1
|
Leitão MM, Gonçalves ASC, Sousa SF, Borges F, Simões M, Borges A. Two cinnamic acid derivatives as inhibitors of Pseudomonas aeruginosa las and pqs quorum-sensing systems: Impact on biofilm formation and virulence factors. Biomed Pharmacother 2025; 187:118090. [PMID: 40318447 DOI: 10.1016/j.biopha.2025.118090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION Quorum sensing (QS) is a bacterial communication mechanism that regulates gene expression, playing a crucial role in various physiological processes. Interfering with this signalling pathway is a promising strategy to control bacterial pathogenicity and virulence. OBJECTIVES This study evaluated the potential of two cinnamic acid derivatives, ferulic and sinapic acids, to inhibit the las and pqs systems in Pseudomonas aeruginosa. Their effects on biofilm architecture, virulence factor production and bacterial motility were also investigated. METHODS Bioreporter strains and bioluminescence-based assays were used to evaluate the modulation of QS-activity by cinnamic acid-type phenolic acids. In addition, in silico docking analysis was performed to validate the binding interactions of the cinnamic acid derivatives with QS-receptors. The biofilm architecture was analysed by optical coherence tomography, and virulence factors production (pyoverdine, pyocyanin, total proteases, lipases, gelatinases and siderophores) and motility were measured by absorbance measurement and plate agar method. RESULTS Ferulic and sinapic acids at 1000 µg mL-1 inhibited the las and pqs systems by 90 % and 80 %, respectively. The N-3-oxododecanoyl-homoserine lactone production was reduced by 70 % (6.25 µg mL-¹). In silico analysis demonstrated that cinnamic acid derivatives exhibited comparable interactions and higher docking scores than reference ligands and inhibitors. Biofilm thickness decreased from 96 µm to 11 µm, and virulence factors and swarming motility were significantly impaired. The comparable anti-QS activity of cinnamic acid derivatives suggests that the additional methoxy group in sinapic acid does not directly contribute to its anti-QS effect. CONCLUSION Ferulic and sinapic acids compromised the biofilm architecture and virulence of P. aeruginosa through QS inhibition.
Collapse
Affiliation(s)
- Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; Environmental Health Department, Portuguese National Health Institute Doctor Ricardo Jorge, Porto, Portugal
| | - Sérgio F Sousa
- LAQV/REQUIMTE, BioSIM-Department of Biomedicine, Faculty of Medicine, University of Porto, Rua Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| |
Collapse
|
2
|
Maiga A, Teng LH, Jie ZH, Qing ZX, Min FZ, Wei LZ, Wu C. Design, synthesis and activity evaluation of dithiocarbamate-based L-homoserine lactone derivatives as Gram-negative bacteria quorum sensing inhibitors. Eur J Med Chem 2025; 293:117756. [PMID: 40373634 DOI: 10.1016/j.ejmech.2025.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an important Gram-negative opportunistic pathogen that uses quorum sensing to regulate its virulence and biofilm development, which contributes to its pathogenicity and drug resistance. As a result, focusing on the virulence and pathogenicity of P. aeruginosa through quorum sensing (QS) is considered a possible target for anti-infective therapy. In this work, we discovered new quorum-sensing inhibitors derived from the structural modification of the dithiocarbamate-based l-homoserine lactone derivatives library and the target compound (10p) demonstrated significant inhibitory activity against PAO1 biofilm (inhibition rate: 86.76 %), pyocyanin (68.05 %), rhamnolipid (34.56 %), LasA protease (61.01 %) and a low inhibitory on elastase production (6.59 %) at 60 μM. Moreover, compound 10p effectively attenuated P. aeruginosa motility, such as swimming (42.85 %) and swarming (72 %), and demonstrated no toxicity in vitro. The result indicates that compound 10p may serve as a promising new antibacterial synergist option for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Aichata Maiga
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li Hong Teng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhen Hao Jie
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhang Xue Qing
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Fan Zheng Min
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lin Zi Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China; Henan Qunbo Pharmaceutical Research Institute Co., LTD, PR China.
