1
|
Wanigasooriya K, Barros-Silva JD, Tee L, El-asrag ME, Stodolna A, Pickles OJ, Stockton J, Bryer C, Hoare R, Whalley CM, Tyler R, Sillo T, Yau C, Ismail T, Beggs AD. Patient Derived Organoids Confirm That PI3K/AKT Signalling Is an Escape Pathway for Radioresistance and a Target for Therapy in Rectal Cancer. Front Oncol 2022; 12:920444. [PMID: 35860583 PMCID: PMC9289101 DOI: 10.3389/fonc.2022.920444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Partial or total resistance to preoperative chemoradiotherapy occurs in more than half of locally advanced rectal cancer patients. Several novel or repurposed drugs have been trialled to improve cancer cell sensitivity to radiotherapy, with limited success. We aimed to understand the mechanisms of resistance to chemoradiotherapy in rectal cancer using patient derived organoid models. Design To understand the mechanisms underlying this resistance, we compared the pre-treatment transcriptomes of patient-derived organoids (PDO) with measured radiotherapy sensitivity to identify biological pathways involved in radiation resistance coupled with single cell sequencing, genome wide CRISPR-Cas9 and targeted drug screens. Results RNA sequencing enrichment analysis revealed upregulation of PI3K/AKT/mTOR and epithelial mesenchymal transition pathway genes in radioresistant PDOs. Single-cell sequencing of pre & post-irradiation PDOs showed mTORC1 and PI3K/AKT upregulation, which was confirmed by a genome-wide CRSIPR-Cas9 knockout screen using irradiated colorectal cancer (CRC) cell lines. We then tested the efficiency of dual PI3K/mTOR inhibitors in improving cancer cell sensitivity to radiotherapy. After irradiation, significant AKT phosphorylation was detected (p=0.027) which was abrogated with dual PI3K/mTOR inhibitors and lead to significant radiosensitisation of the HCT116 cell line and radiation resistant PDO lines. Conclusions The PI3K/AKT/mTOR pathway upregulation contributes to radioresistance and its targeted pharmacological inhibition leads to significant radiosensitisation in CRC organoids, making it a potential target for clinical trials.
Collapse
Affiliation(s)
- Kasun Wanigasooriya
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Joao D. Barros-Silva
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Louise Tee
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Mohammed E. El-asrag
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Agata Stodolna
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Oliver J. Pickles
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Joanne Stockton
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Claire Bryer
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Hoare
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Celina M. Whalley
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Robert Tyler
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Toritseju Sillo
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Christopher Yau
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Tariq Ismail
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Andrew D. Beggs
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- *Correspondence: Andrew D. Beggs,
| |
Collapse
|
2
|
Wittka A, Ketteler J, Borgards L, Maier P, Herskind C, Jendrossek V, Klein D. Stromal Fibroblasts Counteract the Caveolin-1-Dependent Radiation Response of LNCaP Prostate Carcinoma Cells. Front Oncol 2022; 12:802482. [PMID: 35155239 PMCID: PMC8826751 DOI: 10.3389/fonc.2022.802482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/03/2022] [Indexed: 12/05/2022] Open
Abstract
In prostate cancer (PCa), a characteristic stromal–epithelial redistribution of the membrane protein caveolin 1 (CAV1) occurs upon tumor progression, where a gain of CAV1 in the malignant epithelial cells is accompanied by a loss of CAV1 in the tumor stroma, both facts that were correlated with higher Gleason scores, poor prognosis, and pronounced resistance to therapy particularly to radiotherapy (RT). However, it needs to be clarified whether inhibiting the CAV1 gain in the malignant prostate epithelium or limiting the loss of stromal CAV1 would be the better choice for improving PCa therapy, particularly for improving the response to RT; or whether ideally both processes need to be targeted. Concerning the first assumption, we investigated the RT response of LNCaP PCa cells following overexpression of different CAV1 mutants. While CAV1 overexpression generally caused an increased epithelial-to-mesenchymal phenotype in respective LNCaP cells, effects that were accompanied by increasing levels of the 5′-AMP-activated protein kinase (AMPK), a master regulator of cellular homeostasis, only wildtype CAV1 was able to increase the three-dimensional growth of LNCaP spheroids, particularly following RT. Both effects could be limited by an additional treatment with the SRC inhibitor dasatinib, finally resulting in radiosensitization. Using co-cultured (CAV1-expressing) fibroblasts as an approximation to the in vivo situation of early PCa it could be revealed that RT itself caused an activated, more tumor-promoting phenotype of stromal fibroblats with an increased an increased metabolic potential, that could not be limited by combined dasatinib treatment. Thus, targeting fibroblasts and/or limiting fibroblast activation, potentially by limiting the loss of stromal CAV1 seems to be absolute for inhibiting the resistance-promoting CAV1-dependent signals of the tumor stroma.
