1
|
Drygała S, Żendzian-Piotrowska M, Radzikowski M, Zalewska A, Maciejczyk M. Inhibition of protein glycation by vasodilatory β-blockers - In vitro studies and in silico analyses. Biomed Pharmacother 2025; 185:117976. [PMID: 40080999 DOI: 10.1016/j.biopha.2025.117976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
Glycation is defined as a non-enzymatic reaction wherein reducing sugars interact with amino acid residues present in proteins, resulting in the formation of advanced glycation end-products (AGE). This biochemical phenomenon is linked to several pathological conditions, particularly cardiovascular disease (CVD) and diabetes, as it significantly contributes to the onset of endothelial dysfunction and inflammation. Given these connections, vasodilatory β-blockers (VBB) have garnered interest due to their multifaceted pharmacological effects that extend beyond traditional β-adrenergic blockade. These agents not only enhance endothelial function but also exhibit notable antioxidant and anti-inflammatory properties, which may be associated with their capacity to inhibit glycation processes. In our study, we examined these properties through an in vitro and in silico study utilizing bovine serum albumin (BSA) as a model with multiple carbohydrates and aldehydes as glycation agents. Furthermore, we evaluated the binding affinity of VBB to BSA and pro-inflammatory proteins via molecular docking. The results indicated that while VBB were effective in diminishing the rates of protein glycation their effectiveness was generally lower than that of aminoguanidine, a recognized anti-glycation agent. In contrast, molecular docking analyses suggested that the anti-inflammatory properties of VBB may be due to their competition with glycation agents for binding sites on BSA, as well as their interactions with proteins integral to the activation of pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Szymon Drygała
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok 15-089, Poland
| | | | - Michał Radzikowski
- Biochemistry of Civilization Diseases' Students' Scientific Club at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Anna Zalewska
- Department of Restorative Dentistry, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok 15-089, Poland.
| |
Collapse
|
2
|
Morrison KM, Jackson EC, Elliott EMH, Stradiotto M. Nickel-Catalyzed O-Arylation of N-Protected Amino Alcohols with (Hetero)aryl Chlorides. Chemistry 2025; 31:e202404352. [PMID: 39607857 DOI: 10.1002/chem.202404352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
The aryloxyamine motif is a prominent pharmacophore in drug design and development. While these biologically relevant structures could in principle be sustainably assembled from the base metal-catalyzed O-arylation of inexpensive and abundant amino alcohols with (hetero)aryl chlorides, reports of such challenging C-O bond formations with useful scope are lacking. In response, we report herein the hitherto unknown Ni-catalyzed C-O cross-coupling of N-protected amino alcohols (primary, secondary, and tertiary) with (hetero)aryl chlorides. Also presented are chemoselective sequential/telescoped C-N and C-O cross-couplings of the unprotected amino alcohol prolinol to afford an unsymmetrical diarylated product.
Collapse
Affiliation(s)
- Kathleen M Morrison
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Emily C Jackson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Erika M H Elliott
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
3
|
Drygała S, Radzikowski M, Maciejczyk M. β-blockers and metabolic modulation: unraveling the complex interplay with glucose metabolism, inflammation and oxidative stress. Front Pharmacol 2024; 15:1489657. [PMID: 39759452 PMCID: PMC11695285 DOI: 10.3389/fphar.2024.1489657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
The growing burden of metabolic disorders manifested by hypertension, type 2 diabetes mellitus, hyperlipidemia, obesity and non-alcoholic fatty liver disease presents a significant global health challenge by contributing to cardiovascular diseases and high mortality rates. Β-blockers are among the most widely used drugs in the treatment of hypertension and acute cardiovascular events. In addition to blocking the receptor sites for catecholamines, third-generation β-blockers with associated vasodilating properties, such as carvedilol and nebivolol, provide a broad spectrum of metabolic effects, including anti-inflammatory and antioxidant properties and a favorable impact on glucose and lipid metabolism. This review aims to report the impact of β-blockers on metabolic modulation based on available literature data. We present an overview of β-blockers and their pleiotropic properties, discuss mechanisms by which these drugs affect cellular metabolism and outline the future perspectives. The influence of β-blockers on glucose metabolism, insulin sensitivity, inflammation and oxidative stress is complex and varies depending on the specific β-blocker used, patient population and underlying health conditions. Recent evidence particularly highlights the potential role of vasodilatory and nitric oxide-mediated properties of nebivolol and carvedilol in improving glycemic control, insulin sensitivity, and lipid metabolism and mitigating oxidative stress and inflammation. It suggests that these drugs may be potential therapeutic options for patients with metabolic disorders, extending beyond their primary role in cardiovascular management.
