1
|
Shukla S, Trivedi P, Johnson D, Sharma P, Jha A, Khan H, Thiruvenkatam V, Banerjee M, Bishnoi A. Synthesis, crystal structure analysis, computational modelling and evaluation of anti-cervical cancer activity of novel 1,5-dicyclooctyl thiocarbohydrazone. Phys Chem Chem Phys 2024; 26:24135-24150. [PMID: 39253873 DOI: 10.1039/d4cp02286f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Thiocarbazones are widely used as bioactive and pharmaceutical intermediates in medicinal chemistry and have been shown to exhibit diverse biological and pharmacological activities such as antimicrobial, anticancer, anti-viral, anti-convulsant and anti-inflammatory etc. In continuation of our interest in biologically active heterocycles and in an attempt to synthesize a spiro derivative, 1,2,4,5-tetraazaspiro[5.7]tridecane-3-thione, herein, the synthesis of 1,5-dicyclooctyl thiocarbohydrazone (3) has been reported via reaction of the cyclooctanone and thiocarbohydrazide. The structure was assigned on the basis of detailed spectral analysis and also confirmed by X-ray crystal studies. The Hirshfeld surface analysis indicates that the most significant interaction is S⋯H (12.7%). The presentation of mechanistic aspects regarding the plausible route of its formation has also been included. The first hyperpolarizability (β0) was found to be 10.22 × 10-30 esu, which indicates that the compound exhibits good non-linear optical properties. The density functional theory (DFT) method has been used to characterize the spectroscopic properties and vibrational analysis of 1,5-dicyclooctyl thiocarbohydrazone (3) theoretically. The compound and cisplatin (standard) were screened for their antiproliferative activity against the human cervical cancer cell line (SiHa) and they exhibited significant activity with IC50 values of 250 μM and 15 μM, respectively. The inhibitory nature of the title compound against viral oncoprotein E6 was confirmed by studies using molecular docking analysis. The results of biological activity and in silico analysis indicate that the synthesized molecule could act as a precursor for the synthesis of new heterocyclic derivatives of medicinal importance.
Collapse
Affiliation(s)
- Soni Shukla
- Department of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India.
| | - Prince Trivedi
- Department of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India.
| | - Delna Johnson
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj - 382355, Gandhinagar, India
| | - Pulkit Sharma
- Department of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India.
| | - Abhinav Jha
- Department of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India.
| | - Habiba Khan
- Department of Zoology, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India
| | - Vijay Thiruvenkatam
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj - 382355, Gandhinagar, India
| | - Monisha Banerjee
- Department of Zoology, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India
| | - Abha Bishnoi
- Department of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India.
| |
Collapse
|
2
|
Kaya Y, Erçağ A, Kaya S, Berisha A, Akkaya B, Zorlu Y. New solvated Mo(VI) complexes of isatin based asymmetric bisthiocarbohydrazones as potent bioactive agent: synthesis, DFT-molecular docking studies, biological activity evaluation and crystal structures. Biometals 2024:10.1007/s10534-024-00633-x. [PMID: 39240269 DOI: 10.1007/s10534-024-00633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
New solvated Mo(VI) complexes were isolated from the reaction of [MoO2(acac)2] with asymmetric isatin bisthiocarbohydrazone ligands. The ligands were obtained from the reaction of isatin monothiocarbohydrazone with 3,5-dibromo salicylaldehyde (L1), 3,5-dichloro salicylaldehyde (L2) and 3-chloro-5-bromo salicylaldehyde (L3), respectively. In the complexes, the ligands serve as ONS donors and coordinate to the [MoO2]2+ nucleus. The bonding sites are azomethine nitrogen atom, phenolic oxygen atom and thiol sulfur atom. The sixth coordination site is completed by an oxygen atom from an ethanol solvent. The ethanol-coordinated Mo(VI) complexes, C1-C3, [MoO2L(EtOH)] (L: L1-L3), were characterized using elemental analysis, IR and 1H NMR spectroscopies, and conductivity measurements. By crystallizing ethanol-solvated solid complexes from an EtOH/DMSO mixture, DMSO-solvated complexes (C4-C6) suitable for X-ray crystallography were obtained. Crystal structure analysis supports the proposed complex structures and geometries, but the ethanol in the sixth coordination site has been replaced by DMSO. When the anticarcinogenic effects of the ligands and complexes (C1-C3) on the C6 cell line were examined, it was found that the complexes showed higher activity than the ligands. The C3 complex appears to have the best anti-cancer activity compared to doxorubicin. Additionally, all compounds were determined to have high total antioxidant capacity. Data obtained from theoretical studies (DFT and docking) support experimental studies.
