1
|
Fukunaga I, Takebe T. In vitro liver models for toxicological research. Drug Metab Pharmacokinet 2025; 62:101478. [PMID: 40203632 DOI: 10.1016/j.dmpk.2025.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Drug-induced liver injury (DILI) presents a major challenge not only in new drug development but also in post-marketing withdrawals and the safety of food, cosmetics, and chemicals. Experimental model organisms such as the rodents have been widely used for preclinical toxicological testing. However, the tension exists associated with the ethical and sustainable use of animals in part because animals do not necessarily inform the human-specific ADME (adsorption, dynamics, metabolism and elimination) profiling. To establish alternative models in humans, in vitro hepatic tissue models have been proposed, ranging from primary hepatocytes, immortal hepatocytes, to the development of new cell resources such as stem cell-derived hepatocytes. Given the evolving number of novel alternative methods, understanding possible combinations of cell sources and culture methods will be crucial to develop the context-of-use assays. This review primarily focuses on 3D liver organoid models for conducting. We will review the relevant cell sources, bioengineering methods, selection of training compounds, and biomarkers towards the rationale design of in vitro toxicology testing.
Collapse
Affiliation(s)
- Ichiro Fukunaga
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Takanori Takebe
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan; Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Ma X, Xu M, Wang F, Hu T, Chen X, Zhang CJ. New electrophiles targeting thiols in a reversible covalent manner. Chem Commun (Camb) 2024; 60:12437-12440. [PMID: 39380305 DOI: 10.1039/d4cc04612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Reversible covalent electrophiles with the advantages of both reversible and covalent interactions receive much attention in the fields of chemical biology and medicinal chemistry. Here, we report two electron-deficient olefins activated by amide and ester, amide-substituted acrylamide and methyl ester-substituted acrylamide, targeting thiols in a reversible covalent manner.
Collapse
Affiliation(s)
- Xingyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Fengge Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Tingting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Xinyuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
3
|
Patel D, Huma ZE, Duncan D. Reversible Covalent Inhibition─Desired Covalent Adduct Formation by Mass Action. ACS Chem Biol 2024; 19:824-838. [PMID: 38567529 PMCID: PMC11040609 DOI: 10.1021/acschembio.3c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Covalent inhibition has seen a resurgence in the last several years. Although long-plagued by concerns of off-target effects due to nonspecific reactions leading to covalent adducts, there has been success in developing covalent inhibitors, especially within the field of anticancer therapy. Covalent inhibitors can have an advantage over noncovalent inhibitors since the formation of a covalent adduct may serve as an additional mode of selectivity due to the intrinsic reactivity of the target protein that is absent in many other proteins. Unfortunately, many covalent inhibitors form irreversible adducts with off-target proteins, which can lead to considerable side-effects. By designing the inhibitor to form reversible covalent adducts, one can leverage competing on/off kinetics in complex formation by taking advantage of the law of mass action. Although covalent adducts do form with off-target proteins, the reversible nature of inhibition prevents accumulation of the off-target adduct, thus limiting side-effects. In this perspective, we outline important characteristics of reversible covalent inhibitors, including examples and a guide for inhibitor development.
Collapse
Affiliation(s)
| | | | - Dustin Duncan
- Department of Chemistry, Brock
University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
4
|
Gladchuk AS, Gorbunov AY, Keltsieva OA, Ilyushonok SK, Babakov VN, Shilovskikh VV, Kolonitskii PD, Stepashkin NA, Soboleva A, Muradymov MZ, Krasnov NV, Sukhodolov NG, Selyutin AA, Frolov A, Podolskaya EP. Coating of a MALDI target with metal oxide nanoparticles by droplet-free electrospraying – a versatile tool for in situ enrichment of human globin adducts of halogen-containing drug metabolites. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
5
|
Chu S, Letcher RJ. Bottom-up proteomics analysis for adduction of the broad-spectrum herbicide atrazine to histone. Anal Bioanal Chem 2023; 415:1497-1504. [PMID: 36662240 PMCID: PMC9974708 DOI: 10.1007/s00216-023-04545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Histones are the major proteinaceous components of chromatin in eukaryotic cells and an important part of the epigenome. The broad-spectrum herbicide atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-1, 3, 5-triazine) and its metabolites are known to form protein adducts, but the formation of atrazine-histone adducts has not been studied. In this study, a bottom-up proteomics analysis method was optimized and applied to identify histone adduction by atrazine in vitro. Whole histones of calf thymus or human histone H3.3 were incubated with atrazine. After solvent-based protein precipitation, the protein was digested by trypsin/Glu-C and the resulting peptides were analyzed by high-resolution mass spectrometry using an ultra-high-performance liquid chromatograph interfaced with a quadrupole Exactive-Orbitrap mass spectrometer. The resulting tryptic/Glu-C peptide of DTNLCAIHAK from calf thymus histone H3.1 or human histone H3.3 was identified with an accurate mass shift of +179.117 Da in atrazine incubated samples. It is deduced that a chemical group with an elemental composition of C8H13N5 (179.1171 Da) from atrazine adducted with calf thymus histone H3.1 or human histone H3.3. It was confirmed by MS/MS analysis that the adduction position was at its cysteine 110 residue. Time- and concentration-dependent assays also confirmed the non-enzymatic covalent modification of histone H3.3 by atrazine in vitro. Thus, the potential exists that atrazine adduction may lead to the alteration of histones that subsequently disturbs their normal function.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
