1
|
Hammal L, Javaid S, Wahab AT, Zafar H, Rahman N, Ahmed A, Choudhary MI. Identification of new inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine Phosphoribosyltransferase (HG(X)PRT): An outlook towards the treatment of malaria. Int J Biol Macromol 2025; 286:137917. [PMID: 39603289 DOI: 10.1016/j.ijbiomac.2024.137917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Plasmodium, a protozoan parasite responsible for causing malaria relies on the purine salvage pathway to synthesize purine as they are incapable of synthesizing them de novo. This pathway is crucial for the survival of the parasite and hence enzymes of this pathway can serve as antimalarial drug targets. One of the enzymes of this pathway is hypoxanthine guanine (xanthine) phosphoribosyltransferase [HG(X)PRT] that serves as novel target, potentially less prone to existing resistance mechanisms seen with the use of traditional antimalarial drugs. HGXPRT inhibition disrupts the parasite's ability to synthesize nucleotides, essential for its growth and replication. In this regard, the current study was designed to identify the inhibitors of HGXPRT enzyme. For this purpose, the enzyme was produced through recombinant technology and purified with 10 mg/ L yield. Followed this, UV-based enzyme inhibition assay was optimized and >200 fully characterized compounds were evaluated for their HGXPRT inhibitory activity. Out of them fourteen compounds 1-14 showed significant to weak inhibition of HGXPRT enzyme with IC50 values in the range of 15.7 to 229.6 μM, as compared to the standard inhibitor i.e. 9-deazaguanine (IC50 = 12 ± 1.0 μM). In- silico and biophysical studies were further performed on active compounds to get structural insights into enzyme-inhibitor complex at the atomic level. Docking studies predicted that these inhibitors accommodate the purine binding site of enzyme and interacted with critical residues such as Asp148, Phe197, and Val198. Biophysical studies showed that these identified inhibitors interacted with HGXPRT enzyme in a non-ambiguous manner. Furthermore, these inhibitors were found to be non-cytotoxic against human fibroblast cell line (BJ). Hence, this study identified 14 hits that could lead to further research towards anti-malarial drug design and development.
Collapse
Affiliation(s)
- Laleen Hammal
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sumaira Javaid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Atia-Tul Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Noor Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Aftab Ahmed
- School of Pharmacy, Chapman University Irvine, CA 92618, USA
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 22252, Saudi Arabia.
| |
Collapse
|
2
|
Mubeena A, Nagarajaiah H, Pulakuntla S, Damodara Reddy V, Madhusudana Reddy MB. Synthesis and Molecular Docking Studies of a Series of Amino-Pyrimidines as Possible Anti-Cancer Agents. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2174994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Ameerjan Mubeena
- Department of Chemistry, REVA University, Bangalore, Karnataka, India
| | | | - Swetha Pulakuntla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | | | | |
Collapse
|
3
|
SNAr Reactions on 2-Amino-4,6-dichloropyrimidine-5-carbaldehyde. MOLBANK 2022. [DOI: 10.3390/m1426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report the experimental results of unexpected aromatic nucleophilic substitution reaction products on 2-amino-4,6-dichloropyrimidine-5-carbaldehyde. The isolated compounds are products of amination, solvolysis, and condensation processes under mild and environmentally friendly conditions, due to the influence of structural factors of the starting pyrimidine and a high concentration of alkoxide ions. This method allows the building of pyrimidine-based compound precursors of N-heterocyclic systems.