Collapse
Affiliation(s)
- Yeliz Kaya
- Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey
| | - Ayşe Erçağ
- Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey.
| | - Savaş Kaya
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000, Prishtina, Republic of Kosovo
| | - Birnur Akkaya
- Department of Molecular Biology and Genetics, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Yunus Zorlu
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| |
Collapse
|
3
|
Karakullukçu NT, Muğlu H, Yakan H, Yılmaz VM, Marah S, İnce İA. Kinetic Insights into the Antioxidant Effect of Isatin-Thiosemicarbazone in Biodiesel Blends. Antioxidants (Basel) 2024; 13:819. [PMID: 39061888 PMCID: PMC11273829 DOI: 10.3390/antiox13070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Biodiesel has several drawbacks, such as being prone to oxidation, having reduced stability, and having limited storage time. Antioxidants compatible with biodiesel are being used to address its drawbacks. Utilizing antioxidants effectively improves the quality of biodiesel. Enhancing the quality of biodiesel for use as a clean energy source benefits both the global economy and ecology. Therefore, we believe that our work will contribute to the advancement of the biodiesel industry worldwide. This study used blends consisting of 20% biodiesel and 80% diesel fuel. Isatin-thiosemicarbazones were tested as additives in blends at a concentration of 3000 parts per million (ppm) using an oxifast device and were compared with the chemical antioxidant Trolox. FT-IR, DSC, and TGA were used to characterize these samples. DSC measured sample crystallization temperatures (Tc). Samples with antioxidants showed decreased values compared to the non-antioxidant diesel sample D100. Several DSC tests were conducted to determine the antioxidant strengths of various samples. The results show that the FT-IR spectrum's antioxidant effect regions grow clearer with antioxidants. The extra antioxidant is effective. Biodiesel's oxidative stability improves with isatin-thiosemicarbazones at varying concentrations. The kinetics of thermal decomposition of isatin-thiosemicarbazones under non-isothermal conditions were determined using the Kissinger, Ozawa, and Boswell techniques. The activation energies of compounds 1 and 2 were calculated as 137-147 kJ mol-1 and 173-183 kJ mol-1, respectively.
Collapse
Affiliation(s)
- Nalan Türköz Karakullukçu
- Karadeniz Advanced Technology Research and Application Center, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey
| | - Halit Muğlu
- Department of Chemistry, Faculty Science, Kastamonu University, 37150 Kastamonu, Turkey;
| | - Hasan Yakan
- Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey;
| | | | - Sarmad Marah
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey;
| | - İkbal Agah İnce
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet, Ali Aydinlar University, Atasehir, 34752 İstanbul, Turkey;
| |
Collapse
|
4
|
Abu-Hashem AA, El-Gazzar ABA, Hussein HA, Hafez HN. Synthesis and Antimicrobial Activity of New Triazines, Tetrazines, Thiazinoquinoxalines, Thienotriazepine-imidazo[4, 5-b]quinolines from Isatin Derivatives. Polycycl Aromat Compd 2023; 43:7073-7092. [DOI: 10.1080/10406638.2022.2130368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/25/2022] [Indexed: 10/17/2022]
Affiliation(s)
- Ameen A. Abu-Hashem
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Egypt
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - A. B. A. El-Gazzar
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Egypt
| | - Hoda A.R Hussein
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Egypt
| | - Hend N. Hafez
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Egypt
| |
Collapse
|
5
|
Jain PM, Gutierrez DA, Kumar S, Aguilera RJ, Karki SS. Synthesis of Novel Pyrazole-Oxindole Conjugates with Cytotoxicity in Human Cancer Cells via Apoptosis. Chem Biodivers 2023; 20:e202300843. [PMID: 37501576 PMCID: PMC10938640 DOI: 10.1002/cbdv.202300843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
A novel series of pyrazole-oxindole conjugates were prepared and characterized as potential cytotoxic agents by FT-IR, NMR and HR-MS. The cytotoxic activity of these compounds was tested in the Jurkat acute T cell leukemia, CEM acute lymphoblastic leukemia, MCF10 A mammary epithelial and MDA-MB 231 triple negative breast cancer cell lines. Among the tested conjugates, 5-methyl-3-((3-(1-phenyl)-3-(p-tolyl)-1H-pyrazol-4-yl)methylene)indolin-2-one 6h emerged as the most cytotoxic with a CC50 of 4.36+/-0.2 μM against Jurkat cells. The mechanism of cell death induced by 6h was investigated through the Annexin V-FITC assay via flow cytometry. Reactive oxygen species (ROS) accumulation, mitochondrial health and the cell cycle progression were also evaluated in cells exposed to 6h. Results demonstrated that 6h induces apoptosis in a dose-response manner, without generating ROS and/or altering mitochondrial health. In addition, 6h disrupted the cell cycle distribution causing an increase in DNA fragmentation (Sub G0-G1), and an arrest in the G0-G1 phase. Taken together, the 6h compound revealed a strong potential as an antineoplastic agent evidenced by its cytotoxicity in leukemia cells, the activation of apoptosis and restriction of the cell cycle progression.