6
|
Li L, Su M, Lu W, Song H, Liu J, Wen X, Suo Y, Qi J, Luo X, Zhou YB, Liao XH, Li J, Lu X. Triazine-Based Covalent DNA-Encoded Libraries for Discovery of Covalent Inhibitors of Target Proteins. ACS Med Chem Lett 2022; 13:1574-1581. [PMID: 36262386 PMCID: PMC9575176 DOI: 10.1021/acsmedchemlett.2c00127] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Since ibrutinib was approved by the FDA as an effective monotherapy for chronic lymphocytic leukemia (CLL) and multilymphoma, more and more FDA-approved covalent drugs are coming back into the market. On this occasion, the resurgence of interest in covalent drugs calls for more hit discovery techniques. However, the limited numbers of covalent libraries prevent the development of this area. Herein, we report the design of covalent DNA-encoded library (DEL) and its selection method for the discovery of covalent inhibitors for target proteins. These triazine-based covalent DELs yielded potent compounds after covalent selection against target proteins, including Bruton's Tyrosine Kinase (BTK), Janus kinase 3 (JAK3), and peptidyl-prolyl cis/trans isomerase NIMA-interacting-1 (Pin1).
Collapse
Affiliation(s)
- Linjie Li
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Mingbo Su
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
| | - Weiwei Lu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Hongzhi Song
- School
of Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Jiaxiang Liu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Xin Wen
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Yanrui Suo
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Jingjing Qi
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiaomin Luo
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu-Bo Zhou
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Zhongshan
Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400,P. R. China
| | - Xin-Hua Liao
- School of
Life Sciences, Shanghai University, Shanghai200444, P. R. China
| | - Jia Li
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Zhongshan
Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400,P. R. China
| | - Xiaojie Lu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| |
Collapse
|
7
|
Anik MI, Mahmud N, Masud AA, Khan MI, Islam MN, Uddin S, Hossain MK. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4028-4054. [PMID: 36043942 DOI: 10.1021/acsabm.2c00411] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis. Although the complete understanding of the ROS regulated aging process is yet to be fully comprehended, current insights into various sources of cellular ROS and their correlation with the aging process and age-related diseases are portrayed in this review. In addition, results on the effect of antioxidants on ROS homeostasis and the aging process as well as their advances in clinical trials are also discussed in detail. The future perspective in ROS-antioxidant dynamics on antiaging research is also marshaled to provide future directions for ROS-mediated antiaging research fields.
Collapse
Affiliation(s)
- Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shihab Uddin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|
8
|
Recent trends in pharmaceutical analysis to foster modern drug discovery by comparative in-silico profiling of drugs and related substances. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Dahal UP, Rock BM, Rodgers J, Shen X, Wang Z, Wahlstrom JL. Absorption, Distribution, Metabolism, and Excretion of [ 14C]-Sotorasib in Rats and Dogs: Interspecies Differences in Absorption, Protein Conjugation and Metabolism. Drug Metab Dispos 2022; 50:600-612. [PMID: 35153196 DOI: 10.1124/dmd.121.000798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 02/13/2025] Open
Abstract
Sotorasib is a first-in-class, targeted covalent inhibitor of Kirsten rat sarcoma viral oncogene homolog (KRAS)G12C approved by the FDA to treat patients with locally advanced or metastatic non-small cell lung cancer with the KRASG12C mutation. The mass balance, excretion, and metabolism of [14C]-sotorasib was characterized in rats and dogs after a single dose of 60 or 500 mg/kg, respectively. Mean recovery was >90% for both species. Excretion of unchanged sotorasib was a minor pathway in rats, accounting for <4% of administered dose in urine and <7% of administered dose in feces. Approximately 66% of administered dose was recovered in the bile from bile duct cannulated rats as metabolites. Excretion of unchanged sotorasib was the major excretion pathway in dogs, likely caused by solubility-limited absorption. Major pathways of sotorasib biotransformation included glutathione conjugation and oxidative metabolism. In vitro experiments demonstrated that nonenzymatic conjugation (Michael addition) was the primary mechanism of the reaction with glutathione. Extended radioactivity profiles in blood and plasma were observed in rats, but not dogs, after dosing with [14C]-sotorasib. In vitro experiments demonstrated that sotorasib-protein adducts were observed with both rat hemoglobin and serum albumin, explaining the extended radioactivity profile. SIGNIFICANCE STATEMENT: This study characterized the mass balance, excretion, and metabolism of [14C]-sotorasib, a covalent Kirsten rat sarcoma viral oncogene homolog G12C inhibitor, in rats and dogs. Rapid absorption and extensive metabolism of sotorasib was observed in rats, while sotorasib was primarily excreted unchanged in dog feces, likely due to solubility-limited absorption. Protein adducts with rat hemoglobin and serum albumin were characterized, explaining observed extended blood and plasma radioactivity profiles. The primary biotransformation pathway, glutathione conjugation, was mediated through nonenzymatic conjugation.
