1
|
Khalili Ghomi M, Noori M, Mirahmad M, Iraji A, Sadr AS, Dastyafteh N, Asili P, Gholami M, Javanshir S, Lotfi M, Mojtabavi S, Faramarzi MA, Asadi M, Nasli-Esfahani E, Palimi M, Larijani B, Meshkatalsadat MH, Mahdavi M. Evaluation of novel 2-(quinoline-2-ylthio)acetamide derivatives linked to diphenyl-imidazole as α-glucosidase inhibitors: Insights from in silico, in vitro, and in vivo studies on their anti-diabetic properties. Eur J Med Chem 2024; 269:116332. [PMID: 38508120 DOI: 10.1016/j.ejmech.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The inhibition of the α-glucosidase enzyme is crucial for targeting type 2 diabetes mellitus (DM). This study introduces a series of synthetic analogs based on thiomethylacetamide-quinoline derivatives linked to diphenyl-imidazole as highly potential α-glucosidase inhibitors. Twenty derivatives were synthesized and screened in vitro against α-glucosidase, revealing IC50 values ranging from 0.18 ± 0.00 to 2.10 ± 0.07 μM, in comparison to the positive control, acarbose. Among these derivatives, compound 10c (IC50 = 0.180 μM) demonstrated the highest potency and revealed a competitive inhibitory mechanism in kinetic studies (Ki = 0.15 μM). Docking and molecular dynamic evaluations elucidated the binding mode of 10c with the active site residues of the α-glucosidase enzyme. Moreover, in vivo assessments on a rat model of DM affirmed the anti-diabetic efficacy of 10c, evidenced by reduced fasting and overall blood glucose levels. The histopathological evaluation enhanced pancreatic islet architecture and hepatocytes in liver sections. In conclusion, novel 2-(quinoline-2-ylthio)acetamide derivatives as potent α-glucosidase inhibitors were developed. Compound 10c emerged as a promising candidate for diabetes management, warranting further investigation for potential clinical applications and mechanistic insights.
Collapse
Affiliation(s)
- Minoo Khalili Ghomi
- Department of Chemistry, Qom University of Technology, Qom, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Shahir Sadr
- Computer Science Department, Mathematical Sciences Faculty, Shahid Beheshti University, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Lotfi
- Department of Pathology, Amir-Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdie Palimi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Azmi A, Noori M, Khalili Ghomi M, Nazari Montazer M, Iraji A, Dastyafteh N, Oliyaei N, Khoramjouy M, Rezaei Z, Javanshir S, Mojtabavi S, Faramarzi MA, Asadi M, Faizi M, Mahdavi M. Alpha-glucosidase inhibitory and hypoglycemic effects of imidazole-bearing thioquinoline derivatives with different substituents: In silico, in vitro, and in vivo evaluations. Bioorg Chem 2024; 144:107106. [PMID: 38244380 DOI: 10.1016/j.bioorg.2024.107106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by high blood sugar levels. It was shown that modulating the activity of α-glucosidase, an enzyme involved in carbohydrate digestion and absorption, can improve blood sugar control and overall metabolic health in individuals with T2DM. As a result, in the current study, a series of imidazole bearing different substituted thioquinolines were designed and synthesized as α-glucosidase inhibitors. All derivatives exhibited significantly better potency (IC50 = 12.1 ± 0.2 to 102.1 ± 4.9 µM) compared to the standard drug acarbose (IC50 = 750.0 ± 5.0 µM). 8g as the most potent analog, indicating a competitive inhibition with Ki = 9.66 µM. Also, the most potent derivative was subjected to molecular docking and molecular dynamic simulation against α-glucosidase to determine its mode of action in the enzyme and study the complex's behavior over time. In vivo studies showed that 8g did not cause acute toxicity at 2000 mg/kg doses. Additionally, in a diabetic rat model, treatment with 8g significantly reduced fasting blood glucose levels and decreased blood glucose levels following sucrose loading compared to acarbose, a standard drug used for blood sugar control. The findings suggest that the synthesized compound 8g holds promise as an α-glucosidase inhibitor for improving blood sugar control and metabolic health.
