1
|
Kluska M, Jabłońska J, Prukała W. Analytics, Properties and Applications of Biologically Active Stilbene Derivatives. Molecules 2023; 28:molecules28114482. [PMID: 37298957 DOI: 10.3390/molecules28114482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Stilbene and its derivatives belong to the group of biologically active compounds. Some derivatives occur naturally in various plant species, while others are obtained by synthesis. Resveratrol is one of the best-known stilbene derivatives. Many stilbene derivatives exhibit antimicrobial, antifungal or anticancer properties. A thorough understanding of the properties of this group of biologically active compounds, and the development of their analytics from various matrices, will allow for a wider range of applications. This information is particularly important in the era of increasing incidence of various diseases hitherto unknown, including COVID-19, which is still present in our population. The purpose of this study was to summarize information on the qualitative and quantitative analysis of stilbene derivatives, their biological activity, potential applications as preservatives, antiseptics and disinfectants, and stability analysis in various matrices. Optimal conditions for the analysis of the stilbene derivatives in question were developed using the isotachophoresis technique.
Collapse
Affiliation(s)
- Mariusz Kluska
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Joanna Jabłońska
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Wiesław Prukała
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Das A, Kumar S, Persoons L, Daelemans D, Schols D, Alici H, Tahtaci H, Karki SS. Synthesis, in silico ADME, molecular docking and in vitro cytotoxicity evaluation of stilbene linked 1,2,3-triazoles. Heliyon 2021; 7:e05893. [PMID: 33553718 PMCID: PMC7851791 DOI: 10.1016/j.heliyon.2020.e05893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 01/16/2023] Open
Abstract
Series of (E)-1-benzyl-4-((4-styrylphenoxy)methyl)-1H-1,2,3-triazoles 7a-x were obtained by Wittig reaction between 4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehydes 5a-d and benzyl triphenylphosphonium halides 6a-f in benzene. The structures of the synthesized compounds were confirmed by FTIR, NMR (1H and 13C NMR) spectroscopy, and mass spectrometry. All synthesized compounds were screened for their cytotoxic activity against human cancer cell lines including pancreatic carcinoma, colorectal carcinoma, lung carcinoma, and leukemias such as acute lymphoblastic, chronic myeloid, and non-Hodgkinson lymphoma cell lines. In vitro cytotoxicity data showed that compounds 7c, 7e, 7h, 7j, 7k, 7r, and 7w were moderately cytotoxic (11.6-19.3 μM) against the selected cancer cell lines. These cytotoxicity findings were supported using molecular docking studies of the compounds against 1TUB receptor. The drug-likeness properties of the compounds evaluated by in silico ADME analyses. Resveratrol linked 1,2,3-triazoles were more sensitive towards human carcinoma cell lines but least sensitive towards leukemia and lymphoma cell lines.
Collapse
Affiliation(s)
- Arnika Das
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Bengaluru, 560010, Karnataka, India
- Dr Prabhakar B Kore Basic Science Research Centre, Off-Campus, KLE College of Pharmacy, A Constituent Unit of KLE Academy of Higher Education and Research-Belagavi, Bengaluru, 560010, Karnataka, India
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Bengaluru, 560010, Karnataka, India
| | - Leentje Persoons
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Hakan Alici
- Department of Physics, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabuk University, 78050, Karabuk, Turkey
| | - Subhas S. Karki
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Bengaluru, 560010, Karnataka, India
- Dr Prabhakar B Kore Basic Science Research Centre, Off-Campus, KLE College of Pharmacy, A Constituent Unit of KLE Academy of Higher Education and Research-Belagavi, Bengaluru, 560010, Karnataka, India
| |
Collapse
|
3
|
Di Filippo ES, Giampietro L, De Filippis B, Balaha M, Ferrone V, Locatelli M, Pietrangelo T, Tartaglia A, Amoroso R, Fulle S. Synthesis and Biological Evaluation of Halogenated E-Stilbenols as Promising Antiaging Agents. Molecules 2020; 25:E5770. [PMID: 33297520 PMCID: PMC7731283 DOI: 10.3390/molecules25235770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The increased risk of illness and disability is related to the age inevitable biological changes. Oxidative stress is a proposed mechanism for many age-related diseases. The crucial importance of polyphenol pharmacophore for aging process is largely described thanks to its effects on concentrations of reactive oxygen species. Resveratrol (3,5,4'-trihydroxy-trans-stilbene, RSV) plays a critical role in slowing the aging process but has a poor bioavailabity after oral intake. In this present work, a series of RSV derivatives was designed, synthesized, and evaluated as potential antioxidant agents. These derivatives contain substituents with different electronic and steric properties in different positions of aromatic rings. This kind of substituents affects the activity and the bioavailability of these compounds compared with RSV used as reference compound. Studies of Log P values demonstrated that the introduction of halogens gives the optimum lipophilicity to be considered promising active agents. Among them, compound 6 showed the higher antioxidant activity than RSV. The presence of trifluoromethyl group together with a chlorine atom increased the antioxidant activity compared to RSV.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (E.S.D.F.); (T.P.); (S.F.)