Collapse
Affiliation(s)
- Upendra P Dahal
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| | - Brooke M Rock
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| | - John Rodgers
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| | - Xiaomeng Shen
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| | - Zhe Wang
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| | - Jan L Wahlstrom
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California
| |
Collapse
|
10
|
Wurm K, Bartz FM, Schulig L, Bodtke A, Bednarski PJ, Link A. Modifications of the Triaminoaryl Metabophore of Flupirtine and Retigabine Aimed at Avoiding Quinone Diimine Formation. ACS OMEGA 2022; 7:7989-8012. [PMID: 35284765 PMCID: PMC8908504 DOI: 10.1021/acsomega.1c07103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 05/09/2023]
Abstract
The potassium channel opening drugs flupirtine and retigabine have been withdrawn from the market due to occasional drug-induced liver injury (DILI) and tissue discoloration, respectively. While the mechanism underlying DILI after prolonged flupirtine use is not entirely understood, evidence indicates that both drugs are metabolized in an initial step to reactive ortho- and/or para-azaquinone diimines or ortho- and/or para-quinone diimines, respectively. Aiming to develop safer alternatives for the treatment of pain and epilepsy, we have attempted to separate activity from toxicity by employing a drug design strategy of avoiding the detrimental oxidation of the central aromatic ring by shifting oxidation toward the formation of benign metabolites. In the present investigation, an alternative retrometabolic design strategy was followed. The nitrogen atom, which could be involved in the formation of both ortho- or para-quinone diimines of the lead structures, was shifted away from the central ring, yielding a substitution pattern with nitrogen substituents in the meta position only. Evaluation of KV7.2/3 opening activity of the 11 new specially designed derivatives revealed surprisingly steep structure-activity relationship data with inactive compounds and an activity cliff that led to the identification of an apparent "magic methyl" effect in the case of N-(4-fluorobenzyl)-6-[(4-fluorobenzyl)amino]-2-methoxy-4-methylnicotinamide. This flupirtine analogue showed potent KV7.2/3 opening activity, being six times as active as flupirtine itself, and by design is devoid of the potential for azaquinone diimine formation.
Collapse
|
11
|
Abstract
Chemicals are measured regularly in air, food, the environment, and the workplace. Biomonitoring of chemicals in biological fluids is a tool to determine the individual exposure. Blood protein adducts of xenobiotics are a marker of both exposure and the biologically effective dose. Urinary metabolites and blood metabolites are short term exposure markers. Stable hemoglobin adducts are exposure markers of up to 120 days. Blood protein adducts are formed with many xenobiotics at different sites of the blood proteins. Newer methods apply the techniques developed in the field of proteomics. Larger adducted peptides with 20 amino acids are used for quantitation. Unfortunately, at present the methods do not reach the limits of detection obtained with the methods looking at single amino acid adducts or at chemically cleaved adducts. Therefore, to progress in the field new approaches are needed.
Collapse
|
12
|
BTK-inhibitor drug covalent binding to lysine in human serum albumin using LC-MS/MS. Drug Metab Pharmacokinet 2021; 42:100433. [PMID: 34896750 DOI: 10.1016/j.dmpk.2021.100433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022]
Abstract
Irreversible Bruton's tyrosine kinase (BTK) inhibitor drugs are designed to bind covalently to a free-thiol cysteine in the BTK protein active site. However, these reactive drugs bind to off-target proteins as well. In this study, seven BTK-inhibitor drugs containing acrylamide warheads were incubated with human serum albumin (HSA) and analyzed using an LC-MS/MS peptide mapping approach to determine the amino acid sites of drug covalent binding. Significant adduction at the free-thiol cysteine of HSA was only observed for two of the drugs. However, significant adduction was observed for at least four lysine residues. This is just a small percentage of the 59 total lysine residues in HSA. These four lysine residues are likely partially buried, accessible to the drugs, and exist at least partially in a neutral state. The levels of adduction observed in the in-vitro experimental conditions are only indicative of a relative propensity for adduction with the individual lysine residues of HSA, and are not in-vivo predictions. Widespread off-target lysine binding could impact clearance and bioavailability for irreversible inhibitor drugs. However, the extent of the impact on clearance may be limited in comparison to conjugation with glutathione.