| |
Collapse
|
3
|
Robichaud MA, Chiasson AI, Doiron JA, Hébert MPA, Surette ME, Touaibia M. Novel Oxadiazole-Based Bioisostere of Caffeic Acid Phenethyl Ester: Synthesis, Anticancer Activity, and Inhibition of Lipoxygenase Product Biosynthesis. Drug Dev Res 2025; 86:e70099. [PMID: 40320854 PMCID: PMC12050906 DOI: 10.1002/ddr.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Caffeic acid phenethyl ester (1), a honeybee propolis component, possesses many bioactive properties, making it a useful scaffold for drug research. Further, CAPE (1) is a more effective inhibitor of the biosynthesis of 5-lipoxygenase (5-LO) products compared to Zileuton, the only clinically-approved direct 5-LO inhibitor. However, CAPE (1) suffers from a poor metabolic profile, being rapidly metabolized to caffeic acid (CA). In this study, we synthesized and performed several biological assays on a new bioisostere of CAPE (1) possessing a 1,2,4-oxadiazole ring. The new bioisostere (OB-CAPE (5)) has a similar antiproliferative effect to CAPE (1) on NCI-60 cancer cell lines and maintains the activity of CAPE (1) as an inhibitor of the biosynthesis of 5-, 12- and 15-LO products and as an iron chelator. In human polymorphonuclear leukocytes, OB-CAPE (5) inhibits the biosynthesis of 5-LO products with an IC50 of 0.93 µM compared to 1.0 µM for CAPE (1). Both compounds have similar antioxidant activity, with IC50 values of 1.2 µM for OB-CAPE (5) and 1.1 µM for CAPE (1). The new hydrogen bond predicted for the oxadiazole ring and the GLN363 amino acid in the 5-LO active site may explain the small improvement in the affinity of OB-CAPE (5) for the protein compared to CAPE (1). Finally, stability studies in human plasma reveal that OB-CAPE (5) is 25% more stable than CAPE (1). Therefore, the increase in stability associated with the replacement of the ester function with its bioisostere, while maintaining the anti-inflammatory and anticancer properties of CAPE (1), suggests that OB-CAPE (5) may be a comparable yet more stable candidate for in vivo studies in disease models.
Collapse
Affiliation(s)
- Mika A. Robichaud
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Center for Precision MedicineMonctonNew BrunswickCanada
| | | | - Jérémie A. Doiron
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Center for Precision MedicineMonctonNew BrunswickCanada
- Atlantic Cancer Research InstituteMonctonNew BrunswickCanada
| | - Mathieu P. A. Hébert
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Center for Precision MedicineMonctonNew BrunswickCanada
| | - Marc E. Surette
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Center for Precision MedicineMonctonNew BrunswickCanada
| | - Mohamed Touaibia
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
| |
Collapse
|
4
|
Maiga A, Ampomah-Wireko M, Li H, Fan Z, Lin Z, Zhen H, Kpekura S, Wu C. Multidrug-resistant bacteria quorum-sensing inhibitors: A particular focus on Pseudomonasaeruginosa. Eur J Med Chem 2025; 281:117008. [PMID: 39500066 DOI: 10.1016/j.ejmech.2024.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 12/02/2024]
Abstract
Many widely used conventional antibiotics have failed to show clinical efficacy against Pseudomonas aeruginosa (P. aeruginosa) due to the strain's rising resistance to most clinically relevant antimicrobials. P. aeruginosa uses quorum sensing to regulate its virulence and biofilm development, which contributes to its pathogenicity and drug resistance. This mechanism is responsible for the resurgence and persistence of infections. Therefore, targeting the virulence and pathogenicity of P. aeruginosa through quorum sensing (QS) is regarded as a potential target for anti-infective therapy. However, a number of natural and synthetic compounds have been demonstrated to interfere with quorum sensing, resulting in potential antibacterial agents. In this review, we discuss the mechanisms of P. aeruginosa QS and recent advances in the development of quorum sensing inhibitors (both synthetic and natural) that have the potential to become effective antibiotics.
Collapse
Affiliation(s)
- Aichata Maiga
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongteng Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhengmin Fan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ziwei Lin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Haojie Zhen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Stephen Kpekura
- School of Nursing and Health, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China; Henan Qunbo Pharmaceutical Research Institute Co. LTD, PR China.
| |
Collapse
|
5
|
Le TH, Nguyen MTT, Nguyen HX, Dang PH, Truong HN, Dang TM, Nguyen NT. Three undescribed phenylbutenoids derivatives from Zingiber cassumunar Roxb. rhizomes and their biological activities. Nat Prod Res 2024:1-9. [PMID: 39390806 DOI: 10.1080/14786419.2024.2411372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
Phenylbutenoids belong to polyphenolic compounds that have demonstrated distinctive biological activities and are primarily characterised in the genus Zingiber (Zingiberaceae) species. From the EtOAc extract of the rhizomes of Zingiber cassumunar Roxb., three phenylbutenoid-type compounds, cassudimin B (1), cassumunol O (2), and cassumunol P (3), were isolated, along with five known compounds (4-8). Their structures were characterised through spectroscopic evidence and reference data. Biological activity investigation revealed that compounds 4, 5, and 8 exhibited promising potential for anti-α-glucosidase with IC50 values of 151.5, 180.1, and 39.5 µM, respectively, surpassing the positive control acarbose (IC50, 190.6 µM). Additionally, compounds 3-8 displayed cytotoxic effects on HepG2 cells ranging from 12.0 to 293.2 µM.
