1
|
Pereira PS, Costa AR, de Oliveira TJS, Oliveira CVB, de Lima MDCA, de Oliveira JF, Kim B, Coutinho HDM, Duarte AE, Kamdem JP, da Silva TG. Neurolocomotor Behavior and Oxidative Stress Markers of Thiazole and Thiazolidinedione Derivatives against Nauphoeta cinerea. Antioxidants (Basel) 2022; 11:antiox11020420. [PMID: 35204302 PMCID: PMC8869355 DOI: 10.3390/antiox11020420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Thiazolidine compounds NJ20 {(E)-2-(2-(5-bromo-2-methoxybenzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole} and NW05 [(2-(benzo (d) (1,3) dioxol-4-ylmethylene)-N-(4-bromophenyl)-thiosemicarbazone] potentiated the effect of norfloxacin in resistant bacteria; however, there are no reports on their effects on Nauphoeta cinerea in the literature. The objective of this work was to evaluate the behavioral effects and oxidative markers of NW05 and NJ20 in lobster cockroach N. cinerea. To evaluate the behavioral study, a video tracking software was used to evaluate the locomotor points and the exploratory profile of cockroaches in the horizontal and vertical regions of a new environment. The total concentration of thiol and reduced glutathione (GSH), substances reactive to thiobarbituric acid (TBARS), free iron (II) content and mitochondrial viability were determined. The antioxidant potential was evaluated by the DPPH method. Both substances induced changes in the behavior of cockroaches, showing a significant reduction in the total distance covered and in the speed. In the cell viability test (MTT), there was a significant reduction for NJ20 (1 mM). NJ20 caused a significant increase in total levels of thiol and non-protein thiol (NPSH), although it also slightly increased the content of malondialdehyde (MDA). Both compounds (NW05 and NJ20) caused a significant reduction in the content of free iron at a concentration of 10 mM. In conclusion, the compound NJ20 caused moderate neurotoxicity (1 mM), but had good antioxidant action, while NW05 did not show toxicity or significant antioxidant activity in the model organism tested. It is desirable to carry out complementary tests related to the antioxidant prospection of these same compounds, evaluating them at different concentrations.
Collapse
Affiliation(s)
- Pedro Silvino Pereira
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Prof. Artur de Sa Avenue, University City, Recife 54740-520, PE, Brazil; (P.S.P.); (M.d.C.A.d.L.); (T.G.d.S.)
| | - Adrielle Rodrigues Costa
- Department of Biological Sciences, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil; (A.R.C.); (T.J.S.d.O.); (C.V.B.O.); (A.E.D.); (J.P.K.)
| | - Thalyta Julyanne Silva de Oliveira
- Department of Biological Sciences, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil; (A.R.C.); (T.J.S.d.O.); (C.V.B.O.); (A.E.D.); (J.P.K.)
| | - Carlos Vinícius Barros Oliveira
- Department of Biological Sciences, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil; (A.R.C.); (T.J.S.d.O.); (C.V.B.O.); (A.E.D.); (J.P.K.)
| | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Prof. Artur de Sa Avenue, University City, Recife 54740-520, PE, Brazil; (P.S.P.); (M.d.C.A.d.L.); (T.G.d.S.)
| | - Jamerson Ferreira de Oliveira
- Institute of Health Sciences, Auroras Campus, University of International Integration of Afro-Brazilian Lusophony (UNILAB), 3 Abolition Avenue, Downtown, Redenção 62790-000, CE, Brazil;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (B.K.); (H.D.M.C.)
| | - Henrique D. M. Coutinho
- Department of Biological Chemistry, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil
- Correspondence: (B.K.); (H.D.M.C.)
| | - Antonia Eliene Duarte
- Department of Biological Sciences, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil; (A.R.C.); (T.J.S.d.O.); (C.V.B.O.); (A.E.D.); (J.P.K.)
| | - Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil; (A.R.C.); (T.J.S.d.O.); (C.V.B.O.); (A.E.D.); (J.P.K.)
| | - Teresinha Gonçalves da Silva
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Prof. Artur de Sa Avenue, University City, Recife 54740-520, PE, Brazil; (P.S.P.); (M.d.C.A.d.L.); (T.G.d.S.)