Collapse
Affiliation(s)
- Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical Faculty Essen, Essen, Germany
| | - Julia Ketteler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical Faculty Essen, Essen, Germany
| | - Lars Borgards
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical Faculty Essen, Essen, Germany
| | - Patrick Maier
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical Faculty Essen, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical Faculty Essen, Essen, Germany
| |
Collapse
|
3
|
Dual Promoters Improve the Rescue of Recombinant Measles Virus in Human Cells. Viruses 2021; 13:v13091723. [PMID: 34578303 PMCID: PMC8471996 DOI: 10.3390/v13091723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Reverse genetics is a technology that allows the production of a virus from its complementary DNA (cDNA). It is a powerful tool for analyzing viral genes, the development of novel vaccines, and gene delivery vectors. The standard reverse genetics protocols are laborious, time-consuming, and inefficient for negative-strand RNA viruses. A new reverse genetics platform was established, which increases the recovery efficiency of the measles virus (MV) in human 293-3-46 cells. The novel features compared with the standard system involving 293-3-46 cells comprise (a) dual promoters containing the RNA polymerase II promoter (CMV) and the bacteriophage T7 promoter placed in uni-direction on the same plasmid to enhance RNA transcription; (b) three G nucleotides added just after the T7 promoter to increase the T7 RNA polymerase activity; and (c) two ribozymes, the hairpin hammerhead ribozyme (HHRz), and the hepatitis delta virus ribozyme (HDVrz), were used to cleavage the exact termini of the antigenome RNA. Full-length antigenome cDNA of MV of the wild type IC323 strain or the vaccine AIK-C strain was inserted into the plasmid backbone. Both virus strains were easily rescued from their respective cloned cDNA. The rescue efficiency increased up to 80% compared with the use of the standard T7 rescue system. We assume that this system might be helpful in the rescue of other human mononegavirales.
Collapse
|
4
|
Codenotti S, Marampon F, Triggiani L, Bonù ML, Magrini SM, Ceccaroli P, Guescini M, Gastaldello S, Tombolini V, Poliani PL, Asperti M, Poli M, Monti E, Fanzani A. Caveolin-1 promotes radioresistance in rhabdomyosarcoma through increased oxidative stress protection and DNA repair. Cancer Lett 2021; 505:1-12. [PMID: 33610729 DOI: 10.1016/j.canlet.2021.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The aim of this work was to investigate whether Caveolin-1 (Cav-1), a membrane scaffolding protein widely implicated in cancer, may play a role in radiation response in rhabdomyosarcoma (RMS), a pediatric soft tissue tumor. For this purpose, we employed human RD cells in which Cav-1 expression was stably increased via gene transfection. After radiation treatment, we observed that Cav-1 limited cell cycle arrest in the G2/M phase and enhanced resistance to cell senescence and apoptosis via reduction of p21Cip1/Waf1, p16INK4a and Caspase-3 cleavage. After radiotherapy, Cav-1-mediated cell radioresistance was characterized by low accumulation of H2AX foci, as confirmed by Comet assay, marked neutralization of reactive oxygen species (ROS) and enhanced DNA repair via activation of ATM, Ku70/80 complex and DNA-PK. We found that Cav-1-overexpressing RD cells, already under basal conditions, had higher glutathione (GSH) content and greater catalase expression, which conferred protection against acute treatment with hydrogen