Collapse
Affiliation(s)
- Tho Huu Le
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research lab for Drug Discovery and Development, University of Science, Ho Chi Minh City, Vietnam
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research lab for Drug Discovery and Development, University of Science, Ho Chi Minh City, Vietnam
| | - Hai Xuan Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research lab for Drug Discovery and Development, University of Science, Ho Chi Minh City, Vietnam
| | - Phu Hoang Dang
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research lab for Drug Discovery and Development, University of Science, Ho Chi Minh City, Vietnam
| | - Hai Nhung Truong
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
| | - Thanh Minh Dang
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City, Vietnam
| | - Nhan Trung Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research lab for Drug Discovery and Development, University of Science, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
7
|
Gvozdev MY, Turomsha IS, Savich VV, Faletrov YV, Sidarenka AV, Shkumatov VM, Loginova NV. Sterically hindered phenolic derivatives: effect on the production of Pseudomonas aeruginosa virulence factors, high-throughput virtual screening and ADME properties prediction. Arch Microbiol 2024; 206:91. [PMID: 38316691 DOI: 10.1007/s00203-023-03827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 02/07/2024]
Abstract
Inhibition of quorum sensing is considered to be an effective strategy of control and treatment of a wide range of acute and persistent infections. Pseudomonas aeruginosa is an opportunistic bacterium with a high adaptation potential that contributes to healthcare-associated infections. In the present study, the effects of the synthesized hybrid structures bearing sterically hindered phenolic and heterocyclic moieties in a single scaffold on the production of virulence factors by P. aeruginosa were determined. It has been shown that the obtained compounds significantly reduce both pyocyanin and alginate production and stimulate the biosynthesis of siderophores in vitro, which may be attributed to their iron-chelating properties. The results of docking-based inverse high-throughput virtual screening indicate that transcription regulator LasR and Cu-transporter OPRC could be potential molecular targets for these compounds. Investigation of the impact small molecules exert on the molecular mechanisms of the production of bacterial virulence factors may pave the way for the design and development of novel antibacterial agents.
Collapse
Affiliation(s)
- Maxim Y Gvozdev
- Faculty of Chemistry, Belarusian State University, Leningradskaya Str. 14, Minsk, Belarus
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk, Belarus
| | - Iveta S Turomsha
- Faculty of Chemistry, Belarusian State University, Leningradskaya Str. 14, Minsk, Belarus
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk, Belarus
| | - Viktoryia V Savich
- Institute of Microbiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yaroslav V Faletrov
- Faculty of Chemistry, Belarusian State University, Leningradskaya Str. 14, Minsk, Belarus
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk, Belarus
| | - Anastasiya V Sidarenka
- Institute of Microbiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Vladimir M Shkumatov
- Faculty of Chemistry, Belarusian State University, Leningradskaya Str. 14, Minsk, Belarus
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk, Belarus
| | - Natalia V Loginova
- Faculty of Chemistry, Belarusian State University, Leningradskaya Str. 14, Minsk, Belarus.
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk, Belarus.
| |
Collapse
|
8
|
Yang H, Ma R, Chen J, Xie Q, Luo W, Sun P, Liu Z, Guo J. Discovery of Melittin as Triple-Action Agent: Broad-Spectrum Antibacterial, Anti-Biofilm, and Potential Anti-Quorum Sensing Activities. Molecules 2024; 29:558. [PMID: 38338303 PMCID: PMC10856726 DOI: 10.3390/molecules29030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The development of antibiotic-resistant microorganisms is a major global health concern. Recently, there has been an increasing interest in antimicrobial peptides as a therapeutic option. This study aimed to evaluate the triple-action (broad-spectrum antibacterial, anti-biofilm, and anti-quorum sensing activities) of melittin, a membrane-active peptide present in bee venom. The minimum inhibitory concentration and minimum bactericidal concentration of the melittin were determined using the microdilution method and agar plate counting. Growth curve analysis revealed that melittin showed a concentration-dependent antibacterial activity. Scanning electron microscope analysis revealed that melittin treatment altered the morphology. Confocal laser scanning microscope revealed that melittin increased the membrane permeability and intracellular ROS generation in bacteria, all of which contribute to bacterial cell death. In addition, the crystal violet (CV) assay was used to test the anti-biofilm activity. The CV assay demonstrated that melittin inhibited biofilm formation and eradicated mature biofilms. Biofilm formation mediated by quorum sensing (QS) plays a major role in this regard, so molecular docking and molecular dynamics analysis confirmed that melittin interacts with LasR receptors through hydrogen bonds, and further evaluates the anti-QS activity of melittin through the production of virulence factors (pyocyanin, elastase, and rhamnolipid), exopolysaccharides secretion, and bacterial motility, that may be the key to inhibiting the biofilm formation mechanism. The present findings highlight the promising role of melittin as a broad-spectrum antibacterial, anti-biofilm agent, and potential QS inhibitor, providing a new perspective and theoretical basis for the development of alternative antibiotics.
