1
|
Snyder M, Wang Z, Lara B, Fimbres J, Pichardo T, Mazzilli S, Khan MM, Duggineni VK, Monti S, Sherr DH. The aryl hydrocarbon receptor controls IFN-γ-induced immune checkpoints PD-L1 and IDO via the JAK/STAT pathway in lung adenocarcinoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae023. [PMID: 40073102 DOI: 10.1093/jimmun/vkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 03/14/2025]
Abstract
While immunotherapy has shown some efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, the AhR, a known but counterintuitive mediator of immunosuppression (interferon (IFN)-γ), and regulation of two immune checkpoints (PD-L1 and IDO). AhR gene-edited LUAD cell lines, a syngeneic LUAD mouse model, bulk and scRNA sequencing of LUADs and tumor-infiltrating T cells were used to map out a signaling pathway leading from IFN-γ through the AhR to JAK/STAT, PD-L1, IDO, and tumor-mediated immunosuppression. The data demonstrate that: (1) IFN-γ activation of the JAK/STAT pathway leading to PD-L1 and IDO1 up-regulation is mediated by the AhR in murine and human LUAD cells, (2) AhR-driven IDO1 induction results in the production of Kynurenine (Kyn), an AhR ligand, which likely mediates an AhR→IDO1→Kyn→AhR amplification loop, (3) transplantation of AhR-knockout LUAD cells results in long-term tumor immunity in most recipients. (4) The 23% of AhR-knockout tumors that do grow do so at a much slower pace than controls and exhibit higher densities of CD8+ T cells expressing markers of immunocompetence, increased activity, and increased cell-cell communication. The data definitively link the AhR to IFN-γ-induced JAK/STAT pathway and immune checkpoint-mediated immunosuppression and support the targeting of the AhR in the context of LUAD.
Collapse
Affiliation(s)
- Megan Snyder
- Graduate Program in Genetics and Genomics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Brian Lara
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Táchira Pichardo
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Sarah Mazzilli
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Mohammed Muzamil Khan
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Vinay K Duggineni
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Stefano Monti
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| |
Collapse
|
2
|
Luo S, Li J, Zhou Y, Zhai Z, Li Q, Huang Z, He W, Zhong K, Kong B, Xia Z, Kwok HF, Zhu L. Diisooctyl phthalate (DIOP) exposure leads to cell apoptosis to HUVEC cells and toxicity to Caenorhabditis elegans through increasing the oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117594. [PMID: 39729937 DOI: 10.1016/j.ecoenv.2024.117594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Diisooctyl phthalate (DIOP), a common phthalate plasticizer, is frequently encountered in everyday life. Despite its widespread use, there is a dearth of toxicological research on DIOP, resulting in incomplete knowledge of its potential harmful effects. Our current research endeavored to provide a comprehensive evaluation of DIOP's toxicological profile using both cellular and Caenorhabditis elegans models as our in vitro and in vivo study subjects. Our results demonstrate that DIOP markedly decreases the viability and colony-forming ability of HUVECs. Moreover, this cytotoxicity correlates with elevated levels of reactive oxygen species (ROS), causing cell cycle arrest at the G1 phase and the induction of cell apoptosis. In addition, DIOP adversely affects the growth, movement, and reproductive fitness of C. elegans, as well as other physiological aspects such as body curvature, egg-laying capability, and body length. C. elegans exposed to DIOP exhibit increased oxidative stress, evidenced by higher ROS levels and lipofuscin buildup. Importantly, the PI3K/AKT and MAPK pathways are implicated in the response to DIOP-induced toxicity. This study, therefore, highlights the potential toxicity of DIOP in both cellular and organismal models, advancing our understanding of the detrimental effects associated with exposure to DIOP.
