1
|
Ahmad P, Alvi SS, Waiz M, Khan MS, Ahmad S, Khan MS. Naturally occurring organosulfur compounds effectively inhibits PCSK-9 activity and restrict PCSK-9-LDL-receptor interaction via in-silico and in-vitro approach. Nat Prod Res 2024; 38:3924-3933. [PMID: 37842787 DOI: 10.1080/14786419.2023.2269465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
The present study intended to divulge the potential role of garlic-derived organosulfur compounds (OSCs) in targeting PCSK-9 and averting its interaction with the EGF-A portion of LDL-R via in-vitro and in-silico analysis. Our in-silico screening data showed that 3-(Propylsulfinyl)-L-alanine (PSA), S-Ethyl-L-cysteine (SEC), alliin, and S-Allyl-L-cysteine (SAC) exhibited higher binding energy (-7.05, -7.00, -6.65, and -6.31 Kcal/mol, respectively) against PCSK-9, among other selected OSCs. Further, the protein-protein interaction study of PCSK-9-OSCs-complex with EGF-A demonstrated a similar binding pattern with E-total values ranging from -430.01 to -405.6 Kcal/mol. These results were further validated via in-vitro analysis which showed that SEC, SAC, and diallyl trisulphide (DAT) exhibited the lowest IC50 values of 4.70, 5.26, and 5.29 µg/mL, respectively. In conclusion, the presented data illustrated that SEC, SAC, and DAT were the best inhibitors of PCSK-9 activity and may have the potential to improve the LDL-R function and lower the circulatory LDL-C level.
Collapse
Affiliation(s)
- Parvej Ahmad
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Sahir S Alvi
- Department of Immunology and Microbiology, South TX Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Mohd Waiz
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Bangash AA, Alvi SS, Bangash MA, Ahsan H, Khan S, Shareef R, Villanueva G, Bansal D, Ahmad M, Kim DJ, Chauhan SC, Hafeez BB. Honey Targets Ribosome Biogenesis Components to Suppress the Growth of Human Pancreatic Cancer Cells. Cancers (Basel) 2024; 16:3431. [PMID: 39410048 PMCID: PMC11475701 DOI: 10.3390/cancers16193431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Pancreatic cancer (PanCa) is one of the deadliest cancers, with limited therapeutic response. Various molecular oncogenic events, including dysregulation of ribosome biogenesis, are linked to the induction, progression, and metastasis of PanCa. Thus, the discovery of new therapies suppressing these oncogenic events and ribosome biogenesis could be a novel therapeutic approach for the prevention and treatment of PanCa. The current study was designed to investigate the anti-cancer effect of honey against PanCa. Our results indicated that honey markedly inhibited the growth and invasive characteristics of pancreatic cancer cells by suppressing the mRNA expression and protein levels of key components of ribosome biogenesis, including RNA Pol-I subunits (RPA194 and RPA135) along with its transcriptional regulators, i.e., UBTF and c-Myc. Honey also induced nucleolar stress in PanCa cells by reducing the expression of various nucleolar proteins (NCL, FBL, and NPM). Honey-mediated regulation on ribosome biogenesis components and nucleolar organization-associated proteins significantly arrested the cell cycle in the G2M phase and induced apoptosis in PanCa cells. These results, for the first time, demonstrated that honey, being a natural remedy, has the potential to induce apoptosis and inhibit the growth and metastatic phenotypes of PanCa by targeting ribosome biogenesis.