Collapse
|
4
|
Chao Gao, Dai H, Si X, Zhang Y, Liu L, Wang Z, Meng Y, Zhang Y, Wang T, Zheng J, Shan L, Liu H, Zhang Q. Synthesis and Antitumor Activity Evaluation of Novel 2-Amino-5-Ethylpyrimidine Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Jadhav M, Sankhe K, Bhandare RR, Edis Z, Bloukh SH, Khan TA. Synthetic Strategies of Pyrimidine-Based Scaffolds as Aurora Kinase and Polo-like Kinase Inhibitors. Molecules 2021; 26:5170. [PMID: 34500603 PMCID: PMC8434097 DOI: 10.3390/molecules26175170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
The past few decades have witnessed significant progress in anticancer drug discovery. Small molecules containing heterocyclic moieties have attracted considerable interest for designing new antitumor agents. Of these, the pyrimidine ring system is found in multitude of drug structures, and being the building unit of DNA and RNA makes it an attractive scaffold for the design and development of anticancer drugs. Currently, 22 pyrimidine-containing entities are approved for clinical use as anticancer drugs by the FDA. An exhaustive literature search indicates several publications and more than 59 patents from the year 2009 onwards on pyrimidine derivatives exhibiting potent antiproliferative activity. These pyrimidine derivatives exert their activity via diverse mechanisms, one of them being inhibition of protein kinases. Aurora kinase (AURK) and polo-like kinase (PLK) are protein kinases involved in the regulation of the cell cycle. Within the numerous pyrimidine-based small molecules developed as anticancer agents, this review focuses on the pyrimidine fused heterocyclic compounds modulating the AURK and PLK proteins in different phases of clinical trials as anticancer agents. This article aims to provide a comprehensive overview of synthetic strategies for the preparation of pyrimidine derivatives and their associated biological activity on AURK/PLK. It will also present an overview of the synthesis of the heterocyclic-2-aminopyrimidine, 4-aminopyrimidine and 2,4-diaminopyrimidine scaffolds, and one of the pharmacophores in AURK/PLK inhibitors is described systematically.
Collapse
Affiliation(s)
- Mrunal Jadhav
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (M.J.); (K.S.)
| | - Kaksha Sankhe
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (M.J.); (K.S.)
| | - Richie R. Bhandare
- Department of Pharmaceutical Chemistry, College of Pharmacy & Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Zehra Edis
- Department of Pharmaceutical Chemistry, College of Pharmacy & Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Samir Haj Bloukh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy & Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Tabassum Asif Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (M.J.); (K.S.)
| |
Collapse
|
6
|
Vu TQ, Yudin NV, Kushtaev AA, Nguyen TX, Maltsev SA. Spectroscopic Study of the Basicity of 4,6-Dihydroxypyrimidine Derivatives. ACS OMEGA 2021; 6:14154-14163. [PMID: 34124438 PMCID: PMC8190809 DOI: 10.1021/acsomega.1c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The protonation of a number of 4,6-dihydroxypyrimidine derivatives is studied, and the features of the electronic spectra of free bases and protonated forms are considered. It is shown that the alkyl substituents in position 2 increase the basicity of the compound, and the nitro group in position 5 leads to its decrease. In an acid medium (0.1-99.5% H2SO4), 4,6-dihydroxypyrimidine, 6-hydroxy-2-methylpyrimidine-4(3H)-one, and 6-hydroxy-2-ethylpyrimidine-4(3H)-one have two protonation stages, barbituric acid is protonated in three stages, and 6-hydroxy-2-methyl-5-nitropyrimidine-4(3H)-one and 6-hydroxy-2-ethyl-5-nitropyrimidine-4(3H)-one form a monocation.