| | - Letizia Giampietro
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Marwa Balaha
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Vincenzo Ferrone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Marcello Locatelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (E.S.D.F.); (T.P.); (S.F.)
| | - Angela Tartaglia
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Rosa Amoroso
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (E.S.D.F.); (T.P.); (S.F.)
| |
Collapse
|
4
|
De Filippis B, Ammazzalorso A, Amoroso R, Giampietro L. Stilbene derivatives as new perspective in antifungal medicinal chemistry. Drug Dev Res 2019; 80:285-293. [PMID: 30790326 DOI: 10.1002/ddr.21525] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
The high incidence and mortality of invasive fungal infections and serious drug resistance have become a global public health issue. There is an urgent need for alternative antimicrobials to control fungal infections and targeting it by antifungal substances from the natural sources represents a promising new strategy for the development of novel antifungal agents. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a phytoalexin produced by plant species in response to environmental stress or pathogenic attacks. It has many known and potential therapeutic applications in human general homeostasis; it mediates a great number of biological responses relevant for human health such as anticancer, cardio and neuroprotective, antioxidant, and antimicrobial activities. Resveratrol is a natural antifungal agent, therefore it can be considered as a scaffold for designing structural relatives potentially capable of mediating more intense responses in a more specific way. Also, stilbenes produced by several plants may be useful lead structure for the chemical synthesis of antifungal. Their antifungal potential represents a useful solution to the drug resistance and side effect complications that occur after pharmacological treatment of infectious diseases. The purpose of this review is to present an overview on resveratrol derivatives, both natural and synthetic, with antifungal activity and summarize the chemical structure and the therapeutic versatility of stilbene-containing compounds.
Collapse
Affiliation(s)
| | | | - Rosa Amoroso
- Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy
| | | |
Collapse
|
5
|
Hu HB, Liang HP, Li HM, Yuan RN, Sun J, Zhang LL, Han MH, Wu Y. Isolation, modification and cytotoxic evaluation of stilbenoids from Acanthopanax leucorrhizus. Fitoterapia 2018; 124:167-176. [DOI: 10.1016/j.fitote.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 01/16/2023]
|
6
|
Dvorakova M, Landa P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol Res 2017; 124:126-145. [DOI: 10.1016/j.phrs.2017.08.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/20/2023]
|
7
|
Deck LM, Whalen LJ, Hunsaker LA, Royer RE, Vander Jagt DL. Activation of anti-oxidant Nrf2 signaling by substituted trans stilbenes. Bioorg Med Chem 2017; 25:1423-1430. [PMID: 28126440 DOI: 10.1016/j.bmc.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
Nrf2, which is a member of the cap'n'collar family of transcription factors, is a major regulator of phase II detoxification and anti-oxidant genes as well as anti-inflammatory and neuroprotective genes. The importance of inflammation and oxidative stress in many chronic diseases supports the concept that activation of anti-oxidant Nrf2 signaling may have therapeutic potential. A number of Nrf2 activators have entered into clinical trials. Nrf2 exists in the cytosol in complex with its binding partner Keap1, which is a thiol-rich redox-sensing protein. In response to oxidative and electrophilic stress, select cysteine residues of Keap1 are modified, which locks Keap1 in the Nrf2-Keap1 complex and allows newly synthesized Nrf2 to enter the nucleus. Numerous Nrf2-activating chemicals, including a number of natural products, are electrophiles that modify Keap1, often by Michael addition, leading to activation of Nrf2. One concern with the design of Nrf2 activators that are electrophilic covalent modifiers of Keap1 is the issue of selectivity. In the present study, substituted trans stilbenes were identified as activators of Nrf2. These activators of Nrf2 are not highly electrophilic and therefore are unlikely to activate Nrf2 through covalent modification of Keap1. Dose-response studies demonstrated that a range of substituents on either ring of the trans stilbenes, especially fluorine and methoxy substituents, influenced not only the sensitivity to activation, reflected in EC50 values, but also the extent of activation, which suggests that multiple mechanisms are involved in the activation of Nrf2. The stilbene backbone appears to be a privileged scaffold for development of a new class of Nrf2 activators.
Collapse
Affiliation(s)
- Lorraine M Deck
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, United States
| | - Lisa J Whalen
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, United States
| | - Lucy A Hunsaker
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Robert E Royer
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - David L Vander Jagt
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States.
| |
Collapse
|
8
|
Chemo-enzymatic synthesis of new resveratrol-related dimers containing the benzo[b]furan framework and evaluation of their radical scavenger activities. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|