Collapse
Affiliation(s)
- Aun Ali Bangash
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sahir Sultan Alvi
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Muhammad Ali Bangash
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Haider Ahsan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Shiza Khan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rida Shareef
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Georgina Villanueva
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Divyam Bansal
- Department of Kinesiology, Rice University, Houston, TX 77251, USA;
| | - Mudassier Ahmad
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Dae Joon Kim
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Bilal Bin Hafeez
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
3
|
Deniz EU, Yuca H, Aydın B, Öztürk G, Çoban F, Göger G, Demirci B, Karakaya S. Comparative content analysis and biological activity studies of fatty and essential oils from some garlic products sold in Turkish community pharmacies, natural, and fermented garlic. Food Sci Nutr 2024; 12:6849-6863. [PMID: 39554327 PMCID: PMC11561802 DOI: 10.1002/fsn3.4352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 11/19/2024] Open
Abstract
Garlic (Alliaceae), an annual herb, is renowned not only for its distinctive flavor but also for its extensive therapeutic applications in managing various ailments and health conditions. In this study, garlic products identified as the best-selling items in Turkish pharmacies for various purposes were compared with garlic grown under standard conditions in terms of chemical composition and antidiabetic, anticholinesterase, antimicrobial, and antioxidant properties. Three of garlic samples were prepared by researchers. According to survey results, the most commonly sold garlic-related products in pharmacies are black garlic extract tablets (4), capsules (5), garlic oil (6), garlic oil pearls (7), and fermented garlic (8). Diallyl disulfide (DADS) was identified as a predominant compound in sampled oils, ranging from 4.9% to 48.6%. Another noteworthy finding is the identification of allyl methyl disulfide and allyl methyl trisulfide as major components in sampled oils, with concentrations spanning from 2.9% to 9.8% and 0.4% to 17.5%, respectively. In both 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS·+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) tests, Sample 1 (fermented) exhibited the highest antioxidant activity. Sample 3 (cultivated) was richer in total phenol-total tannin content. Sample 6 exhibited the highest α-glucosidase inhibition among antidiabetic activities, reaching 28.93%. Sample 5 capsules demonstrated the highest α-amylase inhibition at 51.50%. Sample 7 exhibited the most notable inhibition against both acetylcholinesterase (22.92%) and butyrylcholinesterase (13.37%). Samples 3, 6, and 8 were found to be more effective against Candida tropicalis with minimum inhibitory concentration (MIC) = 625 μg/mL. A comprehensive study on garlic products, including popular items from Turkish pharmacies and those grown under standard conditions, revealed diverse chemical compositions and multifaceted health properties.
Collapse
Affiliation(s)
- Elif Ulutaş Deniz
- Department of Pharmacy Management, Faculty of PharmacyAtatürk UniversityErzurumTurkey
| | - Hafize Yuca
- Department of Pharmacognosy, Faculty of PharmacyAtatürk UniversityErzurumTurkey
| | - Bilge Aydın
- Department of Pharmacognosy, Faculty of PharmacyErzincan Binali Yıldırım UniversityErzincanTurkey
| | - Gözde Öztürk
- Department of Pharmacognosy, Faculty of PharmacyAnadolu UniversityEskişehirTurkey
| | - Furkan Çoban
- Department of Field Crops, Faculty of AgricultureAtaturk UniversityErzurumTurkey
| | - Gamze Göger
- Department of Pharmacognosy, Faculty of PharmacyAfyokarahisar Health Sciences UniversityAfyonTurkey
| | - Betül Demirci
- Department of Pharmacognosy, Faculty of PharmacyAnadolu UniversityEskişehirTurkey
| | - Songül Karakaya
- Department of Pharmaceutical Botany, Faculty of PharmacyAtatürk UniversityErzurumTurkey
| |
Collapse
|
4
|
Zolfaghari T, Soleiman-Beigi M, Kohzadi H. Silver Natural Asphalt Sulfonate (NA-SO 3Ag): Fabrication and Utilization as a New Heterogeneous, Carbonaceous, and Retrievable Nanocatalyst for C(sp 2)- X ( X = C, S, and Se) Bond Formation. ACS OMEGA 2023; 8:36152-36161. [PMID: 37810712 PMCID: PMC10552483 DOI: 10.1021/acsomega.3c04447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Silver-based catalysts are valuable catalysts in various areas of the chemical industry, organic syntheses, and transformations, and from a chemical and industrial point of view, their recycling is very important. Herein, silver natural asphalt sulfonate (NA-SO3Ag) was fabricated via the grafting of Ag(I) on the surface of the solid natural asphalt sulfonate as a novel and efficient recoverable sliver nanocatalyst. Natural asphalt is one of the hydrocarbons that are found in mineral veins. The structure of NA-SO3Ag was characterized by diverse microscopic and spectroscopic techniques including Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and inductively coupled plasma optical emission spectroscopy (ICP-OES) techniques. The NA-SO3Ag nanocatalyst was utilized for C-Se and C-S bond formation via coupling reactions of aryl halides and organic disulfides/diselenides to afford a wide variety of diaryl sulfides/selenides in good to excellent yields. Additionally, the utilization of NA-SO3Ag in C-C bond formation was examined in Suzuki coupling reactions successfully. For at least 6 trials, this heterogeneous catalyst can be separated and reused without any activity reduction.
