRX, CASP3, and PARP as an important direct target of miR-101-3p. RNA sequencing and differential gene expression analysis after miR-101-3p reexpression supported our findings and the importance of loss of mir-101-3p for melanoma progression. The validated functional effects are related to genomic instability, as recent studies suggest miRNAs plays a key role in mediating this cellular process. Therefore, we concluded that miR-101-3p reexpression increases the genomic instability, leading to irreversible DNA damage, which leads to apoptosis induction. Our findings suggest that the loss of miR-101-3p in melanoma serves as an early event in melanoma progression by influencing the genomic integrity to maintain the increased bioenergetic demand.
Collapse
Affiliation(s)
- Lisa Lämmerhirt
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Paula Meier
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- Julius-Maximilians-University Würzburg (JMU), Sanderring 2, 97070, Würzburg, Germany
| | - Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany.
| |
Collapse
|
2
|
Soederberg A, Meißgeier T, Bosserhoff AK, Linck-Paulus L. MAGOH and MAGOHB Knockdown in Melanoma Cells Decreases Nonsense-Mediated Decay Activity and Promotes Apoptosis via Upregulation of GADD45A. Cells 2022; 11:cells11233859. [PMID: 36497117 PMCID: PMC9738831 DOI: 10.3390/cells11233859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Cutaneous malignant melanoma is a highly proliferative and aggressive skin cancer with a steadily increasing incidence and a low long-term survival rate after metastatic progression. The protein MAGOH and its highly identical homologue MAGOHB are core components of the exon junction complex (EJC), which regulates splicing, stability and translation of mRNAs. The EJC, and especially MAGOH, has been shown to be involved in the development and progression of several cancers. In melanoma, the expression and function of both homologues remain essentially unexplored. This study identifies high MAGOH and MAGOHB protein expression in cutaneous melanoma cell lines and patient derived tissue samples. An siRNA-mediated knockdown of MAGOH significantly inhibits melanoma cell proliferation. The loss of MAGOH does not affect cell cycle progression, but induces apoptosis, an effect that is enhanced by a simultaneous knockdown of MAGOH and MAGOHB. MAGOH and MAGOHB do not influence the expression of the pro-apoptotic protein Bcl-XS or exon skipping. However, the knockdown of MAGOH and MAGOHB strongly decreases nonsense-mediated decay (NMD) activity, leading to an upregulation of the pro-apoptotic protein GADD45A. In conclusion, simultaneous inhibition of MAGOH and MAGOHB expression substantially affects cell survival, indicating both MAGOH homologues as promising new targets for the treatment of melanoma.
Collapse
Affiliation(s)
- Agnes Soederberg
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
| | - Tina Meißgeier
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Lisa Linck-Paulus
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|