peroxide. Furthermore, pre-treatment of Cav-1-overexpressing cells with PP2 or LY294002 compounds restored the sensitivity to radiation treatment, indicating a role for Src-kinases and Akt pathways in Cav-1-mediated radioresistance. These findings were confirmed using radioresistant RD and RH30 lines generated by hypofractionated radiotherapy protocol, which showed marked increase of Cav-1, catalase and Akt, and sensitivity to PP2 and LY294002 treatment. In conclusion, these data suggest that concerted activity of Cav-1 and catalase, in cooperation with activation of Src-kinase and Akt pathways, may represent a network of vital mechanisms that allow irradiated RMS cells to evade cell death induced by oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Marampon
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Luca Triggiani
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Marco Lorenzo Bonù
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Stefano Maria Magrini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Paola Ceccaroli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai, Shandong Province, 264003 China
| | - Vincenzo Tombolini
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
5
|
Caveolin-1 regulates the ASMase/ceramide-mediated radiation response of endothelial cells in the context of tumor-stroma interactions. Cell Death Dis 2020; 11:228. [PMID: 32273493 PMCID: PMC7145831 DOI: 10.1038/s41419-020-2418-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
The integral membrane protein caveolin-1 (CAV1) plays a central role in radioresistance-mediating tumor–stroma interactions of advanced prostate cancer (PCa). Among the tumor–stroma, endothelial cells (EC) evolved as critical determinants of the radiation response. CAV1 deficiency in angiogenic EC was already shown to account for increased apoptosis rates of irradiated EC. This study explores the potential impact of differential CAV1 levels in EC on the acid sphingomyelinase (ASMase)/ceramide pathway as a key player in the regulation of EC apoptosis upon irradiation and cancer cell radioresistance. Enhanced apoptosis sensitivity of CAV1-deficient EC was associated with increased ASMase activity, ceramide generation, formation of large lipid platforms, and finally an altered p38 mitogen-activated protein kinase (MAPK)/heat-shock protein 27 (HSP27)/AKT (protein kinase B, PKB) signaling. CAV1-deficient EC increased the growth delay of LNCaP and PC3 PCa cells upon radiation treatment in direct 3D spheroid co-cultures. Exogenous C6 and C16 ceramide treatment in parallel increased the growth delay of PCa spheroids and induced PCa cell apoptosis. Analysis of the respective ceramide species in PCa cells with increased CAV1 levels like those typically found in radio-resistant advanced prostate tumors further revealed an upregulation of unsaturated C24:1 ceramide that might scavenge the effects of EC-derived apoptosis-inducing C16 ceramide. Higher ASMase as well as ceramide levels could be confirmed by immunohistochemistry in human advanced prostate cancer specimen bearing characteristic CAV1 tumor–stroma alterations. Conclusively, CAV1 critically regulates the generation of ceramide-dependent (re-)organization of the plasma membrane that in turn affects the radiation response of EC and adjacent PCa cells. Understanding the CAV1-dependent crosstalk between tumor cells and the host-derived tumor microvasculature and its impact on radiosensitivity may allow to define a rational strategy for overcoming tumor radiation resistance improving clinical outcomes by targeting CAV1.