| |
Collapse
|
2
|
Brito TGDS, Silva APSD, Cunha RXD, Fonseca CSMD, Araújo TFDS, Campos JKDL, Nascimento WM, Araújo HDAD, Silva JPRE, Tavares JF, Santos BSD, Lima VLDM. Anti-inflammatory, hypoglycemic, hypolipidemic, and analgesic activities of Plinia cauliflora (Mart.) Kausel (Brazilian grape) epicarp. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113611. [PMID: 33242623 DOI: 10.1016/j.jep.2020.113611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plinia cauliflora (Mart.) Kausel, known in Brazil as jabuticaba or jaboticaba has been used by Brazilian native populations for medicinal purposes, including those related to inflammatory conditions, such as asthma, diarrhea, disorders in female genitourinary tract, and tonsillitis. Inflammation has emerged as a main factor for the oxidative stress, hyperglycemia, and dyslipidemia present in chronic noncommunicable diseases (NCDs). Such disturbances have been a leading cause of death worldwide for decades, despite significant efforts in developing new therapies. Therefore, strengthening the relevance of ethnobotanic approaches, as P. cauliflora has the potential to become a natural, native, and traditional product to prevent and treat inflammation-associated diseases more effectively for more people. AIM OF THE STUDY Evaluate anti-inflammatory, hypoglycemic, hypolipidemic, and analgesic properties of hydroethanolic extract of P. cauliflora epicarps (PcE). MATERIALS AND METHODS Phytochemical compound from the PcE were identified through HPLC-DAD-ESI-MSn analysis. Antioxidant activity was determined by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The anti-inflammatory potential was investigated by carrageenan-induced paw edema and peritonitis in mice. Analgesic effect was assessed, in mice, though hot plate test and acetic acid-induced abdominal writhing. Antidiabetic and hypolipidemic potential were evaluated using alloxan-induced diabetic mice. RESULTS Tannins, phenolic acids, and their derivatives were the predominant phytochemicals found. Overall, PcE showed different properties related to the treatment of clinical conditions associated with chronic diseases as a potent antioxidant activity, demonstrating a radical scavenging action similar to gallic acid. PcE oral administration also significantly reduced inflammation induced by paw edema and partially blocked leukocyte migration. Moreover, PcE produced peripheral and central analgesic effects, as evaluated in the writhing model and hot plate tests. Treatment with PcE significantly improved glucose levels and lipid markers in diabetic mice. CONCLUSIONS P. cauliflora fruits are rich sources of secondary metabolites, mainly tannins and phenolic acids with high biological potential, which can effectively contribute to the approach of preventing and controlling chronic NCDs.
Collapse
Affiliation(s)
- Thaíse Gabriele da Silva Brito
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Ana Paula Sant'Anna da Silva
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Rebeca Xavier da Cunha
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Caíque Silveira Martins da Fonseca
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil.
| | - Tiago Ferreira da Silva Araújo
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale Eo São Francisco, Avenida José de Sá Maniçoba, S/N, CEP 56304917, Petrolina, PE, Brazil
| | - Janaína Karin de Lima Campos
- Laboratório Morfofuncional, Curso de Medicina, Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Rodovia BR-104, Km 62, S/N, CEP, 55014-908, Caruaru, PE, Brazil
| | - Weber Melo Nascimento
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Joanda Paolla Raimundo E Silva
- Laboratório Multiusuário de Caracterização e Análise - LMCA, Universidade Federal da Paraíba, Cidade Universitária, Campus I, Castelo Branco III, S/N, 58033-455, João Pessoa, PB, Brazil
| | - Josean Fechine Tavares
- Laboratório Multiusuário de Caracterização e Análise - LMCA, Universidade Federal da Paraíba, Cidade Universitária, Campus I, Castelo Branco III, S/N, 58033-455, João Pessoa, PB, Brazil
| | - Bianka Santana Dos Santos
- Laboratório Morfofuncional, Curso de Medicina, Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Rodovia BR-104, Km 62, S/N, CEP, 55014-908, Caruaru, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil.