Collapse
Affiliation(s)
- Touba Zolfaghari
- Department of Chemistry,
Basic of Sciences Faculty, Ilam University, 69315-516 Ilam, Iran
| | | | - Homa Kohzadi
- Department of Chemistry,
Basic of Sciences Faculty, Ilam University, 69315-516 Ilam, Iran
| |
Collapse
|
5
|
Asif M, Alvi SS, Azaz T, Khan AR, Tiwari B, Hafeez BB, Nasibullah M. Novel Functionalized Spiro [Indoline-3,5'-pyrroline]-2,2'dione Derivatives: Synthesis, Characterization, Drug-Likeness, ADME, and Anticancer Potential. Int J Mol Sci 2023; 24:ijms24087336. [PMID: 37108498 PMCID: PMC10139052 DOI: 10.3390/ijms24087336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A highly stereo-selective, one-pot, multicomponent method was chosen to synthesize the novel functionalized 1, 3-cycloaddition spirooxindoles (SOXs) (4a-4h). Synthesized SOXs were analyzed for their drug-likeness and ADME parameters and screened for their anticancer activity. Our molecular docking analysis revealed that among all derivatives of SOXs (4a-4h), 4a has a substantial binding affinity (∆G) -6.65, -6.55, -8.73, and -7.27 Kcal/mol with CD-44, EGFR, AKR1D1, and HER-2, respectively. A functional study demonstrated that SOX 4a has a substantial impact on human cancer cell phenotypes exhibiting abnormality in cytoplasmic and nuclear architecture as well as granule formation leading to cell death. SOX 4a treatment robustly induced reactive oxygen species (ROS) generation in cancer cells as observed by enhanced DCFH-DA signals. Overall, our results suggest that SOX (4a) targets CD-44, EGFR, AKR1D1, and HER-2 and induces ROS generation in cancer cells. We conclude that SOX (4a) could be explored as a potential chemotherapeutic molecule against various cancers in appropriate pre-clinical in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Mohd Asif
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sahir Sultan Alvi
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tazeen Azaz
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
6
|
Asif M, Aqil F, Alasmary FA, almalki AS, Khan AR, Nasibullah M. Lewis base-catalyzed synthesis of highly functionalized spirooxindole-pyranopyrazoles and their in vitro anticancer studies. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Asif M, Saquib M, Rahman Khan A, Aqil F, salem Almalki A, Ali Alasmary F, Singh J, Nasibullah M. Synthesis of Functionalized 2′,5‐Oxo‐spiro[furan‐2,3′‐indoline]‐3‐carboxylate Derivatives as Antiproliferative Agents: ADMET Studies, and Molecular Docking against P2Y12 Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Mohd Asif
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| | - Mohammad Saquib
- Department of Chemistry University of Allahabad Prayagraj (Allahabad) 211002 India
| | - Abdul Rahman Khan
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| | - Farrukh Aqil
- UofL Health-Brown Cancer Center and Department of Medicine University of Louisville Louisville KY40202 USA
| | - Amani salem Almalki
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Fatmah Ali Alasmary
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Jaya Singh
- Department of Chemistry LRPG College Sahibabad Ghaziabad 201005 India
| | - Malik Nasibullah
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| |
Collapse
|
8
|
Carvacrol protects against carbonyl osmolyte-induced structural modifications and aggregation to serum albumin: Insights from physicochemical and molecular interaction studies. Int J Biol Macromol 2022; 213:663-674. [PMID: 35660040 DOI: 10.1016/j.ijbiomac.2022.05.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022]
Abstract
The robust use of osmolytes (i.e., polyols and sugars) in the key therapeutic regimens/formulations has questioned their impact beyond the stability of therapeutic proteins as these osmolytes trigger structural alterations into proteins including misfolding and subsequent aggregation into amyloid fibrils. Therefore, the current study is the first to delineate the inhibitory effect of carvacrol (CRV) on the carbonyl osmolyte-induced aggregation as well as structural alterations to the bovine serum albumin (BSA) via a set of physicochemical as well as artificial intelligence (AI)-based molecular docking studies. Our initial findings from physicochemical investigations revealed that CRV exhibits substantial protection to BSA under carbonyl osmolyte stress as evident by the compromised hyperchromicity, Schiff's bases, carbonyl and hydroxymethyl furfural content, reduced fluorescent signals, low Rayleigh scattering and prevention of covalent modifications at Lys and Arg residues. The protection against aggregate formation by CRV was further confirmed through the reduced amyloid-specific congo red absorbance as well as fluorescent signals recorded after adding the fibril-specific extrinsic fluorophore probes (i.e., ThT and ANS). The AI-based molecular docking analysis further revealed that CRV (ΔG: -4.96 kcal/mol) competes with d-fructose (ΔG: -4.40 kcal/mol) to mask the Lys and Arg residues to restrict the osmolyte-mediated protein modifications. In conclusion, CRV exhibits substantial protective impact against carbonyl osmolyte-induced structural alterations and protein misfolding and aggregation.
Collapse
|