Collapse
Affiliation(s)
- Siyuan Luo
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, University of Macau, 999078, Macao
| | - Junnan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yuqing Zhou
- School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 510006, China
| | - Zihang Zhai
- School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 510006, China
| | - Qiang Li
- Food Safety Inspection Technology Center of Sichuan Market Supervision Administration, Chengdu, China
| | - Zhenglin Huang
- Food Safety Inspection Technology Center of Sichuan Market Supervision Administration, Chengdu, China
| | - Wencan He
- School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 510006, China; Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China
| | - Kejun Zhong
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China
| | - Bo Kong
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China
| | - Zanxian Xia
- School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 510006, China.
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, University of Macau, 999078, Macao.
| | - Lipeng Zhu
- School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 510006, China.
| |
Collapse
|
3
|
Ozgun O, Ozturk SD, Vural C, Kefeli AU, Balci S, Cabuk D, Uygun K, Kefeli U. Exploring the association of ADAM17 expression with survival in patients with non-small cell lung cancer. J Investig Med 2024; 72:848-856. [PMID: 39091062 DOI: 10.1177/10815589241270543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The A disintegrin and metalloprotease (ADAM) family is involved in many vital cellular events, from proliferation to migration, and accumulated evidence suggests its increased expression in malignant tumors. In this study, we investigated ADAM17 expression in non-small cell lung cancer (NSCLC) and its relationship with clinicopathological factors and survival. Immunohistochemical staining of ADAM expression was performed in 108 patients with NSCLC and in 54 control cases with no known malignant diagnosis. Association between ADAM17 expression, clinicopathological factors, and survival were analyzed. The Kaplan-Meier method was used for survival analysis. ADAM17 was lowly expressed in 89 (82.4%) and highly expressed in 19 (17.6%) of the patients with NSCLC. In univariate analysis, high ADAM17 expression, lymphovascular invasion, stage, and treatment response significantly affected progression-free survival (PFS) and overall survival (OS) (p < 0.05). Multivariate analysis also showed that high ADAM17 expression, lymphovascular invasion, stage, and treatment response were important prognostic factors for PFS and OS (p < 0.05). Our study revealed that high ADAM17 expression significantly associated with OS and PFS in patients with NSCLC. ADAM17 may potentially be the area of a new targeted treatment strategy in NSCLC. Thus, routine evaluation of ADAM17 expression in patients with NSCLC may be a future consideration.
Collapse
Affiliation(s)
- Ozge Ozgun
- Department of Internal Medicine, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Seda Duman Ozturk
- Department of Pathology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Cigdem Vural
- Department of Pathology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Aysegul Ucuncu Kefeli
- Department of Radiation Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Sibel Balci
- Department of Biostatistics and Medical Informatics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Devrim Cabuk
- Department of Medical Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Kazim Uygun
- Department of Medical Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Umut Kefeli
- Department of Medical Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| |
Collapse
|
4
|
Savardekar A, Fernandes E, Padhye-Pendse A, Gupta T, Pol J, Phadke M, Desai S, Jadhav S, Rajwade J, Banerjee A. Adipocytes Promote Endometrial Cancer Progression Through Activation of the SIRT1-HMMR Signaling Axis. Mol Carcinog 2024; 63:2363-2381. [PMID: 39254492 DOI: 10.1002/mc.23815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Adipocyte is a predominant component of the omental adipose tissue that influences the tumor microenvironment and increases the risk of endometrial cancer progression (EC), however, little is known about the underlying mechanism. In this study, using a co-culture model, we found that the adipocyte-EC cell interaction promoted SIRT1 signaling in vitro and in vivo xenograft mice models. Furthermore, immunostaining of SIRT1 protein showed significantly higher expression of SIRT1 in endometrial cancer patients than in normal endometria. RNA sequencing analysis revealed HMMR (hyaluronan-mediated motility receptor), an oncogene, as a downstream effector of SIRT1 in adipocyte-associated EC. Transient knockdown and chromatin immunoprecipitation assays showed that SIRT1 inhibition impedes transcription of the HMMR gene via FOXM1, and reduced expression of HMMR in co-cultured EC cells blocks AURKA activation via TPX2, leading to cell cycle arrest. This is the first study to report the positive correlation between SIRT1 and HMMR in EC patient tumors and might be used as a potential biomarker in EC. Notably, SIRT1 regulates HMMR expression in a FOXM1-dependent manner, and interfering with SIRT1 may provide a promising strategy for the management of endometrial cancer.
