1
|
Isaac I, Shaikh A, Bhatia M, Liu Q, Park S, Bhattacharya C. Tetrahydropyrimidine Ionizable Lipids for Efficient mRNA Delivery. ACS NANO 2024; 18:29045-29058. [PMID: 39393001 PMCID: PMC11781979 DOI: 10.1021/acsnano.4c10154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as an effective and promising technology for messenger RNA (mRNA) delivery, offering a potential solution to physiological barriers and providing an alternative approach to gene therapy without the drawbacks associated with viral delivery. However, efficiently delivering mRNA remains a significant challenge in nucleic acid-based therapies due to the limitations of current LNP platforms in achieving optimal endosomal escape and mRNA release, which largely relies on finding a suitable ionizable lipid. Additionally, the synthesis of these ionizable lipids involves multiple chemical reactions, often making the process time-consuming and difficult to translate. In this study, we employed a facile, catalyst-free, and versatile one-pot multicomponent reaction (MCR) to develop a library of ionizable lipids featuring a pharmacologically significant tetrahydropyrimidine (THP) backbone, tailored for enhanced mRNA delivery. A library of 26 THP ionizable lipids was systematically synthesized in just 3 h and formulated with luciferase mRNA for initial in vitro screening. The THP LNPs exhibited tunable particle sizes, favorable ζ-potentials, and high encapsulation efficiencies. Among them, THP1 demonstrated the highest transfection efficiency both in vitro and in vivo after intramuscular administration, comparable to DLin-MC3-DMA (MC3), a conventional benchmark. Further optimization of THP1 with phospholipids significantly enhanced intramuscular mRNA delivery and showed sustained protein expression in vivo for up to 5 days. More importantly, it demonstrated successful intravenous delivery in a dose-dependent manner with minimal toxicity, as indicated by hematological, histopathological, and proinflammatory cytokine assessments. Furthermore, THP1 LNPs also demonstrated the ability to edit genes in specific liver tissues in a tdTomato transgenic mouse model, highlighting their precision and utility in targeted therapeutic applications. These findings position THP1 LNPs as promising candidates for advancing mRNA-based therapies, with significant implications for clinical translation in vaccine delivery and CRISPR/Cas9-mediated gene editing in the liver.
Collapse
Affiliation(s)
- Ivan Isaac
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Altab Shaikh
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Mayurakkhi Bhatia
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Qian Liu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- School of Life Sciences, College of Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Chandrabali Bhattacharya
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| |
Collapse
|
2
|
Balraj G, Rammohan K, Anilkumar A, Sharath Babu M, Ayodhya D. An improved eco-friendly and solvent-free method for the one-pot synthesis of tetrahydropyrimidine derivatives via Biginelli condensation reaction using ZrO2/La2O3 catalysts. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
3
|
Marinescu M. Biginelli Reaction Mediated Synthesis of Antimicrobial Pyrimidine Derivatives and Their Therapeutic Properties. Molecules 2021; 26:6022. [PMID: 34641566 PMCID: PMC8512088 DOI: 10.3390/molecules26196022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance was one of the top priorities for global public health before the start of the 2019 coronavirus pandemic (COVID-19). Moreover, in this changing medical landscape due to COVID-19, finding new organic structures with antimicrobial and antiviral properties is a priority in current research. The Biginelli synthesis that mediates the production of pyrimidine compounds has been intensively studied in recent decades, especially due to the therapeutic properties of the resulting compounds, such as calcium channel blockers, anticancer, antiviral, antimicrobial, anti-inflammatory or antioxidant compounds. In this review we aim to review the Biginelli syntheses reported recently in the literature that mediates the synthesis of antimicrobial compounds, the spectrum of their medicinal properties, and the structure-activity relationship in the studied compounds.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Soseaua Panduri, 030018 Bucharest, Romania
| |
Collapse
|
4
|
Recent Applications of Heteropolyacids and Related Compounds in Heterocycle Synthesis. Contributions between 2010 and 2020. Catalysts 2021. [DOI: 10.3390/catal11020291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over the past two decades, polyoxometalates (POM) have received considerable attention as solid catalysts, due to their unique physicochemical characteristics, since, first, they have very strong Bronsted acidity, approaching the region of a superacid, and second, they are efficient oxidizers that exhibit rapid redox transformations under fairly mild conditions. Their structural mobility is also highlighted, since they are complex molecules that can be modified by changing their structure or the elements that compose them to model their size, charge density, redox potentials, acidity, and solubility. Finally, they can be used in substoichiometric amounts and reused without an appreciable loss of catalytic activity, all of which postulate them as versatile, economic and ecological catalysts. Therefore, in 2009, we wrote a review article highlighting the great variety of organic reactions, mainly in the area of the synthesis of bioactive heterocycles in which they can be used, and this new review completes that article with the contributions made in the same area for the period 2010 to 2020. The synthesized heterocycles to be covered include pyrimidines, pyridines, pyrroles, indoles, chromenes, xanthenes, pyrans, azlactones, azoles, diazines, azepines, flavones, and formylchromones, among others.
Collapse
|
5
|
Matias M, Campos G, Silvestre S, Falcão A, Alves G. Early preclinical evaluation of dihydropyrimidin(thi)ones as potential anticonvulsant drug candidates. Eur J Pharm Sci 2017; 102:264-274. [PMID: 28315465 DOI: 10.1016/j.ejps.2017.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/19/2017] [Accepted: 03/10/2017] [Indexed: 11/28/2022]
|
6
|
Matias M, Campos G, Santos AO, Falcão A, Silvestre S, Alves G. Potential antitumoral 3,4-dihydropyrimidin-2-(1H)-ones: synthesis, in vitro biological evaluation and QSAR studies. RSC Adv 2016. [DOI: 10.1039/c6ra14596e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The search for novel anticancer agents with higher selectivity and lower toxicity remains a medical need.
Collapse
Affiliation(s)
- Mariana Matias
- CICS-UBI – Health Sciences Research Centre
- University of Beira Interior
- 6201-001 Covilhã
- Portugal
- CNC – Center for Neuroscience and Cell Biology
| | - Gonçalo Campos
- CICS-UBI – Health Sciences Research Centre
- University of Beira Interior
- 6201-001 Covilhã
- Portugal
- CNC – Center for Neuroscience and Cell Biology
| | - Adriana O. Santos
- CICS-UBI – Health Sciences Research Centre
- University of Beira Interior
- 6201-001 Covilhã
- Portugal
| | - Amílcar Falcão
- CNC – Center for Neuroscience and Cell Biology
- University of Coimbra
- 3004-517 Coimbra
- Portugal
- Pharmacology Department
| | - Samuel Silvestre
- CICS-UBI – Health Sciences Research Centre
- University of Beira Interior
- 6201-001 Covilhã
- Portugal
- CNC – Center for Neuroscience and Cell Biology
| | - Gilberto Alves
- CICS-UBI – Health Sciences Research Centre
- University of Beira Interior
- 6201-001 Covilhã
- Portugal
- CNC – Center for Neuroscience and Cell Biology
| |
Collapse
|