Collapse
|
6
|
Ketteler J, Panic A, Reis H, Wittka A, Maier P, Herskind C, Yagüe E, Jendrossek V, Klein D. Progression-Related Loss of Stromal Caveolin 1 Levels Mediates Radiation Resistance in Prostate Carcinoma via the Apoptosis Inhibitor TRIAP1. J Clin Med 2019; 8:jcm8030348. [PMID: 30871022 PMCID: PMC6462938 DOI: 10.3390/jcm8030348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Tumour resistance to chemo- and radiotherapy, as well as molecularly targeted therapies, limits the effectiveness of current cancer treatments. We previously reported that the radiation response of human prostate tumours is critically regulated by CAV1 expression in stromal fibroblasts and that loss of stromal CAV1 expression in advanced tumour stages may contribute to tumour radiotherapy resistance. Here we investigated whether fibroblast secreted anti-apoptotic proteins could induce radiation resistance of prostate cancer cells in a CAV1-dependent manner and identified TRIAP1 (TP53 Regulated Inhibitor of Apoptosis 1) as a resistance-promoting CAV1-dependent factor. TRIAP1 expression and secretion was significantly higher in CAV1-deficient fibroblasts and secreted TRIAP1 was able to induce radiation resistance of PC3 and LNCaP prostate cancer cells in vitro, as well as of PC3 prostate xenografts derived from co-implantation of PC3 cells with TRIAP1-expressing fibroblasts in vivo. Immunohistochemical analyses of irradiated PC3 xenograft tumours, as well as of human prostate tissue specimen, confirmed that the characteristic alterations in stromal-epithelial CAV1 expression were accompanied by increased TRIAP1 levels after radiation in xenograft tumours and within advanced prostate cancer tissues, potentially mediating resistance to radiation treatment. In conclusion, we have determined the role of CAV1 alterations potentially induced by the CAV1-deficient, and more reactive, stroma in radio sensitivity of prostate carcinoma at a molecular level. We suggest that blocking TRIAP1 activity and thus avoiding drug resistance may offer a promising drug development strategy for inhibiting resistance-promoting CAV1-dependent signals.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Andrej Panic
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
- Department of Urology and Urooncology, University of Duisburg-Essen, University Hospital, Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | - Henning Reis
- Institute of Pathology, University of Duisburg-Essen, University Hospital, Hufelandstr. 55, 45122 Essen, Germany.
| | - Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Patrick Maier
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Carsten Herskind
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ernesto Yagüe
- Cancer Research Center, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| |
Collapse
|
7
|
Abstract
Resistance of solid tumors to chemo- and radiotherapy remains a major obstacle in anti-cancer treatment. Herein, the membrane protein caveolin-1 (CAV1) came into focus as it is highly expressed in many tumors and high CAV1 levels were correlated with tumor progression, invasion and metastasis, and thus a worse clinical outcome. Increasing evidence further indicates that the heterogeneous tumor microenvironment, also known as the tumor stroma, contributes to therapy resistance resulting in poor clinical outcome. Again, CAV1 seems to play an important role in modulating tumor host interactions by promoting tumor growth, metastasis, therapy resistance and cell survival. However, the mechanisms driving stroma-mediated tumor growth and radiation resistance remain to be clarified. Understanding these interactions and thus, targeting CAV1 may offer a novel strategy for preventing cancer therapy resistance and improving clinical outcomes. In this review, we will summarize the resistance-promoting effects of CAV1 in tumors, and emphasize its role in the tumor-stroma communication as well as the resulting malignant phenotype of epithelial tumors.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Yun KL, Wang ZY. Target/signalling pathways of natural plant-derived radioprotective agents from treatment to potential candidates: A reverse thought on anti-tumour drugs. Biomed Pharmacother 2017; 91:1122-1151. [DOI: 10.1016/j.biopha.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
|
9
|
Progression-related loss of stromal Caveolin 1 levels fosters the growth of human PC3 xenografts and mediates radiation resistance. Sci Rep 2017; 7:41138. [PMID: 28112237 PMCID: PMC5255553 DOI: 10.1038/srep41138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022] Open
Abstract
Despite good treatment results in localized prostate tumors, advanced disease stages usually have a pronounced resistance to chemotherapy and radiotherapy. The membrane protein caveolin-1 (Cav1) functions here as an important oncogene. Therefore we examined the impact of stromal Cav1 expression for tumor growth and sensitivity to ionizing radiation (IR). Silencing of Cav1 expression in PC3 cells resulted in increased tumor growth and a reduced growth delay after IR when compared to tumors generated by Cav1-expressing PC3 cells. The increased radiation resistance was associated with increasing amounts of reactive tumor stroma and a Cav1 re-expression in the malignant epithelial cells. Mimicking the human situation these results were confirmed using co-implantation of Cav1-silenced PC3 cells with Cav1-silenced or Cav1-expressing fibroblasts. Immunohistochemically analysis of irradiated tumors as well as human prostate tissue specimen confirmed that alterations in stromal-epithelial Cav1 expressions were accompanied by a more reactive Cav1-reduced tumor stroma after radiation and within advanced prostate cancer tissues which potentially mediates the resistance to radiation treatment. Conclusively, the radiation response of human prostate tumors is critically regulated by Cav1 expression in stromal fibroblasts. Loss of stromal Cav1 expression in advanced tumor stages may thus contribute to resistance of these tumors to radiotherapy.