Collapse
Affiliation(s)
- Anita Azmi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Dastyafteh
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Oliyaei
- Department of Food Science and Technology, School of Agriculture Shiraz University, Shiraz, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Patel P, Shah D, Bambharoliya T, Patel V, Patel M, Patel D, Bhavsar V, Padhiyar S, Patel B, Mahavar A, Patel R, Patel A. A Review on the Development of Novel Heterocycles as α-Glucosidase Inhibitors for the Treatment of Type-2 Diabetes Mellitus. Med Chem 2024; 20:503-536. [PMID: 38275074 DOI: 10.2174/0115734064264591231031065639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 01/27/2024]
Abstract
One of the most effective therapeutic decencies in the treatment of Type 2 Diabetes Mellitus is the inhibition of α-glucosidase enzyme, which is present at the brush border of the intestine and plays an important role in carbohydrate digestion to form mono-, di-, and polysaccharides. Acarbose, Voglibose, Miglitol, and Erniglitate have been well-known α-glucosidase inhibitors in science since 1990. However, the long synthetic route and side effects of these inhibitors forced the researchers to move their focus to innovate simple and small heterocyclic scaffolds that work as excellent α-glucosidase inhibitors. Moreover, they are also effective against the postprandial hyperglycemic condition in Type 2 Diabetes Mellitus. In this aspect, this review summarizes recent progress in the discovery and development of heterocyclic molecules that have been appraised to show outstanding inhibition of α-glucosidase to yield positive effects against diabetes.
Collapse
Affiliation(s)
- Prexa Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | - Vidhi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Dharti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | | | | | - Anjali Mahavar
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, Gujarat, India
| | - Riddhisiddhi Patel
- Department of Pharmaceutical Science, Saurashtra University, Rajkot, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| |
Collapse
|
4
|
Hossein Nia R, Taati Z, Mamaghani M. Multi-Component Synthesis of Indole-Substituted Heterocycles– A Review. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2173622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Zahra Taati
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
5
|
Hu CM, Zheng YY, Lin AT, Zhang X, Wu XZ, Lin J, Xu XT, Xiong Z. Design, synthesis and evaluation of indole-based bisacylhydrazone derivatives as α-glucosidase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Garg P, Rawat RS, Bhatt H, Kumar S, Reddy SR. Recent Developments in the Synthesis of N‐Heterocyclic Compounds as α‐Amylase Inhibitors via In‐Vitro and In‐Silico Analysis: Future Drugs for Treating Diabetes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pooja Garg
- Department of Chemistry SAS Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| | - Ravindra Singh Rawat
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Harshil Bhatt
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Sanjit Kumar
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | | |
Collapse
|
7
|
Mohammadi Ziarani G, Hasani S, Mohajer F, Varma RS, Rafiee F. The Molecular Diversity of 1H-Indole-3-Carbaldehyde Derivatives and Their Role in Multicomponent Reactions. Top Curr Chem (Cham) 2022; 380:24. [PMID: 35467226 DOI: 10.1007/s41061-022-00379-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
1H-Indole-3-carbaldehyde and related members of the indole family are ideal precursors for the synthesis of active molecules. 1H-Indole-3-carbaldehyde and its derivatives are essential and efficient chemical precursors for generating biologically active structures. Multicomponent reactions (MCRs) offer access to complex molecules. This review highlights the recent applications of 1H-indole-3-carbaldehyde in such inherently sustainable multicomponent reactions from the period, 2014 to 2021 and provides an overview of the field that awaits further exploitation in the assembly of pharmaceutically interesting scaffolds.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran.
| | - Samira Hasani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Fatemeh Rafiee
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran
| |
Collapse
|
8
|
Bakherad Z, Bakherad H, Sepehri S, Faramarzi MA, Mahnam K, Mojtabavi S, Mahdavi M. In silico and in vitro studies of thiosemicarbazone-indole hybrid compounds as potent α-glycosidase inhibitors. Comput Biol Chem 2022; 97:107642. [PMID: 35183819 DOI: 10.1016/j.compbiolchem.2022.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/03/2022]
Abstract
It is essential to study α-glucosidase enzyme (EC 3.2.1.20) inhibitors because of their physiological role as well as their clinical relevance. In previous research, a novel series of thiosemicarbazone-indole hybrid compounds were synthesized and reported. In the current research, α-glucosidase inhibitory activity of the derivatives was evaluated and then in silico studies were carried out on screened compounds. All derivatives exhibited a magnificent α-glucosidase inhibitory activity (IC50 = 27.0 ± 1.0-97.4 ± 1.5 µM) toward the acarbose as reference drug (IC50 = 750.0 ± 1.5 µM). Compound 1i having phenyl ring at the thiosemicarbazone moiety and the trimethoxymethyl substituent at phenyl moiety of C2 position of indole ring was the most potent compound (IC50 = 27.0 ± 1.0 µM) among other compounds. A kinetic study of 1i revealed that is a competitive inhibitor against α-glucosidase. Moreover, the molecular docking studies established that screened derivatives interacted with the essential amino acids in the active site. Finally, based on the molecular dynamics simulations and free binding energy calculations, complexes 1d, 1i and 1k with α-glucosidase showed a good stability in the active site. Van der Waals and electrostatic interactions also exhibited the most contributions to the stability of these complexes. Moreover, all the screened compounds showed agreeable ADME properties for oral bio-availability, and good drug-likeness.