Collapse
Affiliation(s)
- Akanksha Savardekar
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Ellerhea Fernandes
- Department of Surgery, Wanless Mission Hospital, Miraj, Maharashtra, India
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | | | - Tanish Gupta
- Department of Electrical and Electronics Engineering, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Jaydeep Pol
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | - Madhura Phadke
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | - Sharad Desai
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | - Sachin Jadhav
- Nanobioscience Group, Agharkar Research Institute, Pune, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune, India
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| |
Collapse
|
5
|
Gong B, Qu T, Zhang J, Jia Y, Song Z, Chen C, Yang J, Wang C, Liu Y, Jin Y, Cao W, Zhao Q. Downregulation of ABLIM3 confers to the metastasis of neuroblastoma via regulating the cell adhesion molecules pathway. Comput Struct Biotechnol J 2024; 23:1547-1561. [PMID: 38645433 PMCID: PMC11031727 DOI: 10.1016/j.csbj.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Neuroblastoma (NB) is the most prevalent extracranial solid tumor in pediatric patients, and its treatment failure often associated with metastasis. In this study, LASSO, SVM-RFE, and random forest tree algorithms, was used to identify the pivotal gene involved in NB metastasis. NB cell lines (SK-N-AS and SK-N-BE2), in conjunction with NB tissue were used for further study. ABLIM3 was identified as the hub gene and can be an independent prognostic factor for patients with NB. The immunohistochemical analysis revealed that ABLIM3 is negatively correlated with the metastasis of NB. Patients with low expression of ABLIM3 had a poor prognosis. High ABLIM3 expression correlated with APC co-stimulation and Type1 IFN response, and TIDE analysis indicated that patients with low ABLIM3 expression exhibited enhanced responses to immunotherapy. Downregulation of ABLIM3 by shRNA transfection increased the migration and invasion ability of NB cells. Gene Set Enrichment Analysis (GSEA) revealed that genes associated with ABLIM3 were primarily enriched in the cell adhesion molecules (CAMs) pathway. RT-qPCR and western blot analyses demonstrated that downregulation of ABLIM3 led to decreased expression of ITGA3, ITGA8, and KRT19, the key components of CAMs. This study indicated that ABLIM3 can be an independent prognostic factor for NB patients, and CAMs may mediate the effect of ABLIM3 on the metastasis of NB, suggesting that ABLIM3 is a potential therapeutic target for NB metastasis, which provides a novel strategy for future research and treatment strategies for NB patients.
Collapse
Affiliation(s)
- Baocheng Gong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tongyuan Qu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiaojiao Zhang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yubin Jia
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zian Song
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chong Chen
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiaxing Yang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chaoyu Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yun Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
6
|
Snyder M, Wang Z, Lara B, Fimbres J, Pichardo T, Mazzilli S, Khan MM, Duggineni VK, Monti S, Sherr DH. The Aryl Hydrocarbon Receptor Controls IFNγ-Induced Immune Checkpoints PD-L1 and IDO via the JAK/STAT Pathway in Lung Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607602. [PMID: 39185148 PMCID: PMC11343147 DOI: 10.1101/2024.08.12.607602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
While immunotherapy has shown efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, (the aryl hydrocarbon receptor/AhR), a known but counterintuitive mediator of immunosuppression (IFNγ), and regulation of two immune checkpoints (PD-L1 and IDO). AhR gene-edited LUAD cell lines, a syngeneic LUAD mouse model, bulk- and scRNA sequencing of LUADs and tumor-infiltrating leukocytes were used to map out a signaling pathway leading from IFNγ through the AhR to JAK/STAT, PD-L1, IDO, and tumor-mediated immunosuppression. The data demonstrate that: 1) IFNγ activation of the JAK/STAT pathway leading to PD-L1 and IDO1 upregulation is mediated by the AhR in murine and human LUAD cells, 2) AhR-driven IDO1 induction results in the production of Kynurenine (Kyn), an AhR ligand, which likely mediates an AhR→IDO1→Kyn→AhR amplification loop, 3) transplantation of AhR-knockout LUAD cells results in long-term tumor immunity in most recipients. 4) The 23% of AhR-knockout tumors that do grow do so at a much slower pace than controls and exhibit higher densities of CD8+ T cells expressing markers of immunocompetence, increased activity, and increased cell-cell communication. The data definitively link the AhR to IFNγ-induced JAK/STAT pathway and immune checkpoint-mediated immunosuppression and support the targeting of the AhR in the context of LUAD.