Collapse
Affiliation(s)
- Pravesh M. Jain
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education & Research-Belagavi), Rajajinagar, Bengaluru, Karnataka, INDIA-560010
| | - Denisse A. Gutierrez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education & Research-Belagavi), Rajajinagar, Bengaluru, Karnataka, INDIA-560010
| | - Renato J. Aguilera
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA
| | - Subhas S. Karki
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education & Research-Belagavi), Rajajinagar, Bengaluru, Karnataka, INDIA-560010
| |
Collapse
|
6
|
Crystal structures, antioxidant, electrochemical and in-situ spectroelectrochemical properties of new bisthiocarbohydrazones and their Ni(II) complexes. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
New Schiff bases based on isatin and (thio)/carbohydrazone: preparation, experimental–theoretical spectroscopic characterization, and DFT approach to antioxidant characteristics. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Yakan H, Çakmak Ş, Buruk O, Veyisoğlu A, Muğlu H, Türköz Karakullukçu N. New 5-methylisatin including thiocarbohydrazones: preparation, structure elucidation and antimicrobial activity. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Kaya Y, Erçağ A, Zorlu Y, Demir Y, Gülçin İ. New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J Biol Inorg Chem 2022; 27:271-281. [PMID: 35175415 DOI: 10.1007/s00775-022-01932-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Pd(II) complexes (Pd1, Pd2, and Pd3) were synthesized for the first time using asymmetric isatin bisthiocarbohydrazone ligands and PdCl2(PPh3)2. All complexes were characterized by a range of spectroscopic and analytical techniques. The molecular structures of Pd1 and Pd3 have been determined by single-crystal X-ray diffraction analysis. The complexes are diamagnetic and exhibit square planar geometry. The asymmetric isatin bisthiocarbohydrazone ligands coordinate to Pd(II) ion in a tridentate manner, through the phenolic oxygen, imine nitrogen and thiol sulfur, forming five- and six-membered chelate rings within their structures. The fourth coordination site in these complexes is occupied by PPh3 (triphenylphosphine). The free ligands and their Pd(II) complexes were evaluated for their carbonic anhydrase I, II (hCAs) and acetylcholinesterase (AChE) inhibitor activities. They showed a highly potent inhibition effect on AChE and hCAs. Ki values are in the range of 9 ± 0.6 - 30 ± 5.4 nM for AChE, 7 ± 0.5 - 16 ± 2.2 nM for hCA I and 3 ± 0.3-24 ± 1.9 nM for hCA II isoenzyme. The results clearly demonstrated that the ligands and their Pd(II) complexes effectively inhibited the used enzymes.
