1
|
Tory K. Throwing off the keratin chains: a potential therapy for hereditary podocytopathy. Kidney Int 2024; 105:663-665. [PMID: 38519231 DOI: 10.1016/j.kint.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 03/24/2024]
Abstract
In the current issue, Kuzmuk et al. offer a therapeutic option for patients with NPHS2 R138Q-associated nephrotic syndrome. For the first time in hereditary podocytopathies, this is offered by restoring the membrane targeting of a pathogenic protein. The idea that it is enough to liberate podocin from the trap of keratin 8, a key member of endoplasmic-reticulum-associated protein degradation complex, was brilliantly recognized based on former results obtained in cystic fibrosis.
Collapse
Affiliation(s)
- Kálmán Tory
- Pediatric Center, Semmelweis University, Budapest, Hungary; Hungarian Academy of Sciences - Semmelwies University (MTA-SE) Lendület Nephrogenetic Laboratory, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Kuzmuk V, Pranke I, Rollason R, Butler M, Ding WY, Beesley M, Waters AM, Coward RJ, Sessions R, Tuffin J, Foster RR, Mollet G, Antignac C, Edelman A, Welsh GI, Saleem MA. A small molecule chaperone rescues keratin-8 mediated trafficking of misfolded podocin to correct genetic Nephrotic Syndrome. Kidney Int 2024; 105:744-758. [PMID: 37995908 DOI: 10.1016/j.kint.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Valeryia Kuzmuk
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Iwona Pranke
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Butler
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Wen Y Ding
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Beesley
- Department of Pathology, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | | | - Richard J Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jack Tuffin
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Géraldine Mollet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Toivola DM, Polari L, Schwerd T, Schlegel N, Strnad P. The keratin-desmosome scaffold of internal epithelia in health and disease - The plot is thickening. Curr Opin Cell Biol 2024; 86:102282. [PMID: 38000362 DOI: 10.1016/j.ceb.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Keratin (K) intermediate filaments are attached to desmosomes and constitute the orchestrators of epithelial cell and tissue architecture. While their relevance in the epidermis is well recognized, our review focuses on their emerging importance in internal epithelia. The significance of keratin-desmosome scaffolds (KDSs) in the intestine is highlighted by transgenic mouse models and individuals with inflammatory bowel disease who display profound KDS alterations. In lung, high K8 expression defines a transitional cell subset during regeneration, and K8 variants are associated with idiopathic pulmonary fibrosis. Inherited variants in desmosomal proteins are overrepresented in idiopathic lung fibrosis, and familiar eosinophilic esophagitis. K18 serum fragments are established hepatocellular injury markers that correlate with the extent of histological inflammation. K17 expression is modified in multiple tumors, and K17 levels might be of prognostic relevance. These data should spur further studies on biological roles of these versatile tissue protectors and efforts on their therapeutic targeting.
Collapse
Affiliation(s)
- Diana M Toivola
- Cell Biology, Biosciences and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| | - Lauri Polari
- Cell Biology, Biosciences and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|