1
|
Zhang B, Zhu S, Zheng D, Zhang X, Xie W, Zhou S, Zheng S, Wang Q, Lin Z, Zheng Z, Chen Z, Lan E, Cui L, Ying H, Zhang Y, Lin X, Zhuang Q, Qian H, Hu X, Zhuang Y, Zhang Q, Jin Z, Jiang S, Ma Y. Development of a cuproptosis-related prognostic signature to reveal heterogeneity of the immune microenvironment and drug sensitivity in acute lymphoblastic leukemia. Eur J Med Res 2025; 30:435. [PMID: 40450339 DOI: 10.1186/s40001-025-02572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/09/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Cuproptosis is a brand-new copper-dependent type of cell death that has been linked to various tumors. However, the relationship between cuproptosis and acute lymphoblastic leukemia (ALL) remains to be further elaborated. METHODS In ALL, 12 cuproptosis-related genes (CRGs) were analyzed at genetic and single-cell levels. Two molecular clusters were identified using "ConsensusClusterPlus". With the least absolute shrinkage and selection operator, a prognostic signature was built based on cuproptosis. The prognosis, clinical parameters, biological function, immune cell infiltration, therapy sensitivities, and transcription factor regulation of the clusters and risk subsets were further compared. Kaplan Meier curves, time-ROC curves, and nomogram were employed to evaluate the accuracy of the signature. Lastly, qRT-PCR was used to detect prognostic genes in cell lines and clinical samples. RESULTS CRGs exhibited extensive genetic variations and heterogeneous expression profiles in ALL. Single-cell analysis demonstrated that CRGs were strongly correlated with the biological characteristics of cancer cells. Two clusters and risk subgroups with distinct clinicopathological features, prognoses, biological functions, and drug sensitivities were identified. The cuproptosis signature was crucial in characterizing tumor immune landscape and cancer cell self-renewal ability. Furthermore, we explored that subtype A and high-scoring groups were more sensitive to immunotherapy. Multiple drugs with higher sensitivity among high-risk subgroups have been predicted. Nomograms demonstrated the clinical applicability of cuproptosis in risk assessment. The model was further validated in the verification cohort, our clinical specimens, and cell lines. CONCLUSIONS The cuproptosis-based model can characterize the tumor microenvironment, forecast survival results, and aid in improving risk assessment and personalized therapy options in ALL.
Collapse
Affiliation(s)
- Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shuxia Zhu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xinyi Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenxia Xie
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Enqing Lan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Luning Cui
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hansen Ying
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qiang Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qianying Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Mordyl B, Fajkis-Zajączkowska N, Szafrańska K, Siwek A, Głuch-Lutwin M, Żmudzki P, Jończyk J, Karcz T, Słoczyńska K, Pękala E, Pomierny B, Krzyżanowska W, Jurczyk J, Skórkowska A, Sałach A, Jastrzębska-Więsek M, Walczak M, Gawlik MT, Smolik M, Kolaczkowski M, Marcinkowska M. Preferential Synaptic Type of GABA-A Receptor Ligands Enhancing Neuronal Survival and Facilitating Functional Recovery After Ischemic Stroke. J Med Chem 2024; 67:21859-21889. [PMID: 39668673 DOI: 10.1021/acs.jmedchem.4c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Selective enhancement of synaptic GABA signaling mediated by GABA-A receptors has been previously reported to promote functional recovery after ischemic stroke, while tonic GABA signaling has been detrimental. To identify agents that enhance synaptic signaling, we synthesized GABA-A ligands based on three chemotypes with affinity values pKi= 6.44-8.32. Representative compounds showed a preference in functional responses toward synaptic type of GABA-A receptors, compared to the extrasynaptic ones. In a cellular ischemia model (OGD), selected compounds showed the potential to improve neuronal recovery. The selected lead, compound 4, demonstrated the ability to reduce mitochondrial dysfunction, regulate intracellular calcium levels, decrease caspase 3 levels, and promote neurite outgrowth in in vitro assays. In an animal model, compound 4 enhanced motor recovery and showed neuroprotective activity by reducing infarct volume and decreasing poststroke acidosis. These findings underscore the value of selective ligands modulating synaptic GABA-A receptors in promoting recovery from ischemic stroke.
Collapse
Affiliation(s)
- Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Nikola Fajkis-Zajączkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Katarzyna Szafrańska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., Krakow 31-530, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| | - Jakub Jończyk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Bartosz Pomierny
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Weronika Krzyżanowska
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Jakub Jurczyk
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., Krakow 31-530, Poland
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Alicja Skórkowska
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Aleksandra Sałach
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maciej Tadeusz Gawlik
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Smolik
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Marcin Kolaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| |
Collapse
|