| |
Collapse
|
3
|
Campos ML, Cerqueira LB, Silva BCU, Franchin TB, Galdino-Pitta MR, Pitta IR, Peccinini RG, Pontarolo R. New Pioglitazone Metabolites and Absence of Opened-Ring Metabolites in New N-Substituted Thiazolidinedione. Drug Metab Dispos 2018; 46:879-887. [PMID: 29618574 DOI: 10.1124/dmd.117.079012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/30/2018] [Indexed: 12/21/2022] Open
Abstract
Thiazolidinediones (TZDs) are drugs used to treat type 2 diabetes mellitus; however, several safety concerns remain regarding the available drugs in this class. Therefore, the search for new TZD candidates is ongoing; metabolism studies play a crucial step in the development of new candidates. Pioglitazone, one of the most commonly used TZDs, and GQ-11, a new N-substituted TZD, were investigated in terms of their metabolic activity in rat and human liver microsomes to assess their metabolic stability and investigate their metabolites. Methods for preparation of samples were based on liquid-liquid extraction and protein precipitation. Quantitation was performed using liquid chromatography (LC)-tandem mass spectrometry, and the metabolite investigation was performed using ultraperformance LC coupled to a hybrid quadrupole-time of flight mass spectrometer. The predicted intrinsic clearance of GQ-11 was 70.3 and 46.1 ml/kg per minute for rats and humans, respectively. The predicted intrinsic clearance of pioglitazone was 24.1 and 15.9 ml/kg per minute for rats and humans, respectively. The pioglitazone metabolite investigation revealed two unpublished metabolites (M-D and M-A). M-A is a hydration product and may be related to the mechanism of ring opening and the toxicity of pioglitazone. The metabolites of GQ-11 are products of oxidation; no ring-opening metabolite was observed for GQ-11. In conclusion, under the same experimental conditions, a ring-opening metabolite was observed only for pioglitazone. The resistance of GQ-11 to the ring opening is probably related to N-substitution in the TZD ring.
Collapse
Affiliation(s)
- Michel Leandro Campos
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Letícia Bonancio Cerqueira
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Bruna Cristina Ulian Silva
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Taísa Busaranho Franchin
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Marina Rocha Galdino-Pitta
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Ivan Rocha Pitta
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Rosângela Gonçalves Peccinini
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Roberto Pontarolo
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| |
Collapse
|
4
|
Lectin from Crataeva tapia Bark Improves Tissue Damages and Plasma Hyperglycemia in Alloxan-Induced Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:869305. [PMID: 24324521 PMCID: PMC3845403 DOI: 10.1155/2013/869305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/08/2013] [Indexed: 11/17/2022]
Abstract
Crataeva tapia is a plant popularly used for diabetes treatment, in Brazil. Progressive decline in renal and hepatic functions has been described in patients with diabetes mellitus, and mortality rate is increased in patients with chronic liver and renal disease. This study aimed to evaluate whether Crataeva tapia bark lectin (CrataBL) improves hyperglycemia and renal and hepatic damage in diabetic mice. CrataBL was purified by ion exchange chromatography on CM-cellulose, and intraperitoneal administration of CrataBL to alloxan-induced diabetic mice at dose of 10 mg/Kg/day and 20 mg/Kg/day for 10 days significantly reduced serum glucose levels by 14.9% and 55.9%, respectively. Serum urea, creatinine, aspartate aminotransferase, and alanine aminotransferase were also significantly reduced after treatment with both doses of CrataBL. Furthermore, histological analysis of liver, kidney, and pancreas revealed an improvement in the tissue morphology upon treatment with CrataBL. The results suggest that CrataBL has a beneficial hypoglycemic activity and improves the renal and hepatic complications of diabetes. Therefore, this lectin may be a promising agent for the treatment of diabetes, and this might be the basis for its use in the folk medicine as an alternative treatment to manage diabetes-related complications such as hyperglycemia and tissue damage.
Collapse
|
5
|
Assis SPO, Araújo TG, Sena VLM, Catanho MTJA, Ramos MN, Srivastava RM, Lima VLM. Synthesis, hypolipidemic, and anti-inflammatory activities of arylphthalimides. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0673-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|