Collapse
Affiliation(s)
- Yeliz Kaya
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey
| | - Ayşe Erçağ
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey.
| | - Yunus Zorlu
- Faculty of Science, Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational School, Ardahan University, 75700, Ardahan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25400, Erzurum, Turkey
| |
Collapse
|
10
|
Kadam SS, Gotarne RP, Shinde MN, Mane VS, Khan AA, Kumbhar AA. Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of Fluorophore-Anchored Asymmetric Thiocarbohydrazone: Synthesis, Characterization and Biological Studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Çavuş MS, Yakan H, Özorak C, Muğlu H, Bakır TK. New N,N'-bis(thioamido)thiocarbohydrazones and carbohydrazones: synthesis, structure characterization, antioxidant activity, corrosion inhibitors and DFT studies. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04659-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Kaya Y, Erçağ A, Uğuz Ö, Koca A, Zorlu Y, Hacıoğlu M, Seher Birteksöz Tan A. New asymmetric bisthiocarbohydrazones and their mixed ligand nickel(II) complexes: Synthesis, characterization, crystal structure, electrochemical-spectroelectrochemical property, antimicrobial and antioxidant activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
YAKAN H, Serdar ÇAVUŞ M, KURT BZENGİN, MUĞLU H, SÖNMEZ F, GÜZEL E. A new series of asymmetric bis-isatin derivatives containing urea/thiourea moiety: Preparation, spectroscopic elucidation, antioxidant properties and theoretical calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Synthesis, physicochemical characterization, and TD–DFT calculations of monothiocarbohydrazone derivatives. Struct Chem 2021. [DOI: 10.1007/s11224-020-01700-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Yakan H, Bakır TK, Çavuş MS, Muğlu H. New β-isatin aldehyde-N,N′-thiocarbohydrazones: preparation, spectroscopic studies and DFT approach to antioxidant characteristics. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04270-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Synthesis, solvent interactions and computational study of monocarbohydrazones. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
MuĞlu H, Yakan H, Bakir TK. Synthesis, spectroscopic studies, and antioxidant activities of novel thio/carbohydrazones and bis-isatin derivatives from terephthalaldehyde. Turk J Chem 2020; 44:237-248. [PMID: 33488154 PMCID: PMC7751813 DOI: 10.3906/kim-1910-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/31/2019] [Indexed: 11/05/2022] Open
Abstract
New bis(isatins-thio/carbohydrazones) based on Schiff bases were prepared from terephthalaldehyde biscarbohydrazone and 5-substituted isatins in the presence of a drop of sulfuric acid under reflux in ethanol. Terephthalaldehyde bis(thio/carbohydrazone) was synthesized by the reaction of (thio)/carbohydrazide and terephthalaldehyde in the presence of a few drops of acetic acid under reflux in ethanol. The structures of these synthesized compounds were determined using IR, 1H NMR, and 13C NMR spectroscopy and elemental analysis. The in vitro antioxidant activity of all the compounds was determined by the 1,1-diphenyl-2-picryl hydrazyl (DPPH.) free radical scavenging method. Compound 2 showed the best antioxidant activity.
Collapse
Affiliation(s)
- Halit MuĞlu
- Department of Chemistry, Faculty of Art and Science, Kastamonu University, Kastamonu Turkey
| | - Hasan Yakan
- Department of Chemistry Education, Faculty of Education, Ondokuz Mayıs University, Samsun Turkey
| | - Temel Kan Bakir
- Department of Chemistry, Faculty of Art and Science, Kastamonu University, Kastamonu Turkey
| |
Collapse
|
18
|
Zhang Y, Du H, Liu H, He Q, Xu Z. Isatin dimers and their biological activities. Arch Pharm (Weinheim) 2020; 353:e1900299. [DOI: 10.1002/ardp.201900299] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ya‐Zhou Zhang
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hong‐Zhi Du
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hai‐Lin Liu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Qian‐Song He
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Zhi Xu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| |
Collapse
|
19
|
Bonaccorso C, Marzo T, La Mendola D. Biological Applications of Thiocarbohydrazones and Their Metal Complexes: A Perspective Review. Pharmaceuticals (Basel) 2019; 13:E4. [PMID: 31881715 PMCID: PMC7169414 DOI: 10.3390/ph13010004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022] Open
Abstract
Although organic compounds account for more than 99% of currently approved clinical drugs, the established clinical use of cisplatin in cancer or auranofin in rheumatoid arthritis have paved the way to several research initiatives to identify metal-based drugs for a wide range of human diseases. Nitrogen and sulfur donor ligands, characterized by different binding motifs, have been the subject in recent years of one of the main research areas in coordination chemistry. Among the nitrogen/sulfur compounds, very little is known about thiocarbohydrazones (TCH), the higher homologues of the well-known thiosemicarbazones (TSC), and their metal complexes. The extra hydrazine moiety provides the ligands of variable metal binding modes, structural diversity and promising biological implications. The interesting coordination chemistry of TCH has mainly been focused on symmetric derivatives, which are relatively simple to synthesize while few examples of asymmetric ligands have been reported. This informative review on TCHs and their metal complexes will be helpful for improving the design of metal-based pharmaceuticals for applications ranging from anticancer to antinfective therapy.