Collapse
|
10
|
Klein D, Schmitz T, Verhelst V, Panic A, Schenck M, Reis H, Drab M, Sak A, Herskind C, Maier P, Jendrossek V. Endothelial Caveolin-1 regulates the radiation response of epithelial prostate tumors. Oncogenesis 2015; 4:e148. [PMID: 25985209 PMCID: PMC4450264 DOI: 10.1038/oncsis.2015.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/24/2015] [Accepted: 03/20/2015] [Indexed: 02/08/2023] Open
Abstract
The membrane protein caveolin-1 (Cav1) recently emerged as a novel oncogene involved in prostate cancer progression with opposed regulation in epithelial tumor cells and the tumor stroma. Here we examined the role of stromal Cav1 for growth and radiation response of MPR31-4 prostate cancer xenograft tumors using Cav1-deficient C57Bl/6 mice. Syngeneic MPR31-4 tumors grew faster when implanted into Cav1-deficient mice. Increased tumor growth on Cav1-deficient mice was linked to decreased integration of smooth muscle cells into the wall of newly formed blood vessels and thus with a less stabilized vessel phenotype compared with tumors from Cav1 wild-type animals. However, tumor growth delay of MPR31-4 tumors grown on Cav1 knockout mice to a single high-dose irradiation with 20 Gray was more pronounced compared with tumors grown on wild-type mice. Increased radiation-induced tumor growth delay in Cav1-deficient mice was associated with an increased endothelial cell apoptosis. In vitro studies using cultured endothelial cells (ECs) confirmed that the loss of Cav1 expression increases sensitivity of ECs to radiation-induced apoptosis and reduces their clonogenic survival after irradiation. Immunohistochemical analysis of human tissue specimen further revealed that although Cav1 expression is mostly reduced in the tumor stroma of advanced and metastatic prostate cancer, the vascular compartment still expresses high levels of Cav1. In conclusion, the radiation response of MPR31-4 prostate tumors is critically regulated by Cav1 expression in the tumor vasculature. Thus, Cav1 might be a promising therapeutic target for combinatorial therapies to counteract radiation resistance of prostate cancer at the level of the tumor vasculature.
Collapse
Affiliation(s)
- D Klein
- Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - T Schmitz
- Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - V Verhelst
- Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - A Panic
- 1] Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany [2] Department of Urology and Urooncology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - M Schenck
- Department of Urology and Urooncology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - H Reis
- Institute of Pathology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - M Drab
- 1] Institute of Immunology and Experimental Therapy, Wroclaw, Poland [2] Wroclaw Research Center EIT+, Wroclaw, Poland
| | - A Sak
- Department of Radiotherapy, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - C Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - P Maier
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - V Jendrossek
- Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| |
Collapse
|
11
|
|
12
|
Stingl L, Niewidok N, Müller N, Selle M, Djuzenova CS, Flentje M. Radiosensitizing effect of the novel Hsp90 inhibitor NVP-AUY922 in human tumour cell lines silenced for Hsp90α. Strahlenther Onkol 2012; 188:507-15. [PMID: 22441439 DOI: 10.1007/s00066-012-0080-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/11/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hsp90 inhibitors can enhance the tumour sensitivity to ionising radiation (IR). However, Hsp90 inhibition leads to the up-regulation of anti-apoptotic Hsp90 and Hsp70, which might diminish the radiosensitizing effects of the inhibitors. Therefore, inhibition of the up-regulation of Hsp90 by siRNA might be a promising strategy to enhance drug-mediated radiosensitization. MATERIALS AND METHODS The expression of Hsp90α was silenced in A549 and GaMG tumour cell lines by