Collapse
Affiliation(s)
- Megan Snyder
- Graduate Program in Genetics and Genomics, Boston University School of Medicine
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health
| | - Brian Lara
- Department of Environmental Health, Boston University School of Public Health
| | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health
| | | | | | - Mohammed Muzamil Khan
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine
| | - Vinay K. Duggineni
- Department of Environmental Health, Boston University School of Public Health
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health
| |
Collapse
|
7
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
8
|
Qian Y, Zhou S, Li J, Ma M, Chen H, Cao Y, Zhang Y, Sun C, Li K, Liu Y, Dai S, Ao M, Fang M, Wu Z, Li M. Discovery of 4-((3,4-dichlorophenyl)amino)-2-methylquinolin-6-ol derivatives as EGFR and HDAC dual inhibitors. Eur J Pharmacol 2023; 960:176114. [PMID: 37863412 DOI: 10.1016/j.ejphar.2023.176114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
In patients with non-small cell lung cancer (NSCLC), the standard therapy consists of selective tyrosine kinase inhibitors that target epidermal growth factor receptors (EGFR). Nonetheless, their clinical utility is primarily limited by the development of resistance to drugs. HDAC inhibitors have been shown in studies to reduce the level of EGFR that is expressed and downregulate the EGFR-induced phosphorylation of AKT and ERK. Therefore, dual inhibitors of EGFR and HDAC provide a potential approach as combination treatment synergistically inhibited the growth of NSCLC. Herein, we examined the EGFR inhibition effect of twenty compounds which designed and synthesized by us previously. Among them, compounds 12c and 12d exhibited powerful antiproliferative activity against the NCI-H1975 cell line with IC50 values of 0.48 ± 0.07 and 0.35 ± 0.02 μM, correspondingly. In cell-free kinase assays, both 12c and 12d demonstrated target-specific EGFR inhibition against wild type (EGFRwt). Furthermore, the expression of EGFR and phosphorylation of the EGF-induced pathways were significantly suppressed under the treatment of 12c and 12d. Besides, both histones H3 and H4 exhibited increased levels of acetylation following 12c and 12d treatment. The animal experiments shown that 12d could prevent the growth of tumor, inhibited the expression of EGFR and the phosphorylation levels of p70 S6K, AKT and p38 MAPK in vivo, and did not cause organ damage to the mice during the experiment. Overall, the results illustrated that compound 12c and 12d could serve as effective EGFR and HDAC dual inhibitors in NSCLC cells. Our work offers an alternative strategy for NSCLC therapy.
