1
|
Yan Z, Zhang X, Liu Y, Shen Y, Li N, Jia Q, Ji Y, Zhang P, Zhao L, Meng Z. HSA-MnO 2- 131I Combined Imaging and Treatment of Anaplastic Thyroid Carcinoma. Technol Cancer Res Treat 2022; 21:15330338221106557. [PMID: 35702054 PMCID: PMC9208040 DOI: 10.1177/15330338221106557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose Compelling evidence suggests that nanoparticles (NPs) play a crucial role in cancer therapy. NPs templated with human serum albumin (HSA) has good retention in tumors. Manganese dioxide (MnO2) has been used to enhance the effect of radiotherapy. In this study, synthesized NPs using HSA-MnO2 labeled 131I to perform both imaging and therapy for anaplastic thyroid carcinoma (ATC). Method HSA-MnO2 was synthesized via HSA using a simple biomineralization method, and then labeled with Na131I by the chloramine T method. The cytotoxicity and biosafety of HSA-MnO2 were evaluated by the MTT test. The proliferation-inhibiting effect of HSA-MnO2-131I was evaluated in papillary thyroid cancer cell lines (K1, BCPAP, and KTC) and anaplastic thyroid carcinoma cell lines (Cal62, THJ16T, and ARO). For further translational application in medicine, we established a model of transplantable subcutaneously tumors in BALB\c-nu mice to assess the anti-tumor effect of HSA-MnO2-131I. The imaging effects of NPs were evaluated by MRI and SPECT/CT. Results The MTT test proved that the HSA-MnO2 had low toxicity. HSA-MnO2-131I significantly inhibited the proliferation of PTC and ATC cell lines. In addition, the results unveiled that HSA-MnO2-131I exhibited dual-modality MR/SPECT imaging for thyroid cancer visualization. In particular, HSA-MnO2-131I had an enhanced T1 signal in MR. Using SPECT/CT, we observed that HSA-MnO2-131I had good retention in tumor tissue, which was helpful for the diagnosis and treatment of tumor. In vivo assays indicated that the NPs led to a reduction in radioresistance in the tumor hypoxic microenvironment. Conclusion The nanomaterial had a simple synthesis method, good water solubility and biosafety, and good retention in tumor tissue. Hence, it could be used for SPECT/CT and MR dual mode imaging and therapy with radioiodine of tumor cells. The experimental results provided a feasible solution for combining radiotherapy and dual-model imaging by NPs for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ziyu Yan
- Department of Nuclear Medicine, 117865Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Xuemei Zhang
- Department of Nuclear Medicine, 117865Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Yifan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, 12610Tianjin Medical University, Tianjin, China
| | - Yiming Shen
- Department of Nuclear Medicine, 117865Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Ning Li
- Department of Nuclear Medicine, 117865Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Qiang Jia
- Department of Nuclear Medicine, 117865Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Yanhui Ji
- Department of Nuclear Medicine, 117865Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Peitao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, 12610Tianjin Medical University, Tianjin, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, 12610Tianjin Medical University, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, 117865Tianjin Medical University General Hospital, Tianjin, P. R. China
| |
Collapse
|
2
|
Loucks CM, Yan K, Tanoshima R, Ross CJD, Rassekh SR, Carleton BC. Pharmacogenetic testing to guide therapeutic decision-making and improve outcomes for children undergoing anthracycline-based chemotherapy. Basic Clin Pharmacol Toxicol 2022; 130 Suppl 1:95-99. [PMID: 33900042 DOI: 10.1111/bcpt.13593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022]
Abstract
Anthracyclines are widely used as part of chemotherapeutic regimens in paediatric oncology patients. The most serious adverse drug reaction caused by anthracycline use is cardiotoxicity, a serious condition that can lead to cardiac dysfunction and subsequent heart failure. Both clinical and genetic factors contribute to a patient's risk of experiencing anthracycline-induced cardiotoxicity. In particular, genetic variants in RARG, UGT1A6 and SLC28A3 have been consistently shown to influence an individual's risk of experiencing this reaction. By combining clinical and genetic risks, decision-making can be improved to optimize treatment and prevent potentially serious adverse drug reactions. As part of a precision medicine initiative, we used pharmacogenetic testing, focused on RARG, UGT1A6 and SLC28A3 variants, to help predict an individual's risk of experiencing anthracycline-induced cardiotoxicity. Pharmacogenetic results are currently being used in clinical decision-making to inform treatment regimen choice, anthracycline dosing and decisions to initiate cardioprotective agents. In this case series, we demonstrate examples of the impact of genetic testing and discuss its potential to allow patients to be increasingly involved in their own treatment decisions.