Collapse
Affiliation(s)
- Carmela Bonaccorso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Tiziano Marzo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy;
| |
Collapse
|
20
|
Muğlu H, Çavuş MS, Bakır T, Yakan H. Synthesis, characterization, quantum chemical calculations and antioxidant activity of new bis-isatin carbohydrazone and thiocarbohydrazone derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Kobelev AI, Stepanova EE, Dmitriev MV, Maslivets AN. Cleavage of Pyrrolo[2,1-c][1,4]benzoxazine-1,2,4-triones with Thiocarbonohydrazide. Synthesis of Substituted 4-Amino-1,2,4-triazines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019070182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Baashen MA. A Simple and Efficient Process for the Synthesis of Novel Heterocycles Containing Benzofuran Moiety Using Thiocarbohydrazide as a Precursor. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mohammed A. Baashen
- Department of Chemistry, College of Science and HumanitiesShaqra University Dawadmi Saudi Arabia
| |
Collapse
|
23
|
Symmetrical disubstituted carbohydrazides: From solid-state structures to cytotoxic and antibacterial activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Hassan AA, Mohamed SK, Abdel-Latif FF, Mostafa SM, Abdel-Aziz M, Mague JT, Akkurt M, Bräse S, Nieger M. (Substituted Ylidene)Amino-2-Oxo-Indolylidene Thioureas and Bis(2-Oxo-Indolylidene)Urea from (Ylidene)Thiocarbonohydrazides and Isatylidene Malononitrile. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alaa A. Hassan
- Chemistry Department, Faculty of Science; Minia University; El-Minia 61519 Egypt
| | - Shaaban K. Mohamed
- Chemistry Department, Faculty of Science; Minia University; El-Minia 61519 Egypt
- Chemistry and Environmental Division; Manchester Metropolitan University; Manchester M1 5GD England
| | - Fathy F. Abdel-Latif
- Chemistry Department, Faculty of Science; Minia University; El-Minia 61519 Egypt
| | - Sara M. Mostafa
- Chemistry Department, Faculty of Science; Minia University; El-Minia 61519 Egypt
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy; Minia University; 61519 El-Minia Egypt
| | - Joel T. Mague
- Department of Chemistry; Tulane University; New Orleans LA 70118 USA
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences; Erciyes University; 38039 Kayseri Turkey
| | - Stefan Bräse
- Institute of Organic Chemistry; Karlsruhe Institute of Technology; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Martin Nieger
- Laboratory of Inorganic Chemistry, Department of Chemistry; University of Helsinki; P.O Box 55 (A. I. Virtasen aukio 1) 00014 Helsinki Finland
| |
Collapse
|
25
|
Microwave Synthesis, Characterization, and Antimicrobial Activity of Some Novel Isatin Derivatives. J CHEM-NY 2015. [DOI: 10.1155/2015/716987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Three series of isatin derivatives [3-hydrazino, 3-thiosemicarbazino, and 3-imino carboxylic acid derivatives] were synthesized employing microwave irradiation. The prepared compounds were characterized by FT-IR, NMR, elemental analysis, and X-ray crystallography for derivatives5b. The synthesized compounds were screened for antimicrobial activity against selected bacteria and fungi. The results revealed that theN-alkyl isatin derivatives were biologically active with different spectrums activity. Most of the 3-hydrazino and 3-thiosemicarbazino isatin derivatives were biologically inactive and generally the active derivatives showed weak to moderate activity mainly against Gram-positive bacteria. The imino isatin carboxylic acid derivatives (2-[4-(1-benzyl-5-bromo-2-oxoindolin-3-ylideneamino) phenyl]acetic acid,5d) showed promising activity against all tested Gram-positive bacteria and against fungal pathogens.
Collapse
|