Collapse
Affiliation(s)
- Hongyan Yang
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Rong Ma
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Jiarou Chen
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Qian Xie
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Wenhui Luo
- Guangdong Yifang Pharmaceutical Co., Ltd., Foshan 528244, China;
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
9
|
Hassan RM, Abd El-Maksoud MS, Ghannam IAY, El-Azzouny AAS, Aboul-Enein MN. Synthetic non-toxic anti-biofilm agents as a strategy in combating bacterial resistance. Eur J Med Chem 2023; 262:115867. [PMID: 37866335 DOI: 10.1016/j.ejmech.2023.115867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
The tremendous increase in the bacterial resistance to the available antibiotics is a serious problem for the treatment of various infections. Biofilm formation in bacteria significantly contributes to the bacterial survival in host cells, and is considered as an crucial factor, responsible for bacterial resistance. The response of the bacterial cells in the biofilm to antibiotics is completely different from that of the free floating planktonic cells of the same strain. The anti-biofilm agents that could inhibit the biofilm production without affecting the bacterial growth, apply less selective pressure over the bacterial strains than the traditional antibiotics; thus the development of bacterial resistance would be of low incidence. Many attempts have been performed to discover novel agents capable of interfering with the bacterial biofilm life cycle, and several compounds have shown promising activities in suppressing the biofilm production or in dispersing mature existing biofilms. This review describes the different chemical classes that have anti-biofilm effects against different Gram-positive and Gram-negative bacteria without affecting the bacterial growth.
Collapse
Affiliation(s)
- Rasha Mohamed Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| | - Mohamed Samir Abd El-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Iman Ahmed Youssef Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Aida Abdel-Sattar El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Nabil Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
10
|
Zieniuk B. Dihydrocaffeic Acid-Is It the Less Known but Equally Valuable Phenolic Acid? Biomolecules 2023; 13:biom13050859. [PMID: 37238728 DOI: 10.3390/biom13050859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Dihydrocaffeic acid (DHCA) is a phenolic acid bearing a catechol ring and three-carbon side chain. Despite its being found in minor amounts in numerous plants and fungi of different origins, it has attracted the interest of various research groups in many fields of science, from food to biomedical applications. The review article presented herein aims to show a wider audience the health benefits and therapeutic, industrial, and nutritional potential of dihydrocaffeic acid, by sheddinglight on its occurrence, biosynthesis, bioavailability, and metabolism. The scientific literature describes at least 70 different derivatives of dihydrocaffeic acid, both those occurring naturally and those obtained via chemical and enzymatic methods. Among the most frequently used enzymes that were applied for the modification of the parent DHCA structure, there are lipases that allow for obtaining esters and phenolidips, tyrosinases used for the formation of the catechol ring, and laccases to functionalize this phenolic acid. In many studies, both in vitro and in vivo, the protective effect of DHCA and its derivatives on cells subjected to oxidative stress and inflammation were acknowledged.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| |
Collapse
|
11
|
Bandian L, Moghaddam M, Bahreini M, Vatankhah E. Antibacterial characteristics and mechanisms of some herbal extracts and ϵ-polylysine against two spoilage bacterial. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
The Molecular Architecture of Pseudomonas aeruginosa Quorum-Sensing Inhibitors. Mar Drugs 2022; 20:md20080488. [PMID: 36005489 PMCID: PMC9409833 DOI: 10.3390/md20080488] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
The survival selection pressure caused by antibiotic-mediated bactericidal and bacteriostatic activity is one of the important inducements for bacteria to develop drug resistance. Bacteria gain drug resistance through spontaneous mutation so as to achieve the goals of survival and reproduction. Quorum sensing (QS) is an intercellular communication system based on cell density that can regulate bacterial virulence and biofilm formation. The secretion of more than 30 virulence factors of P. aeruginosa is controlled by QS, and the formation and diffusion of biofilm is an important mechanism causing the multidrug resistance of P. aeruginosa, which is also closely related to the QS system. There are three main QS systems in P. aeruginosa: las system, rhl system, and pqs system. Quorum-sensing inhibitors (QSIs) can reduce the toxicity of bacteria without affecting the growth and enhance the sensitivity of bacterial biofilms to antibiotic treatment. These characteristics make QSIs a popular topic for research and development in the field of anti-infection. This paper reviews the research progress of the P. aeruginosa quorum-sensing system and QSIs, targeting three QS systems, which will provide help for the future research and development of novel quorum-sensing inhibitors.
Collapse
|