Collapse
Affiliation(s)
- Catrina M Loucks
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kevin Yan
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Reo Tanoshima
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
- YCU Center for Novel and Exploratory Clinical Trials, Yokohama City University Hospital, Yokohama, Japan
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shahrad R Rassekh
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
3
|
Wen KK, Roy S, Grumbach IM, Wu M. A "Failed" Assay Development for the Discovery of Rescuing Small Molecules from the Radiation Damage. SLAS DISCOVERY 2021; 26:1315-1325. [PMID: 34151632 DOI: 10.1177/24725552211020678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With improving survival rates for cancer patients, the side effects of radiation therapy, especially for pediatric or more sensitive adult patients, have raised interest in preventive or rescue treatment to overcome the detrimental effects of efficient radiation therapies. For the discovery of rescuing small molecules for radiation damage to the endothelium, we have been developing a 96-well microplate-based in vitro assay for high-throughput compatible measurement of radiation-induced cell damage and its rescue by phenotypic high-content imaging. In contrast to traditional radiation assays with detached cells for clonogenic formation, we observed cells with live-cell imaging in two different kinds of endothelial cells, up to three different cell densities, two gamma-infrared radiation dose rates, more than four different radiation doses, and acute (within 24 h with one to two h intervals) and chronic (up to 7 days) responses by phenotypic changes (digital phase contrast) and functional assays (nuclear, live-cell, and dead-cell staining) at the end of the assay. Multiple potential small molecules, which have been reported for rescuing radiation damage, have been tested as assay controls with dose responses. At the end, we did not move ahead with the pilot screening. The lessons learned from this "failed" assay development are shared.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- University of Iowa High Throughput Screening (UIHTS) Core, University of Iowa, Iowa City, IA, USA
| | - Stephen Roy
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Isabella M Grumbach
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Meng Wu
- University of Iowa High Throughput Screening (UIHTS) Core, University of Iowa, Iowa City, IA, USA.,Department of Biochemistry, Carver College of Medicine, University of Iowa Iowa City, IA, USA.,Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
[Cardio-oncology: radiation dose to the heart during thoracic radiotherapy]. Strahlenther Onkol 2021; 197:261-263. [PMID: 33403441 PMCID: PMC7892504 DOI: 10.1007/s00066-020-01733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 11/10/2022]
|
5
|
Adeola HA, Sabiu S, Adekiya TA, Aruleba RT, Aruwa CE, Oyinloye BE. Prospects of nanodentistry for the diagnosis and treatment of maxillofacial pathologies and cancers. Heliyon 2020; 6:e04890. [PMID: 32984600 PMCID: PMC7492852 DOI: 10.1016/j.heliyon.2020.e04890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the commendable milestones achieved in molecular maxillofacial pathology in the last decade, there remains a paucity of utilization of ancillary nanomolecular tools that complement the omics-based approaches. As the advent of omics science transforms our understanding of tumour biology from a phenomenological to a complex network (systems-oriented) paradigm, several ancillary tools have emerged to improve the scope of individualized medicine. Targeted nano drug delivery systems have significantly reduced toxicity of chemotherapeutic agents in a precise manner. Many conventional cancer therapies are limited in efficacy and this has led to the emergence of nanomedical innovations. Despite the success of nanomedicine, a major challenge that persists is tumour heterogeneity and biological complexity. A good understanding of the interaction between inorganic nanoparticles and the biological systems has led to the development of better tools for individualized medicine. Tools such as the composite organic-inorganic nanoparticles (COINs) and the quantum dots (QD) have significantly improved the identification and quantification of disease biomarkers, histopathological detection methods, as well as improving the clinical translation and utility of these nanomaterials. Nanomedicine has lent credence to several multipronged theranostic applications in medicine, and this has improved the medical practice tremendously. Despite the palpable influence of nanomedicine on the delivery of individualized medical therapies, the term "nanodentistry" remains in the background without much hype, albeit some progress has been made in this area. Hence, this review discusses the potential and challenges of nanodentistry in the diagnosis and treatment of maxillofacial pathologies, particularly cancer in resource-limited settings.