Collapse
Affiliation(s)
- Szymon Drygała
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Michał Radzikowski
- Biochemistry of Civilisation Diseases’ Students’ Scientific Club at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Yi M, Sheng Q, Sui Q, Lu H. β-blockers in the environment: Distribution, transformation, and ecotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115269. [PMID: 32836046 DOI: 10.1016/j.envpol.2020.115269] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/30/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
β-blockers are a class of medications widely used to treat cardiovascular disorders, including abnormal heart rhythms, high blood pressure, and angina pectoris. The prevalence of β-blockers has generated a widespread concern on their potential chronic toxicity on aquatic organisms, highlighting the necessity of comprehensive studies on their environmental distribution, fate, and toxicity. This review summarizes the up-to-date knowledge on the source, global distribution, analytical methods, transformation, and toxicity of β-blockers. Twelve β-blockers have been detected in various environmental matrices, displaying significant temporal and spatial variations. β-blockers can be reduced by 0-99% at wastewater treatment plants, where secondary processes contribute to the majority of removal. Advanced oxidation processes, e.g., photocatalysis and combined UV/persulfate can transform β-blockers more rapidly and completely than conventional wastewater treatment processes, but the transformation products could be more toxic than the parent compounds. Propranolol, especially its (S)-enantiomer, exhibits the highest toxicity among all β-blockers. Future research towards improved detection methods, more efficient and cost-effective removal techniques, and more accurate toxicity assessment is needed to prioritize β-blockers for environmental monitoring and control worldwide.
Collapse
Affiliation(s)
- Ming Yi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Sheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Arshadi S, Bekhradnia AR, Alaei FA. B-Doping Effect on the Adsorption of Soman Gas onto Fullerene: A DFT Study. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2015.1067205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- S. Arshadi
- Department of Chemistry, Payame Noor University, 19395-4697, I. R. of Iran
| | - A. R. Bekhradnia
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari, I. R. of Iran
- Department of Chemistry, Gothenburg University, Gothenburg, Sweden
| | - F. Abbasi Alaei
- Department of Chemistry, Payame Noor University, 19395-4697, I. R. of Iran
| |
Collapse
|
6
|
Arshadi S, Bekhradnia A, Ebrahimnejad A. Feasibility study of hydrogen-bonded nucleic acid base pairs in gas and water phases — A theoretical study. CAN J CHEM 2011. [DOI: 10.1139/v11-124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the base pair binding probabilities for nucleic acid bases, numerous models were studied for contacts between adenine, thymine, guanine, cytosine, and uracil using density functional theory (DFT) in combination with the 6–311G* basis set. We obtained an assessment for the energy given by our calculations in gas and aqueous phases, which showed that it should be incorporated into hydrogen bonding and propeller rotational energies. The 42 complexes of base pairs (5 regular and 37 irregular base pairs) were proposed and their hydrogen-bonding (H-bonding) properties were verified. The hydrogen bonds in some irregular base pairs, including CC, UU, and TT (series 1), were stronger than in regular GC and AT base pairs. Also, the strength of the hydrogen bonds in the proposed base pairs, including CU, GG, GU, and TU (series 2), were similar to regular base pairs from an energetic point of view. The propeller rotations revealed a higher rotational barrier energy (6–7.5 kcal/mol; 1 cal = 4.184 J) for irregular base pairs (series 1 and 2) than regular GC and AT ones (1–3 kcal/mol). Nevertheless, the trend in these affinities of the complex contact probabilities and their biological properties were confirmed by our calculations.
Collapse
Affiliation(s)
- S. Arshadi
- Department of Chemistry, Payame Noor University, 1935-4697, I.R. of Iran
| | - A.R. Bekhradnia
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - A. Ebrahimnejad
- Department of Chemistry, Payame Noor University, 1935-4697, I.R. of Iran
| |
Collapse
|