Collapse
|
7
|
Kalčic F, Kolman V, Zídek Z, Janeba Z. Polysubstituted Pyrimidines as Potent Inhibitors of Prostaglandin E 2 Production: Increasing Aqueous Solubility. ChemMedChem 2021; 16:2802-2806. [PMID: 34056858 DOI: 10.1002/cmdc.202100263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/27/2021] [Indexed: 02/02/2023]
Abstract
Water solubility is one of the key features of potential therapeutic agents. In order to enhance the low water solubility of the parent 5-butyl-4-(4-methoxyphenyl)-6-phenylpyrimidin-2-amine, a potent inhibitor of prostaglandin E2 (PGE2 ) production, we synthesized and evaluated a new series of derivatives in which the butyl group at the C5 position of the pyrimidine ring was replaced with a less lipophilic substituent, preferably with a hydrophilic aliphatic moiety. Except for the 5-cyanopyrimidine derivative, all target compounds exhibited increased (2.7 - 87-fold) water solubility relative to the parent compound. Although nontoxic in mouse peritoneal cells, the prepared compounds were either equipotent or weaker inhibitors of PGE2 production than the parent compound. The most promising compound from the series was found to be the 5-(2,5,8,11-tetraoxadodecyl)pyrimidine derivative (with three polyethylene glycol units at the C5 position), which exhibited 32-fold higher water solubility and only slightly weaker inhibitory activity (22 % of remaining PGE2 production) compared with the parent compound (15 % of remaining PGE2 production).
Collapse
Affiliation(s)
- Filip Kalčic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Viktor Kolman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Zdeněk Zídek
- Institute of Experimental Medicine of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
8
|
Inhibitor development of MTH1 via high-throughput screening with fragment based library and MTH1 substrate binding cavity. Bioorg Chem 2021; 110:104813. [PMID: 33774493 DOI: 10.1016/j.bioorg.2021.104813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022]
Abstract
MutT Homolog 1 (MTH1) has been proven to hydrolyze oxidized nucleotide triphosphates during DNA repair. It can prevent the incorporation of wrong nucleotides during DNA replication and mitigate cell apoptosis. In a cancer cell, abundant reactive oxygen species can lead to substantial DNA damage and DNA mutations by base-pairing mismatch. MTH1 could eliminate oxidized dNTP and prevent cancer cells from entering cell death. Therefore, inhibition of MTH1 activity is considered to be an anti-cancer therapeutic target. In this study, high-throughput screening techniques were combined with a fragment-based library containing 2,313 compounds, which were used to screen for lead compounds with MTH1 inhibitor activity. Four compounds with MTH1 inhibitor ability were selected, and compound MI0639 was found to have the highest effective inhibition. To discover the selectivity and specificity of this action, several derivatives based on the MTH1 and MI0639 complex structure were synthesized. We compared 14 complex structures of MTH1 and the various compounds in combination with enzymatic inhibition and thermodynamic analysis. Nanomolar-range IC50 inhibition abilities by enzyme kinetics and Kd values by thermodynamic analysis were obtained for two compounds, named MI1020 and MI1024. Based on structural information and compound optimization, we aim to provide a strategy for the development of MTH1 inhibitors with high selectivity and specificity.
Collapse
|
9
|
Rashid HU, Martines MAU, Duarte AP, Jorge J, Rasool S, Muhammad R, Ahmad N, Umar MN. Research developments in the syntheses, anti-inflammatory activities and structure-activity relationships of pyrimidines. RSC Adv 2021; 11:6060-6098. [PMID: 35423143 PMCID: PMC8694831 DOI: 10.1039/d0ra10657g] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Pyrimidines are aromatic heterocyclic compounds that contain two nitrogen atoms at positions 1 and 3 of the six-membered ring. Numerous natural and synthetic pyrimidines are known to exist. They display a range of pharmacological effects including antioxidants, antibacterial, antiviral, antifungal, antituberculosis, and anti-inflammatory. This review sums up recent developments in the synthesis, anti-inflammatory effects, and structure-activity relationships (SARs) of pyrimidine derivatives. Numerous methods for the synthesis of pyrimidines are described. Anti-inflammatory effects of pyrimidines are attributed to their inhibitory response versus the expression and activities of certain vital inflammatory mediators namely prostaglandin E2, inducible nitric oxide synthase, tumor necrosis factor-α, nuclear factor κB, leukotrienes, and some interleukins. Literature studies reveal that a large number of pyrimidines exhibit potent anti-inflammatory effects. SARs of numerous pyrimidines have been discussed in detail. Several possible research guidelines and suggestions for the development of new pyrimidines as anti-inflammatory agents are also given. Detailed SAR analysis and prospects together provide clues for the synthesis of novel pyrimidine analogs possessing enhanced anti-inflammatory activities with minimum toxicity.