siRNA treatment. Pre-silenced for Hsp90α cells were treated with NVP-AUY922, a novel Hsp90 inhibitor, for 24 h and then irradiated. Radiation response was determined by colony-forming ability. The expression of several marker proteins was analysed by Western blot. DNA damage and repair were assessed by histone γH2AX measurements. RESULTS We found that transfection with siRNA against Hsp90α reduced Hsp90α at mRNA and protein levels. Pre-silencing of Hsp90α reduced NVP-AUY922-mediated up-regulation of Hsp90α but it did not increase drug-mediated radiosensitization in both tumour cell lines. As revealed by Western blot, pre-silencing of Hsp90α followed by NVP-AUY922 did not change the expression of Hsp90 client proteins (Akt, Raf-1, Cdk1 and Cdk4) compared with drug treatment alone, suggesting unchanged chaperone function in transfected cells. CONCLUSION Pre-silencing of Hsp90α followed by Hsp90 inhibition did not enhance the radiosensitizing effect of NVP-AUY922 in both tested tumour cell lines. Future work will be done on stable transfection with shRNA against Hsp90α or simultaneous silencing of both Hsp90 isoforms, Hsp90α and Hsp90β, in order to optimize tumour cell killing.
Collapse
Affiliation(s)
- L Stingl
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
WANG XH, ZHENG YM, CUI YQ, LIU S, SUN HC, LI F. The Inhibition Effect of Caveolin-1 on PANC1 Human Pancreatic Tumor Growth <I>In vitro</I> and <I>In vivo</I>*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Distinct role of endocytosis for Smad and non-Smad TGF-β signaling regulation in hepatocytes. J Hepatol 2011; 55:369-78. [PMID: 21184784 DOI: 10.1016/j.jhep.2010.11.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/10/2010] [Accepted: 11/02/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS In injured liver, TGF-β affects all hepatic cell types and participates in wound healing and fibrogenesis. TGF-β downstream signaling is highly complex and cell type dependent, involving Smad and non-Smad signaling cascades thus requiring tight regulation. Endocytosis has gained relevance as important mechanism to control signaling initiation and termination. In this study, we investigated endocytic mechanisms for TGF-β mediated Smad and non-Smad signaling in hepatocytes. METHODS Endocytosis in hepatocytes was elucidated using chemical inhibitors, RNAi, viral gene transfer and caveolin-1-/- mice. TGF-β signaling was monitored by Western blot, reporter assays and gene expression analysis. RESULTS In hepatocytes, Smad activation is to a large degree accomplished AP-2 complex dependent on the hepatocyte surface without the necessity of clathrin coated pit formation or an endocytic step. In contrast, non-Smad/AKT pathway activation required functional dynamin mediated endocytosis and the presence of caveolin-1, an essential protein for caveolae formation. Furthermore, these two TGF-β signaling initiation platforms discriminate distinct signaling routes that integrate at the transcriptional level as shown for TGF-β target genes, Id1, Smad7, and CTGF. Endocytosis inhibition increased canonical Smad signaling and culminated in a superinduction of Id1 and Smad7 expression, whereas caveolin-1 mediated AKT pathway activation was required for maximal CTGF induction. CONCLUSIONS Endocytosis is critical for TGF-β signaling regulation in hepatocytes and determines gene expression signature and (patho)physiological outcome.
Collapse
|
15
|
Manda K, Kriesen S, Hildebrandt G, Fietkau R, Klautke G. Omega-3 Fatty Acid Supplementation in Cancer Therapy. Strahlenther Onkol 2011; 187:127-34. [DOI: 10.1007/s00066-010-2166-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 11/15/2010] [Indexed: 01/25/2023]
|
16
|
Combination of Ionising Irradiation and Hyperthermia Activates Programmed Apoptotic and Necrotic Cell Death Pathways in Human Colorectal Carcinoma Cells. Strahlenther Onkol 2010; 186:587-99. [DOI: 10.1007/s00066-010-2154-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 07/05/2010] [Indexed: 01/04/2023]
|