Collapse
Affiliation(s)
- Zohreh Bakherad
- Food and Drug Research Institute, Food and Drug Administration, MOHE, Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Karim Mahnam
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Design-based synthesis, molecular docking analysis of an anti-inflammatory drug, and geometrical optimization and interaction energy studies of an indole acetamide derivative. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
11
|
Dhameja M, Gupta P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur J Med Chem 2019; 176:343-377. [DOI: 10.1016/j.ejmech.2019.04.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 01/18/2023]
|
12
|
Somashekara B, Thippeswamy B, Vijayakumar GR. Synthesis, antioxidant and $$\alpha $$-amylase inhibition activity of naphthalene-containing 2,4,5-trisubstituted imidazole derivatives. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1639-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Mall R, Singh A, Singh G, Singh V, Verma RK. Indolyl Linked
Meta
‐Substituted Benzylidenes as Novel Ligands: Synthesis, Biological Evaluation, and Molecular Docking Studies. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rajiv Mall
- Department of Basic and Applied SciencesPunjabi University Patiala 147002 Punjab India
| | - Amanjot Singh
- Synthetic Organic and Medicinal Chemistry Laboratory, Department of ChemistryPunjabi University Patiala 147002 Punjab India
| | - Gagandeep Singh
- Synthetic Organic and Medicinal Chemistry Laboratory, Department of ChemistryPunjabi University Patiala 147002 Punjab India
| | - Varinder Singh
- Synthetic Organic and Medicinal Chemistry Laboratory, Department of ChemistryPunjabi University Patiala 147002 Punjab India
| | - Raman K. Verma
- Synthetic Organic and Medicinal Chemistry Laboratory, Department of ChemistryPunjabi University Patiala 147002 Punjab India
| |
Collapse
|
14
|
Imidazole-pyrazole hybrids: Synthesis, characterization and in-vitro bioevaluation against α-glucosidase enzyme with molecular docking studies. Bioorg Chem 2019; 82:267-273. [DOI: 10.1016/j.bioorg.2018.10.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023]
|
15
|
Li X, Xia D, Wen Z, Gong B, Sun M, Wu Y, Zhang J, Sun J, Wu Y, Bao K, Zhang W. Magnetic magnetite nanoparticals catalyzed selective oxidation of α-hydroxy ketones with air and one-pot synthesis of benzilic acid and phenytoin derivatives. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Khan GA, War JA, Kumar A, Sheikh IA, Saxena A, Das R. A facile synthesis of novel indole derivatives as potential antitubercular agents. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gulzar A. Khan
- Heterocyclic Synthesis and Electroanalytical Laboratory, Department of Chemistry, HariSingh Gour Central University, Sagar, India
| | - Javeed A. War
- Synthetic Organic Chemistry & Molecular Modelling Laboratory, Department of Chemistry, HariSingh Gour Central University, Sagar, India
| | - Arun Kumar
- Neuroscience and Endocrinology Laboratory, Department of Zoology, HariSingh Gour Central University, Sagar, India
| | - Imtiyaz A. Sheikh
- Microbial Technology Laboratory, Department of Botany, HariSingh Gour Central University, Sagar, India
| | - Aarti Saxena
- Heterocyclic Synthesis and Electroanalytical Laboratory, Department of Chemistry, HariSingh Gour Central University, Sagar, India
| | - Ratnesh Das
- Heterocyclic Synthesis and Electroanalytical Laboratory, Department of Chemistry, HariSingh Gour Central University, Sagar, India
| |
Collapse
|
17
|
Mohammadi Ziarani G, Moradi R, Ahmadi T, Lashgari N. Recent advances in the application of indoles in multicomponent reactions. RSC Adv 2018; 8:12069-12103. [PMID: 35539427 PMCID: PMC9079367 DOI: 10.1039/c7ra13321a] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/05/2018] [Indexed: 01/17/2023] Open
Abstract
Indoles are some of the most versatile and common nitrogen-based heterocyclic scaffolds and are frequently used in the synthesis of various organic compounds. Indole based compounds are very important among heterocyclic structures due to their biological and pharmaceutical activities. The last decade, in particular, has witnessed considerable activity towards the synthesis of indole derivatives due to the possibilities for the design of polycyclic structures by the incorporation of multiple fused heterocyclic scaffolds in an attempt to achieve promising new heterocycles with chemical and biomedical relevance. In this study, we provide an overview on recent applications of indole in the multicomponent reactions for the synthesis of various heterocyclic compounds during the period of 2012 to 2017.