Collapse
Affiliation(s)
- Haroon Ur Rashid
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | | | | | - Juliana Jorge
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
| | - Shagufta Rasool
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Riaz Muhammad
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand Chakdara, Dir (L) Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
10
|
Dosoudil P, Kotek V, Kolman V, Baszczyňski O, Kaiser MM, Janeba Z, Havránek M. Development of Scalable Synthesis of 5-Butyl-4-(4-methoxyphenyl)-6-phenylpyrimidin-2-amine (WQE-134), a Dual Inhibitor of Nitric Oxide and Prostaglandin E2 Production. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pavel Dosoudil
- APIGENEX s.r.o., Poděbradská 173/5, 190 00 Prague 9, Czech Republic
| | - Vladislav Kotek
- APIGENEX s.r.o., Poděbradská 173/5, 190 00 Prague 9, Czech Republic
| | - Viktor Kolman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Ondřej Baszczyňski
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Martin Maxmilian Kaiser
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | | |
Collapse
|
11
|
Kalčic F, Kolman V, Ajani H, Zídek Z, Janeba Z. Polysubstituted Pyrimidines as mPGES‐1 Inhibitors: Discovery of Potent Inhibitors of PGE
2
Production with Strong Anti‐inflammatory Effects in Carrageenan‐Induced Rat Paw Edema. ChemMedChem 2020; 15:1398-1407. [DOI: 10.1002/cmdc.202000258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Filip Kalčic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 8 128 43 Prague 2 Czech Republic
| | - Viktor Kolman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Haresh Ajani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Zdeněk Zídek
- Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 142 20 Prague 4 Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| |
Collapse
|
12
|
Bayramoğlu D, Kurtay G, Güllü M. Ultrasound-assisted rapid synthesis of 2-aminopyrimidine and barbituric acid derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1705349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Duygu Bayramoğlu
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Gülbin Kurtay
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Mustafa Güllü
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Chen P, Song X, Fan Y, Kong W, Zhang H, Sun R. Investigation of Novel Pesticides with Insecticidal and Antifungal Activities: Design, Synthesis and SAR Studies of Benzoylpyrimidinylurea Derivatives. Molecules 2018; 23:E2203. [PMID: 30200298 PMCID: PMC6225173 DOI: 10.3390/molecules23092203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
In order to find pesticides with insecticidal and antifungal activities, a series of novel benzoyl pyrimidinylurea derivatives were designed and synthesized. All target compounds were identified by ¹H-NMR spectroscopy and HRMS. Insecticidal and antifungal activity of these compounds were evaluated and the structure-activity relationships (SAR) were clearly and comprehensively illustrated. Compound 7, with low toxicity to zebrafish (LC50 = 378.387 µg mL-1) showed 100% inhibition against mosquito (Culex pipiens pallens) at 0.25 µg mL-1. Both compounds 19 and 25 exhibited broad-spectrum fungicidal activity (>50% inhibitory activities against 13 phytopathogenic fungi), which were better than those of the commercial pesticide pyrimethanil (>50% inhibitory activities against eight phytopathogenic fungi). Furthermore, compounds 19 and 25 exhibited protective activity against Sclerotinia sclerotiorum on leaves of Brassica oleracea L. during in vivo experiments.
Collapse
Affiliation(s)
- Peiqi Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou 570228, China.
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
- School of Chemical & Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Xiangmin Song
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou 570228, China.
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou 570228, China.
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Weihao Kong
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou 570228, China.
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hao Zhang
- School of Chemical & Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou 570228, China.