Collapse
|
13
|
Abstract
In the first decade of targeted covalent inhibition, scientists have successfully reversed the previous trend that had impeded the use of covalent inhibition in drug development. Successes in the clinic, mainly in the field of kinase inhibitors, are existing proof that safe covalent inhibitors can be designed and employed to develop effective treatments. The case of KRASG12C covalent inhibitors entering clinical trials in 2019 has been among the hottest topics discussed in drug discovery, raising expectations for the future of the field. In this perspective, an overview of the milestones hit with targeted covalent inhibitors, as well as the promise and the needs of current research, are presented. While recent results have confirmed the potential that was foreseen, many questions remain unexplored in this branch of precision medicine.
Collapse
|
14
|
Baillie TA. Approaches to mitigate the risk of serious adverse reactions in covalent drug design. Expert Opin Drug Discov 2020; 16:275-287. [PMID: 33006907 DOI: 10.1080/17460441.2021.1832079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Covalent inhibition of target proteins using high affinity ligands bearing weakly electrophilic warheads is being adopted increasingly as design strategy in the discovery of novel therapeutics, and several covalent drugs have now received regulatory approval for indications in oncology. Experience to date with targeted covalent inhibitors has led to a number of design principles that underlie the safety and efficacy of this increasingly important class of molecules. AREAS COVERED A review is provided of the current status of the covalent drug approach, emphasizing the unique benefits and attendant risks associated with reversible and irreversible binders. Areas of application beyond inhibition of tyrosine kinases are presented, and design considerations to de-risk covalent inhibitors with respect to undesirable off-target effects are discussed. EXPERT OPINION High selectivity for the intended protein target has emerged as a key consideration in mitigating safety risks associated with widespread proteome reactivity. Powerful chemical proteomics-based techniques are now available to assess selectivity in a drug discovery setting. Optimizing pharmacokinetics to capitalize on the intrinsically high potency of covalent drugs should lead to low daily doses and greater safety margins, while minimizing susceptibility to metabolic activation likewise will attenuate the risk of covalent drug toxicity.
Collapse
Affiliation(s)
- Thomas A Baillie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington Seattle, Seattle, WA, USA
| |
Collapse
|
15
|
Lehner AF, Dirikolu L, Johnson M, Buchweitz JP, Langlois DK. Liquid chromatography/tandem mass spectrometric analysis of penicillamine for its pharmacokinetic evaluation in dogs. Toxicol Mech Methods 2020; 30:687-702. [PMID: 32854553 DOI: 10.1080/15376516.2020.1814467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper storage disease occurs in multiple dog breeds and is one of the most common causes of chronic hepatitis in this species. The disease is caused by hereditary defects in copper metabolism in conjunction with high dietary copper levels. The progressive copper accumulation leads to hepatitis, cirrhosis, and eventually death if left untreated. Copper chelators are critical in modulating the effects of this disease. It is therefore of significant practicality to understand the pharmacokinetic (PK) parameters of chelating agents, particularly since they are oftentimes quite expensive. A liquid chromatography-tandem mass spectrometric (LC/MS/MS) method was developed to measure plasma levels of one of the most common chelators, d-penicillamine. The compound was discovered to exist in two forms, monomeric and dimeric, and various chemical derivatizations were tried to force the compound into one form or the other. Eventually, the simplest approach was individual determination of penicillamine and its dimer, with summation of the two quantities. This enabled determination of canine PK parameters for penicillamine based on comparison of oral and intravenous administration of the drug, including time to maximum drug level (Tmax), concentration at maximum (Cmax), clearance (Cls) and volume of distribution (Vdss). The drug was found to exist predominantly in the dimeric form in plasma, which is incapable of chelating copper owing to lack of free sulfhydryl groups and must therefore provide a storage form of the drug in equilibrium with its monomeric form in vivo. Mechanisms are discussed for the electrospray-induced fragmentation of penicillamine as well as of its dimer.
Collapse
Affiliation(s)
- Andreas F Lehner
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - Levent Dirikolu
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisianna State University, Baton Rouge, LA, USA
| | - Margaret Johnson
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - John P Buchweitz
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Daniel K Langlois
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|