Collapse
Affiliation(s)
- Henry A. Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town South Africa
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Technology, Durban University of Technology, Steve Biko Campus, Steve Biko Road, Berea, Durban 4001, South Africa
| | - Tayo A. Adekiya
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Raphael T. Aruleba
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town 7701, South Africa
| | - Christiana E. Aruwa
- Department of Biotechnology and Food Technology, Durban University of Technology, Steve Biko Campus, Steve Biko Road, Berea, Durban 4001, South Africa
| | - Babatunji E. Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, Faculty of Sciences, Afe Babalola University, P.M.B 5454 Ado Ekiti 360001, Nigeria
| |
Collapse
|
6
|
Radiotherapy and anthracyclines - cardiovascular toxicity. Contemp Oncol (Pozn) 2014; 19:93-7. [PMID: 26034385 PMCID: PMC4444437 DOI: 10.5114/wo.2014.40108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 01/11/2023] Open
Abstract
The subject of this paper is to analyze the impact of radiotherapy and anthracyclines on the cardiovascular system, based on a survey of contemporary literature. Currently, high efficiency of anticancer therapies has increased the rate of survival in patients treated for cancer. It should be emphasized, however, that these treatments damage not only the affected but also the healthy tissue. Consequently, with the increase of survival rate in these patients, the number of patients with complaints regarding numerous organs and systems also increases as a result of earlier treatment. Thus, during the first decade of the 21st century, a number of concerns about the relationship between cancer treatment and dysfunction of the cardiovascular system were resolved. Anthracyclines, as well as radiotherapy, are capable of damaging the cardiovascular system, both at the central level, by the deterioration of cardiac function, and at peripheral levels, by increasing the hemodynamic and thrombotic changes.
Collapse
|
7
|
Abstract
In inflammatory dilated cardiomyopathy and myocarditis there is--apart from heart failure and antiarrhythmic therapies--no alternative to an aetiologically driven specific treatment. Prerequisite are noninvasive and invasive biomarkers including endomyocardial biopsy and PCR on cardiotropic agents. This review deals with the different etiologies of myocarditis and inflammatory cardiomyopathy including the genetic background, the predisposition for heart failure and inflammation. It analyses the epidemiologic shift in pathogenetic agents in the last 20 years, the role of innate and aquired immunity including the T- and B-cell driven immune responses. The phases and clinical faces of myocarditis are summarized. Up-to-date information on current treatment options starting with heart failure and antiarrhythmic therapy are provided. Although inflammation can resolve spontaneously, specific treatment directed to the causative aetiology is often required. For fulminant, acute and chronic autoreactive myocarditis immunosuppressive treatment is beneficial, while for viral cardiomyopathy and myocarditis ivIg can resolve inflammation and is as successful as interferon therapy in enteroviral and adenoviral myocarditis. For Parvo B19 and HHV6 myocarditis eradication of the virus is still a problem by any of these treatment options. Finally, the potential of stem cell therapy has to be tested in future trials. In virus-negative, autoreactive perimyocardial disease a locoregional approach with intrapericardial instillation of high local doses of triamcinolone acetate has been shown to be highly efficient and with few systemic side-effects.
Collapse
|
8
|
Standard and etiology-directed evidence-based therapies in myocarditis: state of the art and future perspectives. Heart Fail Rev 2012; 18:761-95. [DOI: 10.1007/s10741-012-9362-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Lokalisation von Koronarstenosen nach Strahlentherapie wegen Mammakarzinom. Strahlenther Onkol 2012; 188:1054-6. [DOI: 10.1007/s00066-012-0217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Kumar A, Vishvakarma NK, Bharti AC, Singh SM. Gender-specific antitumor action of aspirin in a murine model of a T-cell lymphoma bearing host. Blood Cells Mol Dis 2011; 48:137-44. [PMID: 22104368 DOI: 10.1016/j.bcmd.2011.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/15/2022]
Abstract
Aspirin is an anti-inflammatory drug demonstrated to possess a tremendous anticancer potential. As progression of some tumors is influenced by sex hormones, we investigated if the antineoplastic action of aspirin shows gender dependence. Using a murine model of T-cell lymphoma, the present investigation was undertaken to study if the antitumor actions of aspirin against lymphoma cells display gender dimorphism. The findings of the present investigation indicate that aspirin administration to male and female tumor-bearing hosts resulted in gender dependent differential tumor growth retardation. Such gender dichotomy of aspirin's antitumor action was associated with a differential impact on cell cycle progression and expression of cell survival regulatory molecules. Aspirin administration was also found to modulate crucial parameters of tumor microenvironment, including contents of glucose, lactate and cell growth regulatory cytokines, in a gender specific manner. Aspirin was found to reverse estrogen-dependent augmentation of tumor cell survival in vitro. Taken together the results of the present study suggest that the antineoplastic action of aspirin is gender-dependent and should be considered in designing of gender-specific therapeutic applications of aspirin.
Collapse
Affiliation(s)
- Anjani Kumar
- School of Biotechnology, Banaras Hindu University, Varanasi, U.P., India
| | | | | | | |
Collapse
|