Collapse
Affiliation(s)
| | - Razieh Moradi
- Department of Chemistry, Alzahra University Tehran Iran +98 21 88041344 +98 21 88041344
| | - Tahereh Ahmadi
- Department of Chemistry, Alzahra University Tehran Iran +98 21 88041344 +98 21 88041344
| | - Negar Lashgari
- Department of Chemistry, Alzahra University Tehran Iran +98 21 88041344 +98 21 88041344
| |
Collapse
|
18
|
Naureen S, Chaudhry F, Munawar MA, Ashraf M, Hamid S, Khan MA. Biological evaluation of new imidazole derivatives tethered with indole moiety as potent α-glucosidase inhibitors. Bioorg Chem 2018; 76:365-369. [DOI: 10.1016/j.bioorg.2017.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/06/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
|
19
|
Kaur J, Singh A, Singh G, Verma RK, Mall R. Novel indolyl linked para-substituted benzylidene-based phenyl containing thiazolidienediones and their analogs as α-glucosidase inhibitors: synthesis, in vitro, and molecular docking studies. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2112-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Chaudhry F, Choudhry S, Huma R, Ashraf M, al-Rashida M, Munir R, Sohail R, Jahan B, Munawar MA, Khan MA. Hetarylcoumarins: Synthesis and biological evaluation as potent α -glucosidase inhibitors. Bioorg Chem 2017; 73:1-9. [DOI: 10.1016/j.bioorg.2017.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/29/2022]
|
21
|
Imran S, Taha M, Selvaraj M, Ismail NH, Chigurupati S, Mohammad JI. Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorg Chem 2017; 73:121-127. [PMID: 28648924 DOI: 10.1016/j.bioorg.2017.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/13/2017] [Accepted: 06/17/2017] [Indexed: 01/17/2023]
Abstract
A series of twenty indole hydrazone analogs (1-21) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65μM. Nine compounds that are 1 (2.23±0.01μM), 8 (2.44±0.12μM), 10 (1.92±0.12μM), 12 (2.49±0.17μM), 13 (1.66±0.09μM), 17 (2.25±0.1μM), 18 (1.87±0.25μM), 20 (1.83±0.63μM), and 19 (1.97±0.02μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05±0.29μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.
Collapse
Affiliation(s)
- Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, UiTM Shah Alam, 40450 Shah Alam, Selangor D.E., Malaysia.
| | - Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, UiTM Shah Alam, 40450 Shah Alam, Selangor D.E., Malaysia
| | - Manikandan Selvaraj
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, UiTM Shah Alam, 40450 Shah Alam, Selangor D.E., Malaysia
| | - Sridevi Chigurupati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia
| | - Jahidul Islam Mohammad
- Department of Pharmacology, Faculty of Medicine, Cyberjaya University College of Medical Sciences, CUCMS, Cyberjaya 63000, Malaysia
| |
Collapse
|
22
|
Naureen S, Ijaz F, Nazeer A, Chaudhry F, Munawar MA, Khan MA. Facile, eco-friendly, one-pot protocol for the synthesis of indole-imidazole derivatives catalyzed by amino acids. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1332766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sadia Naureen
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Fatima Ijaz
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Areesha Nazeer
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Faryal Chaudhry
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Misbahul Ain Khan
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
23
|
Chaudhry F, Naureen S, Huma R, Shaukat A, al-Rashida M, Asif N, Ashraf M, Munawar MA, Khan MA. In search of new α -glucosidase inhibitors: Imidazolylpyrazole derivatives. Bioorg Chem 2017; 71:102-109. [DOI: 10.1016/j.bioorg.2017.01.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
|
24
|
Chaudhry F, Ather AQ, Akhtar MJ, Shaukat A, Ashraf M, al-Rashida M, Munawar MA, Khan MA. Green synthesis, inhibition studies of yeast α-glucosidase and molecular docking of pyrazolylpyridazine amines. Bioorg Chem 2017; 71:170-180. [DOI: 10.1016/j.bioorg.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/31/2016] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|
25
|
Wang G, Peng Z, Wang J, Li J, Li X. Synthesis and biological evaluation of novel 2,4,5-triarylimidazole–1,2,3-triazole derivatives via click chemistry as α-glucosidase inhibitors. Bioorg Med Chem Lett 2016; 26:5719-5723. [PMID: 27810241 DOI: 10.1016/j.bmcl.2016.10.057] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022]
|
26
|
Naureen S, Chaudhry F, Asif N, Munawar MA, Ashraf M, Nasim FH, Arshad H, Khan MA. Discovery of indole-based tetraarylimidazoles as potent inhibitors of urease with low antilipoxygenase activity. Eur J Med Chem 2015; 102:464-70. [DOI: 10.1016/j.ejmech.2015.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/20/2015] [Accepted: 08/05/2015] [Indexed: 01/18/2023]
|