Collapse
Affiliation(s)
- Yuqing Qian
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Siyu Zhou
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Jiayi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Mingyuan Ma
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuxiang Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Chaoyu Sun
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Kang Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yizhao Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Shutong Dai
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Mingtao Ao
- School of Pharmacy, Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, Hubei, 437100, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Mingdong Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
9
|
Wu Z, Li W, Tang Q, Huang L, Zhan Z, Li Y, Wang G, Dai X, Zhang Y. A Novel Aniline Derivative from Peganum harmala L. Promoted Apoptosis via Activating PI3K/AKT/mTOR-Mediated Autophagy in Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2023; 24:12626. [PMID: 37628807 PMCID: PMC10454575 DOI: 10.3390/ijms241612626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common clinical malignant tumor with limited therapeutic drugs. Leading by cytotoxicity against NSCLC cell lines (A549 and PC9), bioactivity-guided isolation of components from Peganum harmala seeds led to the isolation of pegaharoline A (PA). PA was elucidated as a structurally novel aniline derivative, originating from tryptamine with a pyrrole ring cleaved and the degradation of carbon. Biological studies showed that PA significantly inhibited NSCLC cell proliferation, suppressed DNA synthesis, arrested the cell cycle, suppressed colony formation and HUVEC angiogenesis, and blocked cell invasion and migration. Molecular docking and surface plasmon resonance (SPR) demonstrated PA could bind with CD133, correspondingly decreased CD133 expression to activate autophagy via inhibiting the PI3K/AKT/mTOR pathway, and increased ROS levels, Bax, and cleaved caspase-3 to promote apoptosis. PA could also decrease p-cyclinD1 and p-Erk1/2 and block the EMT pathway to inhibit NSCLC cell growth, invasion, and migration. According to these results, PA could inhibit NSCLC cell growth by blocking PI3K/AKT/mTOR and EMT pathways. This study provides evidence that PA has a promising future as a candidate for developing drugs for treating NSCLC.
Collapse
Affiliation(s)
- Zhongnan Wu
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Wen Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| | - Qing Tang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| | - Laiqiang Huang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhaochun Zhan
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| | - Yaolan Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| | - Xiaoyong Dai
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yubo Zhang
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| |
Collapse
|
10
|
Yang X, Jiang H, Ning J, Zhang S, Cai Y, Wang L, Yang J, Xu G, Chen W, Wang J. Inhibition of GPR30 sensitized gefitinib to NSCLC cells via regulation of epithelial-mesenchymal transition. Int J Immunopathol Pharmacol 2023; 37:3946320231210737. [PMID: 37890097 PMCID: PMC10612443 DOI: 10.1177/03946320231210737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Introduction: G-protein coupled receptor 30 (GPR30) is associated with cell metastasis and drug resistance in many different cancer cells. The present study aimed to reveal the sensitivity of GPR30 to gefitinib in non-small cell lung cancer (NSCLC) cells.Methods: Cell viability and proliferation were detected using cell counting kit 8 and 5-ethynyl-2'-deoxyuridine assays, respectively. Western blotting and quantitative real-time reverse transcription PCR were used to detect GPR30 or epithelial-mesenchyme transition (EMT)-related mRNA and protein expression.Results: The results showed that GPR30 expression is associated with gefitinib sensitivity. G15, as a GPR30 antagonist, reduced GPR30 expression. We chose the maximum concentration of G15 with minimal cytotoxicity to detect cell viability after combined treatment with gefitinib in NSCLC cells, which indicated that G15 could increase sensitivity to gefitinib. However, the effect of G15 on gefitinib sensitivity disappeared after treatment with a small interfering RNA targeting GPR30. Further research showed that G15 or GPR30 siRNA treatment could upregulate E-cadherin and downregulate vimentin levels.Conclusion: Taken together, these data suggested that G15 could enhance NSCLC sensitivity to gefitinib by inhibition of GPR30 and EMT.
Collapse
Affiliation(s)
- Xiaomin Yang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongyan Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiang Ning
- Department of Pharmacy, Zi Yang Street Community Health Service Center, Hangzhou, Zhejiang, China
| | - Shufen Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Liang Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jinsong Yang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jianfei Wang
- Department of Pharmacy, Tongxiang Third People's Hospital, Tongxiang, Zhejiang, China
| |
Collapse
|