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
14
|
Kolman V, Kalčic F, Jansa P, Zídek Z, Janeba Z. Influence of the C-5 substitution in polysubstituted pyrimidines on inhibition of prostaglandin E2 production. Eur J Med Chem 2018; 156:295-301. [DOI: 10.1016/j.ejmech.2018.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
|
15
|
Čechová L, Kind J, Dračínský M, Filo J, Janeba Z, Thiele CM, Cigáň M, Procházková E. Photoswitching Behavior of 5-Phenylazopyrimidines: In Situ Irradiation NMR and Optical Spectroscopy Combined with Theoretical Methods. J Org Chem 2018; 83:5986-5998. [DOI: 10.1021/acs.joc.8b00569] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lucie Čechová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 16, Darmstadt 64287, Germany
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Juraj Filo
- Institute of Chemistry, Comenius University, Ilkovičova 6, Bratislava 84215, Slovakia
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 16, Darmstadt 64287, Germany
| | - Marek Cigáň
- Institute of Chemistry, Comenius University, Ilkovičova 6, Bratislava 84215, Slovakia
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| |
Collapse
|
16
|
Polysubstituted 4,6-bis(hetero)arylpyrimidines as dual inhibitors of nitric oxide and prostaglandin E 2 production. Nitric Oxide 2017; 67:53-57. [DOI: 10.1016/j.niox.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
|
17
|
Zídek Z, Kverka M, Dusilová A, Kmoníčková E, Jansa P. Dual inhibition of nitric oxide and prostaglandin E2 production by polysubstituted 2-aminopyrimidines. Nitric Oxide 2016; 57:48-56. [PMID: 27133739 DOI: 10.1016/j.niox.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/11/2016] [Accepted: 04/25/2016] [Indexed: 12/27/2022]
Abstract
The present in vitro experiments demonstrate inhibitory effects of polysubstituted 2-aminopyrimidines on high output production of nitric oxide (NO) and prostaglandin E2 (PGE2) stimulated by interferon-γ and lipopolysaccharide (LPS) in peritoneal macrophages of mouse and rat origin. PGE2 production was inhibited also in LPS-activated human peripheral blood mononuclear cells. A tight dependence of the suppressive activities on chemical structure of pyrimidines was observed. Derivatives containing hydroxyl groups at the C-4 and C-6 positions of pyrimidine ring were devoid of any influence on NO and PGE2. Remarkable inhibitory potential was acquired by the replacement of hydroxyl groups with chlorine, the 4,6-dichloro derivatives being more effective than the monochloro analogues. The effects were further intensified by modification of the amino group at the C-2 position, changing it to the (N,N-dimethylamino)methyleneamino or the formamido ones. There was no substantial difference in the expression of NO-inhibitory effects among derivatives containing distinct types of substituents at the C-5 position (hydrogen, methyl, ethyl, propyl, butyl, phenyl, and benzyl). In contrast to NO, larger substituents then methyl were required to inhibit PGE2 production. Overall, no significant correlation between the extent of NO and PGE2 suppression was observed. The IC50s of derivatives with the strongest effects on both NO and PGE2 were within the range of 2-10 μM. Their NO-inhibitory potential of pyrimidines was stronger than that of non-steroidal anti-inflammatory drugs (NSAIDs) aspirin and indomethacin. The PGE2-inhibitory effectiveness of pyrimidines was about the same as that of aspirin, but weaker as compared to indomethacin. The NO- and PGE2-inhibitory activity of tested pyrimidines has been found associated with decreased expression of iNOS mRNA and COX-2 mRNA, respectively, and with post-translation interactions. Selected NO-/PGE2-inhibitory derivatives decreased severity of intestinal inflammation in murine model of ulcerative colitis.
Collapse
Affiliation(s)
- Zdeněk Zídek
- Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Miloslav Kverka
- Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic; Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Adéla Dusilová
- Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic; Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Eva Kmoníčková
- Institute of Experimental Medicine, The Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Petr Jansa
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| |
Collapse
|